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1. Introduction

Specific stochastic dynamics occur in a large variety of systems, such as supercooled liquids, seismic systems, the human
brain, finance, meteorology and granular matter. These systems are characterized by an extremely rapid increase or a
slowdown of relaxation times and by a non-exponential decay of time-dependent correlation functions [1,2].
The canonical theoretical framework for stochastic dynamics of complex systems is the time-dependent generalized

Langevin equation (GLE) [3–7,14,15]. It successfully describes the phenomenon of statistical memory, whereby the
relaxation time for order parameter fluctuations scales as a power of the correlation length. An obvious question to ask
would be whether this framework can be adapted to describe seismic phenomena. Analytically and quantitatively we show
that the GLE, based on a memory function approach, where the memory functions and information measures of statistical
memory play a fundamental role in determining the thin details of the stochastic behavior of seismic systems, naturally
leads to a description of seismic phenomena in a terms of a strong and weak memory. Due the discreteness of a seismic
signals we use a finite–discrete form of the GLE. Here we study some cases of seismic activities of Earth ground motion in
recent years in Turkey with consideration of the complexity, irregularity and metastability of seismic signals.
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2. Some extraction from the theory of discrete stochastic processes

The GLE analytical model was originally proposed for displaying the stochastic behavior of signals in complex systems
[3–7].
Here we consider the data of seismic signal recording as a time series ξ :

ξ = {ξ0, ξ1, ξ2, . . . , ξN−1} = {ξ (0), ξ (τ), ξ (2τ), . . . , ξ ([N − 1]τ)}. (1)

Here τ is the discretization time of seismic signals, andN is the total number of signals. The set of fluctuations δξ is an initial
dynamic variableW0:

W0 = {δξ0, δξ1, δξ2, . . . , δξN−1}, δξj = ξj − 〈ξ〉, 〈ξ〉 =
1
N

N−1∑
j=0

ξj. (2)

The Gram–Schmidt orthogonalization procedure

〈Wn,Wm〉 = δn,m〈|Wn|2〉 (3)

leads to the set of the following orthogonal dynamic variables:
W0 = δξ,

W1 = LW0 =
d
dt
δξ,

W2 = LW1 −Λ1W0,
. . . ,
Wn+1 = LWn −ΛnWn−1, n ≥ 1,

(4)

where L = (∆ − 1)/τ is the Liouville quasioperator and Λn is the relaxation parameter of the nth order (where ∆ is the
shift operator∆xj = xj+1 and τ is the discretization time).
Within the framework of statistical theory and Zwanzig–Mori’s theoretical–functional procedure of projection operators,

one can obtain the following recurrent relation as a finite-difference kinetic equation:

∆Mn( t)= τλn+1Mn( t)− τ 2Λn+1
m−1∑
j=0

Mn+1( t − jτ)Mn( jτ), n = 0, 1, 2, . . . . (5)

Here we introduce a Liouville quasioperator eigenvalue λn+1, a relaxation parameterΛn+1 and a memory functionMn( t)of
the nth order, respectively:

λn =
〈Wn−1LWn−1〉
〈|Wn−1|2〉

, Λn =
〈|Wn|2〉
〈|Wn−1|2〉

, Mn( t)=
〈Wn( t)Wn〉
〈|Wn|2〉

. (6)

For analysis of the relaxation time scales of the underlying processes we use the frequency-dependent statistical non-
Markovity parameter εn(ω):

εn(ω)=

{
µn−1(ω)

µn(ω)

}1/2
. (7)

Here µn(ω) is a frequency power spectrum for the memory function of the nth order:

µn(ω)=

∣∣∣∣∣τ N−1∑
j=0

Mn( jτ)cos( jτω)

∣∣∣∣∣
2

. (8)

Using Eqs. (1)–(8) we can study all specific singularities of the statistical memory effects in an underlying system. The non-
Markovity parameter and its statistical spectrumwere introduced by Yulmetyev et al. in Ref. [8]. It is worthmentioning that
the non-Markovian character of seismic data was discussed by Varotsos et al. [9]. One of the first proofs of non-Markovity
of empirical random processes was given in Refs. [10]. Stochastic origins of the long-range correlations of ionic current
fluctuations in membrane channels with non-Markovian behavior were studied in Ref. [11].

3. An analysis of results

Fig. 1 presents the initial time series of seismic signals for seven seismic origins: grsn, kelt ,mack, sgkt , uldt , seyt , and gdz.
The discretization time is τ = 0.02 s. We can see that all the time series have distinctive features.
Fig. 2 demonstrates the frequency dependence of the first point of the non-Markovity parameter ε1(ω) for seven seismic

origins from Turkey: grsn, kelt , mack, sgkt , uldt , seyt , and gdz. Since the nature of each seismic source is unknown to us, it
would be interesting to establish its character. It seems possible that the signals can be distributed into three groups: group
A (kelt , gdz), group B (grsn, sgkt , uldt , seyt), and group C (mack).
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Fig. 1. An initial row of data of seismic signals from seven areas of seismic signals: grsn, kelt , mack, sgkt , uldt , seyt , and gdz. The discretization time is
τ = 0.02 s.

Fig. 2. The frequency dependence of the first point of the non-Markovity parameter ε1(ω) for each seismic origin: grsn, kelt ,mack, sgkt , uldt , seyt , and gdz.
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Fig. 3. (Color online) The frequency dependence of ε1(ω)in double log–log scale for two seismic origins: gdz and kelt . The discretization time is τ = 0.02 s.
The general power dependence of ε1(ω)= (ω/ω0)−α is shown by a continuous line with parameters ω0 = 0.2, α = 1.05.

Fig. 4. (Color online) The frequency dependence of ε1(ω) in double log–log scale for four seismic origins: grsn, sgkt , uldt , and seyt . The discretization time
is τ = 0.02 s. The general power dependence of ε1(ω)= (ω/ω0)−α is shown by a continuous line with parameters ω0 = 0.2, α = 0.6.

Signals of group A are characterized by the more regular structure and smooth decay of the function ε1(ω).
There is a frequency dependence of the non-Markovity parameter for seismic origins gdz and kelt , presented in Fig. 3.

The general power dependence of ε1(ω)= (ω/ω0)−α is shown by a continuous line with parameters ω0 = 0.2, α = 1.05.
Signals of group B are characterized by the irregular frequency structure and by the frequency bursts on the distinct

frequencies. The spectra have a noisy character.
There is a frequency dependence of ε1(ω) for the four seismic origins grsn, sgkt , uldt , and seyt in double log–log scale,

presented in Fig. 4. The discretization time is τ = 0.02 s. The general power dependence of ε1(ω)= (ω/ω0)−α is shown by
a continuous line with parameters ω0 = 0.2, α = 0.6.

Signals of group C cannot be attributed to one of the above groups. The parameter ε1(ω) fluctuates strongly between 1
and 10 in the full frequency scale. That testifies the existence of strong memory effects in the long-range time correlation. A
possible origin of the similar signals is due to a strong earthquake. More careful and detailed analysis of the signal structure
on the various time scales and relaxation levels (with the taking into account of the long-range correlation, memory effects,
nonergodicity and metastability of the underlying system) is required.
Fig. 5 displays the frequency dependence of ε1(ω) in double log–log scale formack. The discretization time is τ = 0.02 s.

The general power dependence of ε1(ω)= (ω/ω0)−α is shown by a continuous line with parameters ω0 = 0.2, α = 0.4.
The analysis of all spectra shows that all the signals can be classified into three different groups in the order of the

breaking of fractal behavior of the high-frequency dependence of ε1(ω). The signals for group A can be characterized by
stronger fractality with the exponent α = 1.05. A linear trend with small fluctuation has been simultaneously observed
in the spectrum. We can see range of the diversity 10 < ε1(ω) < 100. The signals for group B are characterized by the
breaking of fractality with the exponent α = 0.6. A nonlinear oscillating trend with big fluctuation has been observed here.
The spectra of signals for group C are characterized by a weak fractality with the exponent α = 0.4 and ε1(ω)∼ 1.
The auto-correlation functions (ACFs)

C ( t)=
〈ξ (0)ξ ( t)〉
〈|ξ (0)|2〉

(9)

for the signals of different groups have been presented in Fig. 6.
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Fig. 5. (Color online) The frequency dependence of non-Markovity parameter ε1(ω) for seismic originmack in the double log–log scale. The discretization
time is τ = 0.02 s. The general power dependence of ε0(ω)= (ω/ω0)−α is shown by a continuous line with parameters ω0 = 0.2, α = 0.4.

Fig. 6. (Color online) The auto-correlation function of the signals.

The left panel includes the ACFs for the signals of group A and group C, (mack) and (kelt , gdz), while the right panel
contains the ACFs for the signals of group B (grsn, sgkt , uldt , seyt). The brackets here note averaging in time iterations. It is
seen that auto-correlation of the signals has a pronounced nonergodic character (undamped behavior of the time correlation
function at time t →∞):

lim
t→∞

C ( t) 6= 0. (10)

According to recent works on the ergodic hypothesis, Eqs. (9) and (10) would imply violation of ergodicity. Net results [12]
suggest the breaking of ergodicity for a class of generalized, Brownian motion, obeying a non-Markovian dynamics being
driven by a generalized Langevin equation. This very feature originates from vanishing of the effective friction. Khinchin’s
theorem of ergodicity is examined [13] by means of linear response theory. The resulting ergodic condition shows that,
contrary to the theorem, irreversibility is not a sufficient condition for ergodicity.
Similar behavior of the time correlation functions is characteristic for the supercooled and glass states of condensed

matter [14,15]. A higher level of nonergodicity corresponds with the signals of group A and group C, whereas the signals
of group B are characterized by minor nonergodicity. The signals from the object uldt are rigorously ergodic. Therefore one
can suppose that these signals cannot belong to the earthquake.
Table 1 presents a set of relaxation parameters λ1, λ2, λ3,Λ1, andΛ2 for seismic signals from grsn, kelt ,mack, sgkt , uldt ,

seyt , and gdz. The set of these parameters characterizes some peculiarities of relaxation processes on the low relaxation
levels of seismic systems (1, 2 and 3). It has seen from the table that these parameters do not have a clear distinction vs.
distinctions unlike those visible from the frequency dependence of ε1(ω). Therefore thinner and more sensitive techniques
are needed for studying of dynamic processes in examined signals.
Fig. 7 depicts the comparison of seismic data with results of computer simulation for the metallic glass Al50Cu50. At the

top, the auto-correlation functions of the seismic events grsn, sgkt , uldt , and seyt are shown. At the bottom, auto-correlation
functions for incoherent scattering of copper atoms are shown for comparison. The data are obtained with the help of
statistical averaging on ensembles of statistical systems. Each curvewas obtained by time averaging. The full sample consists
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Table 1
The frequency relaxation parameters for seismic signals.

Object λ1 λ2 λ3 Λ1 Λ2

grsn −0.0306 −0.2004 −0.8945 0.0497 0.0396
kelt −0.0667 −1.1399 −1.0485 −0.0193 0.2954
mack −0.3938 −0.5808 −1.0747 0.4374 −0.0342
sgkt −0.0306 −0.7490 −1.0849 0.0156 −0.2967
uldt −0.0349 −0.2605 −0.7609 0.0526 0.1243
seyt −0.0745 −0.2434 −0.8427 0.1173 0.0590
gdz −0.0646 −0.8836 −0.9650 0.0155 0.2586

Fig. 7. (Color online) Top: auto-correlation functions of the seismic events grsn, sgkt , uldt , and seyt in time log-scale. Bottom: temperature dependence
of the incoherent scattering function Fs(k, t) for the Cu component in the metallic glass system Al50Cu50 alloy for the wave vector k = 3.05 Å−1 at the
temperature T = 2000, 1000, 600, 500, 400, and 200 K (from the bottom up).

of 45000 points. A single calculation was carried out for each separate time window of size 500 points with a time step of
0.02 s. Further, this window was displaced one step to the right up to the end of time sampling.
On comparison of the data for seismic phenomena with the results of computer simulations for the glassy system it is

seen that in the behaviour of the correlation functions for an earthquake’s nonergodic effects, characteristics of glass-like
behaviour of dense systems are distinctly observed.
To illustrate the general picture of nonergodic singularities in chaotic seismic systems, the parameter of nonergodicity

f = limt→∞ c( t)was calculated for each set of seismic events. The values obtained are 0.9995 (gdz), 0.9995 (kelt), 0.99885
(mack), 0.9310 (grsn), 0.7241 (sgkt), 0.3965 (uldt), and 0.0603 (seyt). The parameter of nonergodicity for one of the sets
of seismic events appeared to be equal. The resulting data are evidence of strong singularity of seismic phenomena in
five sources: gdz, kelt , mack, grsn, and sgkt; they show moderate nonergodicity for one source (uldt) and weak singularity
for another source (seyt). Taken together, the data reflect well the wide variety of effects of nonergodicity in the seismic
phenomena. A similar variety of nonergodicity effects can be very useful and extremely effective for the classification of
the wide variety of seismic phenomena. Note that the notions of fractality and non-Markovity have been quite extensively
explored in the past; see, for example, Refs. [16–19].

4. Summary

In this work we have presented the results of statistical analysis of seismic signals in Turkey for seven objects (grsn,
kelt , mack, sgkt , uldt , seyt , and gdz). Our study was made in the context of statistical theory on discrete non-Markovian
processes, which is based on the generalized Langevin equation (GLE). It allows us to take into account the effects of the
statisticalmemory,metastability and space-time nonlocality.We have shownwith the theory that all considered signals can
bedivided into three groups in order of breaking of the fractal behavior in thehigh frequency zone of the spectrumof thenon-
Markovity parameter. Signals from group A (kelt and gdz) can be characterized by pronounced fractality, signals from group
B (grsn, sgkt , uldt , and seyt) can be characterized bymoderate fractality and signals from group C (mack) correspond to weak
fractality and powerful non-Markovian processes. From the analysis of the time correlation function we can confidently
certify the hypothesis of Abe [1] of the nonergodic ‘‘glass-like nature’’ of seismic signals for Earth’s activity. On the other
hand, the analysis also reveals a wide variety of metastability in seismic phenomena.
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