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Exciton- and Light-induced Current in Molecular 
Nanojunctions 

B.D. Fainberga,b, P. Hanggic, S. Kohlerc and A. Nitzanb 

aFaculty of Sciences, Holon Institute of Technology, 52 Golomb St., Holon 58102, Israel 
bSchool of Chemistry, Tel-AvivUniversity, Tel-Aviv 69978, Israel 

c Institute for Physics, University of Augsburg, Augsburg, D-86135, Germany 
Abstract. We consider exciton- and light-induced current in molecular nanojunctions. Using a model 
comprising a two two-level sites bridge connecting free electron reservoirs we show that the exciton 
coupling between the sites of the molecular bridge can markedly effect the source-drain current through a 
molecular junction. In some cases when excited and unexcited states of the sites are coupled differently to 
the leads, the contribution from electron-hole excitations can exceed the Landauer elastic current and 
dominate the observed conduction. We have proposed an optical control method using chirped pulses for 
enhancing charge transfer in unbiased junctions where the bridging molecule is characterized by a strong 
charge-transfer transition. 

Keywords: Molecular nanojunctions, excitons, light-induced current. 
PACS: 71.35.Aa, 73.63.Rt, 73.23Hk, 85.65.+h 

INTRODUCTION 

Electron transport through molecular wires has been under intense study in the last few 
years [1-3]. Theoretical modeling of electron transport [2,3] starts from the wire Hamilto-
nian as a tight-binding model composed of N sites that contain electron transfer (tunneling) 
interactions between nearest sites. For a molecular wire, this constitutes the so-called 
Huckel description where each site corresponds to one atom. Necessary conditions for 
finite current in this model are, first, the existence of such interactions between (quasi-) 
resonant states of nearest sites, and second, a biased junction. In this presentation we con-
sider additional interactions, which enable us to remove one of these conditions for current 
to occur. 

COHERENT CHARGE TRANSPORT THROUGH MOLECULAR 
WIRES: CURRENT FROM ELECTRONIC EXCITATION IN THE 

WIRE 

For a typical distance of 5 Å between two neighboring sites, which can be either atoms or 
molecules in molecular assemblies, energy-transfer interactions – excitation (deexcitation) 
of a site accompanied by deexcitation (excitation) of its nearest neighbor - are well-known 
in the exciton theory [4]. Electron transfer is a tunneling process that depends expone-
ntially on the site-site distance, while energy transfer is associated with dipolar coupling 
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that scales like the inverse cube of this distance, and can therefore dominate at larger 
distances. To the best of our knowledge, there were no previous treatments of transport in 
molecular wires that take into account simultaneous effects of both electron and energy 
transfer. Here we address this problem by using the Liouville-von Neumann equation 
(LNE) for the total density operator to derive an expression for the conduction of a 
molecular wire model that contains both electron and energy-transfer interactions, then 
analyze several examples with reasonable parameters. We show that the effect of exciton 
type interactions on electron transport through molecular wires can be significant, 
sometimes even dominant, in a number of situations. In particular, the current occurs even 
when the above mentioned first condition is not fulfilled. 

Model 

We consider a molecular wire that comprises a dimer represented by its highest 
occupied molecular orbitals (HOMO), | g> , and lowest unoccupied molecular orbitals 
(LUMO), | e) , positioned between two leads represented by free electron reservoirs L 
and R (Fig.1). The electron reservoirs (leads) are characterized by their electronic chemical 
potentials /uL and /uR , where the difference /uL - /uR = e<t> is the imposed voltage bias. 
The corresponding Hamiltonian is 

FIGURE 1. A model for energy-transfer induced effects in molecular conduction. The right (R=|{r})) and 
left (L=| {/}> ) manifolds represent the two metal leads characterized by electrochemical potentials u.R and u.L 

respectively. A molecular dimer is represented by its HOMOs, | 1g> and |2g) , and LUMOs, 1e) and 
|2e) . 

H=Hwire+Hleads+Hcmtacts (1) 

where the different terms correspond to the wire, the leads (Hlmds = Y,k^{L,R}
ek^k ), and 

the wire-lead couplings ( Hcmtacts =VM+ VN), respectively. 
ˆ M=T,V^fn)dtdnf+H.C. nf describes electron transfer between the molecular 

nkf 
bridge and the leads that gives rise to net current in the biased junction while 
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"AT 2-t kk' CkCk'tJn +H-C- describes energy transfer between the bridge and 
n,k*k' 

electron-hole excitations in the leads. Here H.c. denotes Hermitian conjugate, L and R 
denote the left and right leads, respectively, and Kl=L, K2=R. 

H„ire = X e^cVc~s ~ Z A/(£2/C1 / + c+fc2f) + hJ(b+b2 + b+
2b1) + £ UmNm(Nm -1) 

m=l,2 f=g>e m=l,2 
f=g,e 

(2) 
The operators c+

mf (cmf) create (annihilate) an electron in the orbital | mf), and 

emf denotes the respective on-site energy, nmf = c+
mfcmf . The second and the third terms 

on the RHS of Eq. 2 describe electron and energy transfer between the sites, 
respectively. Since we aim at exploring blocking effects, the last term on the RHS of 
Eq. 2 takes account of the Coulomb repulsion on a site in the limit of large interaction 
strengths Um where Nm = E/=g,e«m/ is the operator counting the excess electrons 
on the sites. The excitonic operators are equal to b+

m = c+
mecmg. The effect of the 

corresponding interaction in the bridge ( = hJb+b2 +H.c. ) on the charge transport 
properties is the subject of our discussion. 

Master Equation in the Eigenbasis of Many-electron Wire 
Hamiltonian 

The central idea of using LNE for the computation of stationary currents is to 
consider Ĥcontacts as a perturbation. For the total density operator I one can obtain 
by standard techniques the approximate equation of motion [2,3]. The information of 
interest is limited only to the wire part of the density operator <j(t), which can be 
obtained by defining a projection operator P that projects the complete system onto 
the relevant (molecule) part and by tracing out the reservoir degrees of freedom ( 
K = L,R ): Pp(t) = pKTrKp(t) = pK ® a(t) with reservoir density matrix pK . As 
to pK , we employ the grand-canonical ensemble of non-interacting electrons in the 
leads at temperature T, characterized by electrochemical potentials fiK . Therefore, 
the lead electrons are described by the equilibrium Fermi function 
IK (ek) = [exP((et ~ MK)/kBT) +1] ' • From this follows that all expectation values of 
the lead operators can be traced back to the expression {c+

kck,> = fK (e^S^ where 
8W is the Kronecker delta. As a matter of fact, we get 

da(f) i - , sn 1 
wire' VVJ 2 

where Ks
mt(-x) = exp[-j-(Hwire +Hkads)x\Vs exp[j-(Hwire + Hleads)x],and we used the 

noncrossing approximation [5]. For the evaluation of Eq. 3 it is essential to use an 
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exact expression for the zero-order time evolution operator exp[-j-(Hwjre + Hkads)x]. 
The use of any approximation bears the danger of generating artifacts, which, for 
instance, may lead to a violation of fundamental equilibrium properties [6]. To do so, 
we first define new operators b+

f = c+
2fcˆ1f and bf = c+

1fc2f (f=e,g) describing charge 
transfer 1 -^ 2 and 2 -> 1, respectively, in the donor-acceptor (DA) two-level system. 
Then the non-diagonal part of Ĥwire , Eq. 2, can be rewritten in terms of operators bf 

only 

H (nondiag) ^ kf(b+
f+bf)-hJ(b^bg+b+

gbe 
f=g,e 

(4) 

By expanding a in the many-electron eigenstates of the uncoupled sites, one obtains 
a 2 4 x 2 4 = 2 5 6 density matrix a, - . Fortunately, the following consideration 

{nmf},{nmf} 

can be essentially simplified by using the pseudospin description based on the 
symmetry properties of Lie group SU(2). A two states DA system can be described by 
the pseudospin vector, using Pauli matrices (71 2 3 and the unit matrix / [7]. The 
components of the Bloch vector in the second quantization picture are given by 
r1 =bj +bf, r2 = i(bf -b+

f ), r3 / 2 / 1 / Owing to the commutation of 

operators lf = h2f + h1f (the electron number operator for the/-th DA system) and 

rf , Xf is conserved under unitary transformations related to the diagonalization of 

Ĥwire . Therefore, a total 24 x 24 space can be partitioned into nine smaller subspaces 
according to the values of Xf = 0,1,2 : four one-dimensional subspaces for Xf = 0,2 

(type I); four two-dimensional subspaces for Xf=1 and Xf,=0 , 2 where / * / ' 

(type II) ; and one four-dimensional subspace for Xe=Xg=1 (type III). One can 
show that 

(r1)2 = (r 2 ) 2 = (r3)2 =Xf -2h2fh 2f 1f 

[0 for Xf =0,2 
1 forX f=1 (5) 

Using Eqs. 2,4 and 5, we can write Hˆ wire in terms of the Bloch vector components as 
follows 

0 for subspaces (I), 
^̂  1

2r3f(e 2 f - £ 1 f ) - A fr1f for subspaces (II), 

- 2(r1r1 + r2r2 ) for subspace (III) 
(6) 
where without loss of generality we put (s1g+s2g)/2 = 0, and the energy of the wire 

depends in the main on Xe. In the following, we specify the master equation, Eq. 3, for 
studying two limiting cases. The first limit Um=0 describes non-interacting electrons 

wire 
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at each sites. The second limit is the one of strong Coulomb repulsion at each site in 
which Um is much larger than any other energy scale of the problem. Then, only the 
states with at most one excess electron on the site are relevant. In both cases, a diagonal 
representation of the first term on the RHS of Eq. 3 is achieved by a decomposition into 
the eigenbasis (a, ft) of the many-electron wire Hamiltonian. In this basis, the fermionic 
interaction picture operators read 

{X.,\ | c£(-z) | lf +\)ap = [Y + {Xe,Xg)r{K^s)cnfZ^f+W^f+m a.p 

x exp[— (Ep (Xf +\)-Ea (Xe, Ag ))x] 

(7) 

where Y(Xe,Xg) are unitary transformations related to the diagonalization of Hwire ; 

%(A-e,Xg) = ({| nlg,n2g,nle,n2e)}) is the column matrix of the many-electron eigenstates of 

the uncoupled sites for nle + nle = Xe and nlg + nlg = Ag ; (Xf +l) = (Xe + \,Xg) if 

f = e and (Af+l) = (Ae,Ag+1) if / = g ; % denotes the transpose matrix % The 

unitary transformationsY{Xe,Xg) = I for subspaces (I). As to subspaces (II), Hamiltonian 

corresponding to the second line of the RHS of Eq. 6 where Xf = 1 * Xf can be 

diagonalized, using the unitary transformation 

( T)f 
1 

2 

f 
1 

r 3 

cos 23 
0 

sin 2$. 

0 - sin 23f | [ rx 

1 0 
0 cos 231 

f 

h 
r 
3 

(8) 

where tan 23f = -2Af l(elf -slf). The matrix elements of TJ are connected with the 

unitary transformations Y(Xe,Xg) for subspaces (II) by formula 

T( = (1 /2)Tr(dJ+ ajY) where an and IT . are Pauli matrices. The calculation of 

Y + (1,1) for subspace (III) is more involved. Employing the master equation Eq. 3 and 
keeping for brevity only terms with S=M , we obtain in the wide-band limit for the 
steady-state condition 

(Ea -Ep)(Tal3 =—'YJ ^M nf{Cnf aa'^dpCtf pp\2- fK (E p' ~ Ep) ~ fK (E a' ~ Ea)] 
h 2 nfa'P 

+c+ nf,aa^a^nf,ppUK„(EP -Ep) + f Kn (Ea -Ea,)]-{c nf^,c+ nfa,p,f Kn (Ea, -Ep) 

+Kf,aa'£„f,a'p' t1 " f Kn (Ep' ~ Ea' )]}ap'p 

-Vaa'tfnf, aa> „f,a>P'^f,P'pf K„ (E> " E a> ) + C+ nf,a'p'Cnf,p'p [1 " f K, (E a> ~ E p>)]}} 

(9) 

2 
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where YMnf = ? £ | V^j? \2 8{sk - snf) . 

Calculation of Current 

The current through the dashed line (see Fig.1) is given by I = ejjN = f[H,N] where 

N = ~Lk£LC+
kck + hlg + hle is the operator of the electron number on the left from the 

dashed line. Calculating the commutator on the RHS of the last equation, we get 
I = f^f=g,eAf(bf -b+

f) = f E/=g,e ^fr2 • Using Eq. 6, we obtain 

f=g,e 

Obviously Xf=\ in Eq. 10 is another way of saying that the current in channel j exists 
only for the case of one of states {/} is occupied and another one of {/} is 
unoccupied. 

Strong Coulomb Repulsion at Sites 

In the limit of strong Coulomb repulsion, Um is assumed to be so large that at most 
one excess electron resides on each site. Thus, the available Hilbert space for uncoupled 
sites is reduced to three states £(0,0) , £(2,0) and £(0,2) for subspaces I; two states 

subspace III, which in this case becomes two-dimensional one. Consider subspaces (II). 
The matrix f f, Eq. 8, with matrix elements 
Tiij = (l/2)rr[<T„r+(/ly = \;Xf = Q)GjY{Xf = \;lf = 0)] describes a rotation by mixing 

angle 23f around axis " / ' . Y(Xf =\;Xf, =0) is an unitary operator defined by 

£(1,0) and £(0,1) for subspaces II; and the state XQ-^) for 

which enables us to obtain eigenstates 

<D ( / = l-x . = o) r Y {Xf= l''xf = 0)x{1f = l''xf = 0) 

and eigenvalues 

(11) 

(12) 
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E±  (Af = 1; Xf = 0) = — [Ae (e1e + e2e) + (e2f - e1f) + J(s2f - e1f)2 + 4 A2
y ] ) 

(13) 

for subspaces (II). As to subspace III, operator Y+ (1,1) for e^ = 0, ene = ee and Ag = 0 is 
reduced to 

1 f 1 1 
1 ˆ (1,1) = 2 [ - 1 J (14) 

It enables us to obtain the corresponding eigenstates 0(1,1) = 7+(1,1)f (1,1) and 
eigenvalues E12 = se + Jh. Using Eqs. 10 and 14 and taking the expectation value of 
current, we get for Ag = 0 

{!)=—AeImer_+(1,0) (15) 

Current from Electronic Excitations in the Wire 

Recently Galperin, Nitzan and Ratner [8] predicted the existence of non-Landauer 
current induced by the electron-hole excitations in the leads. Here we show that the non-
Landauer current is induced also by the exciton type excitations in the wire itself. 
Consider a strong bias limit in the Coulomb blockade case, where fiL > ee and 
/iR<sg, and the states ef are positioned rather far ( D kBT,|J |,| Ae | ) from the Fermi 
levels of both leads so that fL (e) = 1 and fR (e) = 0 on the RHS of Eq. 9. The 
Landauer current in the case under consideration ( Ag = 0 ) occurs in channel "e" when it 
is isolated from channel "g" that is realized for TM 1g = TM 2g = 0 and Xg = 0. The latter 

equality enables us to avoid blocking the current in channel "e" due to strong Coulomb 
repulsion at sites. Indeed, the Landauer current does not exist for TM 1e=TM2e=0 even 

when rM 1g, T M 2g * 0, since Ag = 0. In contrast, the solution of Eq. 9 in the rotating-
wave approximation (RWA) [3] gives for this case 

CT^(1,0) = r ^ { r M , 1 g ^ ( 1 , 0 ) + rM,2g7><7(1,1)} (16) 

and Tra(1, 0) = (TM 2g /TM 1g )Tra(1, 1). Then using the normalization condition 
Tr(i(1, 0) + Tr(i(1, 1) = 1 and Eq. 15, we obtain 
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\ / R 
V M,2g M,1g 

M,2g M,1g 

(17) 

The last equation describes a non-Landauer current caused by the electron transfer 
occurring in different channels: the intersite transfer in the bridge takes place in channel 
V , and the bridge-metals charge transfer occurs in channel "g". The inter-channel 
mixing is induced by the energy-transfer term ~ J (see Fig.2). Consider a cycle 
corresponding to the charge transfer of e. Initially electrons populate states |1g" (due to 
coupling to the left lead, TM 1g * 0 ) and |2e* ( TM 2e = 0 ) of the sites (Fig.2a). The 
energy transfer induces the following transitions: | 2e) ->| 2g> and |1g)-»|1e> 
(vertical arrows). The system arrives to the state shown in Fig.2b. Due to the coupling to 
the right lead (TM2g * 0), electron from state | 2g> moves into the right lead (the 
horizontal arrow), and after this the system is described by Fig.2c. Due to releasing the 
right site and the hopping matrix element Ae , electron from state | 1e) passes into state 
|2e) (the upper horizontal arrow), releasing the left site. Then an electron from the left 
lead moves into state | 1g) (TM 1g * 0, the lower horizontal arrow), and the system 
returns into the initial state described by Fig.2a. 

FIGURE 2. Different stages of the energy-transfer induced current. a) energy transfer, σ(1,1)≠ 0. b) the 
charge transfer to the right lead. c) the intersite charge transfer, σ(1,0)≠ 0; the charge transfer from the left 

lead. 

OPTICAL CONTROL OF CURRENT WITH CHIRPED PULSES 

In the second part of the paper we describe a theory for light-induced current by strong 
optical pulses in unbiased molecular tunneling junctions as a special case where the 
second condition for finite current (see Introduction) - a biased junction - is not fulfilled. 
We consider a class of molecules characterized by strong charge-transfer transitions into 
their first excited state [9]. We have proposed a novel control mechanism by which the 
charge flow is enhanced by chirped pulses. For linear chirp and when the energy transfer 
between the molecule and electron-hole excitations in the leads is absent, this control 
model can be reduced to the Landau-Zener transition to a decaying level. The details can 
be found in Ref. [5]. 
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