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1. Introduction

The coupling between an atom and the quantized electro-
magnetic field represents a paradigmatic setup in quantum optics
that allows one to study the interaction of light and matter in a
fully quantum mechanical way. In most related experiments, an
atom is placed inside a cavity, from where stems the labelling
‘‘cavity quantum electrodynamics’’ [1].

In the last years the implementation of such systems in the solid
state realm has been demonstrated [2,3]. Depending on the
experimental implementation, the atom is realized artificially with a
superconducting circuit or a quantum dot, while a quantum LC-circuit
as part of a transmission line or a photonic crystal, respectively, serves
as cavity. This not only provides a widely enhanced tunability of
parameters in an experiment, but also allows one to achieve the
strong coupling limit between the artificial atom and the cavity,
where the interaction exceeds the decay rates of the atom and the
cavity by far. It has recently been shown that the coupling strength
may even be enhanced by several orders of magnitude compared to
conventional cavity QED experiments [4]. Furthermore, circuit QED
systems may be used for many experimental validations of quantum
mechanics, such as the quantum-non-demolition-like readout of a
qubit state [5], the generation of Fock states [6], the observation of
Berry phases [7], or multiphoton resonances [8]. Generation of
entanglement between the qubit and the cavity via a Landau–Zener
sweep has been theoretically proposed as well [9,10]. From a
fundamental point of view these setups, realizing ‘‘quantum optics
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on a chip’’, give the opportunity to rediscover and improve the vast
goals of quantum optics and to test experimentally its concepts in the
solid state.

However, the mentioned experiments involve ‘‘only’’ a single qubit
and one cavity. With a view to quantum computing, i.e. in order to
realize a quantum register, it is highly desirable to couple several of
these qubit–cavity systems to obtain a circuit QED network. This
would not only allow for performing quantum operations such as
quantum gates, but also enable the creation and distribution of
entanglement throughout the network. Indeed, a setup to couple two
cavities via an ancilla qubit has been recently proposed in Refs. [11,12],
while in recent experiments [13,14], two qubits have been entangled
via one cavity.

In this paper, referring to the setup of Ref. [11] we suggest the
transfer of entanglement between two qubit–cavity systems via an
ancilla qubit, which requires entangling different cavities. We restrict
ourselves to the case where the qubit–cavity entanglement is created
via a Landau–Zener sweep; cf. Refs. [9,10].

Due to the interaction with a dissipative environment,
entanglement within an open quantum system is typically
subject to decay via spontaneous emission. For the non-trivial
class of states discussed here, this can even occur during finite
time [15,16]. This phenomenon of ‘‘sudden death of entangle-
ment’’ has been investigated theoretically for a conventional
cavity QED setup [17] and observed in an experiment as
well [18].

The paper is organized as follows. In Section 2 we shortly
review the elementary description of a superconducting qubit
coupled to an electromagnetic quantum circuit. Further, we give a
brief review on the creation of entanglement between qubit and
cavity by a Landau–Zener sweep. In Section 3 we discuss the
influence of a dissipative environment on the final entangled
qubit–cavity state. In Section 4 we consider a network architec-
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ture consisting of two qubit–cavity systems dynamically coupled
via an ancilla qubit, and discuss how this dynamical interaction
yields an entangled two-cavity state. Finally, in Section 5, we
investigate the finite-time disentanglement of that state under
environmental influence, depending on the details of state
preparation.
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Fig. 1. (Color online) (a) Adiabatic energy levels of the qubit–oscillator Hamilto-

nian (1) as a function of the Josephson energy which is swept at constant velocity

such that EJ ¼ ‘vt. Here, g ¼ 0:04O and v ¼ 0:01O2 . (b) Dynamics for the

probabilities j/k;1jcðtÞSj2 and j/m;0jcðtÞSj2 . The occupation of higher states is

always less than 0.01% (not shown).
2. Qubit–cavity entanglement via LZ sweep

Among many possible setups for circuit QED, one concrete
realization is given by a Cooper pair box (CPB) that couples
capacitively to a LC circuit, which acts as a harmonic oscillator [4].
The CPB is formed of a superconducting island connected to a
superconducting reservoir by a dc SQUID. The effective Josephson
energy EJ ¼ E0

J cosðpF=F0Þ can be tuned via an external flux F
penetrating the SQUID, where F0 denotes the flux quantum. We
assume that F is switchable within a sufficiently large time
interval such that EJ ¼ ‘vt, v40. The capacitive energy of the CPB,
Eel ¼

1
2EcðN � NgÞ

2 is determined by the geometry-dependent
charging energy Ec, the number N of Cooper pairs on the
island, and the reduced background charge Ng which is propor-
tional to a voltage bias Vg . In the charging limit EcbEJ and near the
charge degeneracy point Ng ¼

1
2, it is justified to describe the CPB

by its two lowest charge states jN ¼ 0S and jN ¼ 1S. This
allows the interpretation as a two-level system (TLS) or qubit
for which the Hamiltonian in pseudo-spin notation reads
Hqb ¼ �

1
2‘vtsz. It possesses the eigenstates jmS ¼ ðj0Sþ

j1SÞ=
ffiffiffi
2
p

and jkS ¼ ðj0S� j1SÞ=
ffiffiffi
2
p

.
Making use of the standard Rabi model the total qubit–oscil-

lator Hamiltonian reads [4]

Hs ¼ �
‘vt

2
sz þ ‘gsxða

y þ aÞ þ ‘Oaya: ð1Þ

The second term refers to the coupling of the qubit to the
fundamental mode of the transmission line, which is modelled as
a harmonic oscillator with the usual bosonic creation and
annihilation operators ay and a and energy eigenstates jnS,
n ¼ 0;1; . . . ;1. Note that the usually performed rotating
wave approximation (RWA) in the coupling Hamiltonian is not
justified here since during almost the complete Landau–Zener
sweep, the qubit and the harmonic oscillator are far detuned.

If the effective Josephson energy is switched from a large
negative to a large positive value, and assuming that both the TLS
and the oscillator are initially in their ground state jm;0S, the
probability for the TLS to end up in the upper state can be
computed exactly to read [10]

Pm-k ¼ 1� e�2pg2=v: ð2Þ

This clearly reminds one of the Landau–Zener formula for the bare
two-level system [19–21], with the level splitting in the antic-
rossing at t ¼ O=v (see Fig. 1) now given by the coupling constant
g. It should be noted that the probability (2) does not provide any
direct information about the final oscillator state. However, due to
the symmetry of the Hamiltonian (1), every creation or
annihilation of a photon is accompanied by a qubit flip, which
restricts the resulting dynamics to the states jm;2nS and
jk;2nþ 1S. Furthermore, the ‘‘no-go-up’’ theorem states that
Pm;n-m;m ¼ 0 for m4n [22]. This reduces the possible final
qubit–oscillator states to the state

jcð1ÞS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pm-k

q
jm;0Sþ

ffiffiffiffiffiffiffiffiffiffiffiffi
Pm-k

q X
n

cnjk;2nþ 1S ð3Þ

with the normalization
P

n jcnj
2 ¼ 1. In the experimentally

relevant limit of g5O, we numerically find that during
the whole Landau–Zener transition, the state is well
approximated by

jcðtÞSffi aðtÞjm;0Sþ bðtÞjk;1S ð4Þ

with að1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pm-k

p
, and bð1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Pm-k

p
c1, i.e. jc1j ffi 1. We

substantiate this by plotting a typical example for the
characteristics of the LZ dynamics in Fig. 1(b), where it
becomes evident that finally only the states jm;0S and jk;1S
are significantly populated. This means a great simplification
since it allows one to reduce the number of all relevant oscillator
states to two.

Then in particular, the qubit–oscillator state (4) is entangled
and can therefore be mapped to the state of two entangled two-
level systems. For future convenience it is useful to introduce the
density matrix for the qubit–cavity system rq2c ¼ jcS/cj that
reads, in the basis fjm;0S; jk;0S; jm;1S; jk;1Sg,

rq2cðtÞ ¼

jaðtÞj2 0 0 a�ðtÞbðtÞ
0 0 0 0

0 0 0 0

aðtÞb�ðtÞ 0 0 jbðtÞj2

0
BBBB@

1
CCCCA: ð5Þ

As a consequence, we can use the concurrence as a well-defined
measure of entanglement for the two two-level systems. It is defined
as C ¼ maxfl1 � l2 � l3 � l4;0g. The parameters l are the ordered
eigenvalues of the matrix

ffiffiffiffirp ðsc
y � sq

y Þrðsc
y � sq

y Þ
ffiffiffiffirp [23]. Here, the

Pauli matrices sq
y and sc

y act on the qubit space and the reduced
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Fig. 2. Qubit–oscillator entanglement in terms of the concurrence Cq2c for a

Landau–Zener transition. Here, kBT ¼ 0:01‘O, while g and v are as in Fig. 1. For

finite coupling strength g40 (red line), the decay of the concurrence is

approximated by expression (11) (dashed black line). For comparison, the

concurrence is also given for the case of vanishing interaction with the

environment (blue line). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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oscillator space formed by the states j0S and j1S, respectively. For the
density matrix (5), the concurrence is given by

Cq2c ¼ 2ja�ðtÞbðtÞj: ð6Þ

Thus, the amount of entanglement in the long-time limit is given by
Cq�cð1Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Pm-kÞPm-k

p
, which just depends on the ratio g2=v.

As an example, we plot the typical dynamics for the concurrence in
Fig. 2, from where it is evident that entanglement is created after
passing the anticrossing.
3. Influence of the dissipative environment

In a realistic experimental scenario, the qubit–oscillator
system has to be regarded as an open system, i.e. one that
interacts with its environment, thus suffering dissipation and
decoherence. Dissipative effects in an electromagnetic circuit are
characterized by a spectral density IðoÞ which, within a quantum
mechanical description, can be modelled by coupling the circuit
bi-linearly to the field modes of an electromagnetic environment
[24]. For weak system–bath coupling, tracing out the bath degrees
of freedom and following standard techniques, the bath can be
eliminated within Bloch–Redfield theory [25,26] yielding the
quantum master equation

_r ¼ � i

‘
½Hs;r� �

1

‘
½Q ; ½Q̂ ;r�� � i

Z0

‘
½Q ; ½ _Q ;r�þ�

� �
i

‘
½Hs;r� þLr; ð7Þ

with the anticommutator ½A;B�þ ¼ ABþ BA, the oscillator-bath
coupling operator Q ¼ ay þ a and the operators _Q ¼ i½Hs;Q �=‘
and

Q̂ ¼
1

p

Z 1
0

dt
Z 1

0
do SðoÞcosðotÞ ~Q ð�tÞ: ð8Þ

Here, SðoÞ ¼ IðoÞcothð‘o=2kBTÞ is the Fourier transform of
the symmetrically ordered equilibrium correlation function
for a thermal environment at temperature T. We assume the
spectral density to be ohmic, i.e. IðoÞ ¼ og with an effective
impedance g. The notation ~X ðtÞ is a shorthand for the Heisenberg
operator Uy0ðtÞXU0ðtÞ, where U0 is the system propagator.
While the quantum master equation (7) is general, an explicit
form with respect to the Hamiltonian (1), together with
details about the numerical implementation can be found in
Ref. [27].

3.1. Entanglement creation

Due to the influence of the environment, in particular, the
entanglement created between qubit and cavity is subject to
decay during the Landau–Zener sweep. In the case of low
temperatures, kBT�0:01‘O, which is relevant for most experi-
ments, our numerical investigations of the master equation (7)
confirm the following scenario: Before reaching the first avoided
crossing at time to�O=v (see Fig. 1), the system remains in its
ground state. Then at time t ¼ �O=v, it evolves into the super-
position (4). Simultaneously, the bath causes coherence decay
and, for low temperature, a relaxation from the state jm;1S to
jm;0S occurs. We emphasize here that there is no transition
jm;0S-jk;0S since the qubit experiences an effective heat
bath with a spectral density sharply peaked at the oscillator
frequency O [28–31]. Thus, for large times tbO=v, the spectral
density at the qubit splitting ‘vt vanishes and, consequently,
the qubit is effectively decoupled from the bath. As a conse-
quence, we numerically find that after the anticrossing the state
jk;0S becomes populated in addition to the states jm;0S and
jk;1S. Quantitatively, the corresponding density matrix takes the
form [cf. (5)]

rq2cðtÞ ¼

a 0 0 c

0 z 0 0

0 0 0 0

c� 0 0 d

0
BBB@

1
CCCA: ð9Þ

After the Landau–Zener transition, its entries can be well
approximated by

a ¼ 1� Pm-k;

dffi Pm-ke�gðt�tLZÞ;

zffi Pm-kð1� e�gðt�tLZÞÞ;

jcj ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm-kð1� Pm-kÞ

q
e�gðt�tLZÞ; ð10Þ

where tLZ ¼ O=v and Pm-k has been defined in Eq. (2). For the
state (9), the concurrence is now given by

Cq�c ¼ 2jcj ffi 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm-kð1� Pm-kÞ

q
e�gðt�tLZÞ: ð11Þ

Hence the loss of entanglement is directly related to the loss of
coherence between the qubit and the cavity and exhibits a simple
exponential decay, see Fig. 2.
4. Qubit–cavity networks

In this section we discuss how entanglement may be created
within a quantum network architecture consisting of several
pairs of cavities and qubits. We shall make use of the setup
proposed in Ref. [12] together with the state preparation via a
Landau–Zener sweep discussed above, in order to entangle two
cavities. We study the resulting dynamics in presence of
dissipation and decoherence. The setup we have in mind is
sketched in Fig. 3, and consists of two qubit–cavity systems.
The cross geometry indicates that qubit A (B) is only coupled
to cavity A (B) whereas the central qubit (ancilla) is
coupled to both cavities and may be used as a switch, as we
will explain below. The Hamiltonian of such a system can be
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Fig. 3. (Color online) Sketch of the quantum network under consideration. Qubits

are represented by big dots and cavities by black lines. Qubit A (B) is only coupled
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Fig. 4. (Color online) Sketch of the quantum switch protocol, displaying the time-

dependent qubit and cavity energies and the ancilla interaction: The qubits A and B

undergo Landau–Zener sweeps with their respective cavities with velocities vA and

vB. This leads to the entangled qubit–cavity state (4). Meanwhile, the cavities do

not interact, i.e. gSW ¼ 0 (dashed line). From t ¼ ton to t ¼ toff , gSW40 (solid line),

leading to the entangled state (15) which is subject to decay for t4toff . For further

details, see text.

                                    366
approximated as

H ¼ �
X
m¼A;B

EmJ ðtÞ

2
smz � ‘gðaym þ amÞsmx þOaymam

( )

þ
oancðtÞ

2
sanc

z þ ðgxsanc
x þ gzsanc

z Þ
X
i¼1;2

ðayj þ ajÞ

þ GðayA þ aAÞða
y

B þ aBÞ: ð12Þ

The first line of Eq. (12) denotes the usual Rabi Hamiltonians for
the, respectively, coupled qubits and cavities. For simplicity,
both cavities are supposed to have the same frequency O. The
second line describes the ancilla qubit and its coupling to the
cavities, whereas the last line accounts for the direct
geometrical interaction between the cavities which will be
referred to as ‘‘geometrical coupling’’ [11] (see Fig. 4).

4.1. The entanglement protocol

In order to entangle the cavities A and B, we pursue a
‘‘quantum switching protocol’’ in analogy to the procedure
described in Ref. [11]: In order to reach the dispersive coupling
regime gx=D51 between ancilla and cavities with the detuning
D ¼ oanc �O, the ancilla qubit is widely detuned from the cavity
frequency [4]. On the other hand, D5O, which allows a rotating-
wave approximation with respect to the ancilla–oscillator cou-
pling. Under this condition the ancilla gives rise to an effective
‘‘dynamical coupling’’ between the cavities which may be
expressed as g2

xszða
y

AaB þ aAayBÞ=D. The total interaction between
both cavities including the additional geometrical coupling [last
line of Eq. (12)] is then given by

Hint ¼ gSWða
y

AaB þ aAayBÞ; gSW ¼
g2

x

D
sz þ G: ð13Þ

It is possible to ‘‘switch off’’ this interaction by setting gSW to zero. This
requirement can be fulfilled varying D or gx, or manipulating the state
of the ancilla. The protocol is now performed as follows: At first stage,
both cavities and qubits become entangled via Landau–Zener sweeps
at different sweep velocities vA and vB, while the ancilla is in the ‘‘off’’
state, gSW ¼ 0. After the Landau–Zener sweeps, the state of the total
system is the product state

rcav;iðtÞ ¼ rqA�cA � rqB�cB; ð14Þ

where rq;A=B�cq;A=B are of the form (9). At this point, there is no
entanglement between any object of A and B. Once the state (14) is
achieved, the interaction is ‘‘turned on’’ towards a finite interaction
strength gSW40 at time t ¼ ton. This may be accomplished e.g. by
changing adiabatically the operational point of the ancilla, which
modifies D [11]. In the following, correlations between the cavities A

and B emerge by virtue of the interaction (13). At time t ¼ toff , the
interaction is turned off again. As far as we are only interested in the
entanglement dynamics of the cavities, we may trace out the qubit
and ancilla degrees of freedom in Eq. (14). For toff � ton ¼ p=4gSW the
resulting density matrix rcav;f takes the form

rcav;f ¼

a 0 0 0

0
1

2
ðz1 þ z2Þ

�i

2
ðz1 � z2Þ 0

0
i

2
ðz1 � z2Þ

1

2
ðz1 þ z2Þ 0

0 0 0 b

0
BBBBBBB@

1
CCCCCCCA

ð15Þ

in the basis fj0A0BS; j0A1BS; j1A0BS; j1A1BSg. For simplicity, we have
introduced the notations

a ¼ aAaB þ aAzB þ aBzA þ zAzB;

b ¼ dAdB;

z1 ¼ ðzA þ aAÞdB;

z2 ¼ ðzB þ aBÞdA: ð16Þ

The coefficients aA=B, dA=B and zA=B are defined in Eq. (10), where the
indices A and B refer to the respective cavities. This reveals the
dependence of the final state rcav;f on the specific parameters of our
particular entanglement protocol. We point out that the most relevant
parameters for the preparation of Eq. (15) are the Landau–Zener
sweep velocities vA and vB. The corresponding concurrence is given by

Ccav;f ¼ 2max 0; 1
2jz1 � z2j �

ffiffiffiffiffiffiffi
ab

q� �
: ð17Þ
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As a result, using the state preparation via Landau–Zener sweeps
together with the quantum switching protocol described above, we
end up with both cavities being in an entangled state that depends on
the particular parameters of the protocol. The individual entangle-
ment between the individual qubit–oscillator systems has thus been
transferred via cavity–cavity entanglement.
5. Finite-time disentanglement

In the presence of a dissipative environment of each cavity, the
entanglement between the two cavities is naturally subject to
decay. Now the possibility of finite-time disentanglement in a
quantum optical setup due to spontaneous emission has been
reported in Refs. [17,32] for the special class of entangled two-
cavity states such as rcav;f ; see Eq. (15). In this case the
concurrence CðtÞ decays within a finite time, depending on the
initial state and thus on the particular state preparation. This
signifies a ‘‘sudden death of (non-local) entanglement’’ whereas
the decay characteristics of local decoherence is exponential.
Finite-time disentanglement has also been observed in a recent
experiment [18].

In the following, we study the disentanglement of the state rcav;f .
Again, as an important point, our proposed circuit QED setup and
protocol would allow for this to be analyzed in the solid state realm,
while Refs. [17,32] refer to an optical cavity QED setup.

We start with the effective Hamiltonian for the uncoupled
cavities

Heff
cav;f ¼ ‘OðayAaA þ ayBaBÞ: ð18Þ

Following Section 2, we may restrict the description of the cavities
to the two lowest Fock states. In order to investigate the time
evolution of the entangled two-cavity state rcav;f after the ancilla
interaction has been set to zero at t ¼ toff , we solve the quantum
master equation

_r ¼ � i

‘
½Heff

cav;f ;r� þLA½aA þ ayA�rþLB½aB þ ayB�r; ð19Þ

where the Liouvillian LA=B is defined as in Eq. (7). Hence we
assume both entangled cavities to interact individually with
vacuum noise, i.e. to interact with individual environments. A
vB
crit

v B
 [Ω

2 ]
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t [Ω−1]
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Fig. 5. (Color online) Time evolution of the concurrence CcavðtÞ starting with state

rcav;v . Here, vA ¼ 0:005O2; gA ¼ gB ¼ 0:04O and T ¼ 0:001O. White color corre-

sponds to separable states. Here, vcrit
B ¼ 0:0624O2.
scenario with two two-level systems with zero distance, i.e.
coupled to the same environment, was discussed in Ref. [33].

In Fig. 5 we plot the concurrence CcavðtÞ for the decaying state
rcav;f as a function of time and the sweep velocity vB, while keeping vA

constant. We find that the concurrence drops to zero at a finite time
tZtd for a broad range of different values of vB. This indicates that the
corresponding initial states become disentangled after a finite time.
However, this does not always hold: For vB4vcrit

B we rather find
exponential concurrence decay, i.e. td ¼1. Note that, in contrast to
these results, the qubit–cavity entanglement always decays
exponentially as discussed in Section 3.

Our results comply perfectly with the disentangling behavior
discussed by Yu and Eberly [17], which underlines the generic
nature of that scenario.
6. Conclusions

We have proposed a protocol for creating an entangled two-
cavity state within a circuit QED network architecture. Thereby,
we have considered a network of two superconducting qubits
each coupled to an electromagnetic quantum circuit. While there
is no direct interaction between the qubits, the cavities are
connected through a third ‘‘ancilla’’ qubit. Depending on its state
and its detuning from the cavities, this coupling may be switched
on and off. As first protocol step, one has to prepare two entangled
qubit–cavity states, which we have suggested to be done via
Landau–Zener sweeps. Note that there exist other possibilities for
this purpose, for example by Rabi oscillations. Second, the
interaction is ‘‘switched on’’ in order to entangle both cavities.
At the same time we have considered the influence of a separate
dissipative environment for each cavity.

A major goal here is the preparation of an entangled two-cavity
state such as (15). In the quantum optics community this class of
states has been proposed to investigate finite-time disentangle-
ment due to spontaneous emission. Here we have shown that this
can be done as well in the solid state realm, depending on the
particulars of state preparation. The entries of the density matrix
(15) can be obtained by measuring cross-correlations between the
cavities. A corresponding circuit QED experiment has been
proposed recently [34]. Thus, we belief that our protocol will
enable experimentalists to study non-trivial dynamics of entan-
glement in quantum circuits.
Acknowledgments

We thank Frank Deppe and Matteo Mariantoni for fruitful
discussions. This work has been supported by DFG through SFB
631 and by the German Excellence Initiative via ‘‘Nanosystems
Initiative Munich (NIM)’’.

References

[1] H. Walther, B.T.H. Varcoe, B.-G. Englert, T. Becker, Rep. Progr. Phys. 69 (2006)
1325.

[2] A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar,
S.M. Girvin, R.J. Schoelkopf, Nature 431 (2004) 162.

[3] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält,
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