Local asymptotics for the area of random walk excursions
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ABSTRACT

We prove a local limit theorem for the area of the positive excursion of random walks with
zero mean and finite variance. Our main result complements previous work of Caravenna and
Chaumont; Sohier, as well as Kim and Pittel.

1. Introduction and statement of results

Let {S,,} be an integer-valued centred random walk with finite second moments, and let 7
denote the first time when the random walk is negative, that is, 7 := min{n >1: S, < 0}.
The path {5, Sa,...,5;-1} we shall call the positive excursion of {S,,}. It follows easily from
recent results of Caravenna and Chaumont [4] and Sohier [18] that the rescaled excursion
of the random walk conditioned on 7 =mn+ 1 converges weakly to the standard Brownian
excursion which we shall denote by e(t),¢ € [0,1]. This implies that an appropriately rescaled
area converges towards the corresponding functional of the Brownian excursion. More precisely,

1
P(n_3/2An<x]T:n+1)—>P<J e(t)dté:c), x>0, (1.1)
0

where
A, = Z Sk
k=1

For simple random walks, this convergence was proved by Takacs [20], who also identified the
limiting distribution, the so-called Airy distribution. (We give below an exact expression for its
density.) His motivation was partially rooted in combinatorics. More precisely, he was interested
in the investigation of the asymptotic number of random trees on n vertices with given total
height, see Takacs [20-22] and Spencer [19]. Using the well-known one-to-one correspondence
between random trees and random walk excursions, this problem is equivalent to a problem
concerning the area under random walk path. It is worth mentioning that areas of random
walk excursions appear also in other combinatorial problems such as:

(1) analysis of linear probing hashing, Flajolet, Poblete and Viola [11];

(2) enumeration of paths below a line of rational slope, Banderier and Gittenberger [1];

(3) Winston—Kleitman problem on tournament scores, Winston and Kleitman [26] and
Takacs [20].

Assertion (1.1) allows one to find the asymptotic number of random trees on n vertices with
the total height bounded by zn3/2. But in order to find the number of trees with fixed total
height, one needs a local version of (1.1). Moreover, such a result allows one to confirm the
Kleitman—Winston conjecture mentioned above, see Takacs [20, p. 565]. This conjecture was
proved by Kim and Pittel [14] by deriving a uniform upper bound for probabilities P(A4,, =
a|T=mn+1) in the case of a simple random walk.
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The main purpose of the present paper is to extend the result of Kim and Pittel to a local
limit theorem for the excursion area of all random walks with finite variance.

We say that X is (d, p)-lattice if its distribution is lattice with span d and shift p € [0, d),
that is, d is the maximal number such that P(X € {p +dk, k € Z}) = 1. Furthermore, we
define N, :={n>1: P(S, =z) >0}, z > 0.

THEOREM 1.1. Assume that EX = 0, EX? := 02 € (0,00) and X is (d, p)-lattice. Then

sup — 0 asn — o0 (1.2)

n*PP(A, =alT=n+1)— éwex <L>
aen(n+1)p/2+dZ o

on3/2

and, for every fixed x > 0,

sup
aen(n+1)p/2+dZ

d
n3?P(A, =alt=n+1,5, =) — — Wex (#)‘ —0 (1.3)
on:

as N, > n — 0o. Here wey denotes the density of f(l) e(t) dt.
Takacs [20, Theorem 5] has obtained an exact expression for wey:
213/6 & 2a; 54 2a}
Wex(2) = 357073 Z“k eXp{ 9722 } v (_6’ 3’ 27x2) ’

where U(a, b, z) is a confluent hypergeometric function and {—ay} is a sequence of zeros of the
Airy function

oo
Ai(z) = lJ cos(t?/3 + tx) dt
T Jo
arranged so that a, < apyq for all k. (For further properties of the Airy function, we refer to
Janson [13, Section 12].)
Using the asymptotics wex(z) — 0 as x — 0 or x — oo from [13, Section 15], we conclude
SUP, >0 Wex () < 00. From this fact and (1.2), we infer that

C

supP(4, =a|lt=n+1) < 37 n=l,

a>1

reproducing the main result of Kim and Pittel [14].

ExaMpPLE 1. To demonstrate the relevance of our theorem in a combinatorial context, we
apply it to the following problem of enumeration of Dyck paths below a line of rational slope.
Following Banderier and Gittenberger [1], we look at walks on N? with steps (1,0) and (0, 1)
constrained to stay below a line y = («/f)x with a, 8 € N. We are interested in the asymptotic
number of such walks of length n which start at (0,0) and end on the line, and have a fixed
area between the line and the path. According to [1, Theorem 8], this number is equal, up to
the factor a + 0, to the number of random walk excursions of length n with the endpoint 0
and the same area. The set of jumps of this random walk is {«, —(}. Let N(n,a) denote the
number of excursions with area a. Then

N(n,a) =2"P(A, =a,7=n,S, =0),

where S, is a random walk with P(X =a)=P(X = —f) = 1. This walk is obviously

(o, o + ()-lattice. Since EX = o — [ is not necessarily zero, we cannot apply Theorem 1.1
directly. To obtain a driftless random walk, we perform an exponential change of measure. Set
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ho = (o + B) ' log(8/a) and define a new measure P by the equality

R ehoac

P(X=x)= WP(X =z), z¢€{a, —p},

where p(h) = Ee"* = (e — ¢~ ") /2. Then
P(A, =a,7=n,8, =0) = (¢(ho))"P(An = a,7 =n, S, = 0).
Combining now (1.3) with [25, Theorem 6], we obtain

P(A, =a.7=n,5, =0) = C(a, B)wex < ) n=% 4 o(n™?),

a
on3/2
where 02 = 02(a, 8) = EX2. (We cannot give an analytical expression for the constant C(a, 3),
due to the fact that we do not know exact the form of the renewal function of ascending ladder

epochs.) As a result, we have

a/(a+8) 8/(a+8)\ "
N(n,a) % Clat, B (=575 ) 0 ((g) T (%) ) |

The proof of (1.2) and (1.3) is based on a representation of the positive excursion of {S,,} as
a concatenation of two meanders of random walks. Then the area of the excursion is the sum
of areas of two independent meanders with equal endpoints, see formula (3.8) below. A similar
approach has been used in [6] to derive local asymptotics for random walks in cones.

To derive Theorem 1.1 from this representation, we need to prove the following local limit
theorem for the joint distribution of a discrete meander and its area.

THEOREM 1.2. Assume that the conditions of Theorem 1.1 are satisfied and let (M;):>o
denote the Brownian meander. Then, for every z > 0,

— 0,

9 d? a T

sup nPZ(An=a,Sn=x|T>n)——2h(—3/2,—1/2)

aen(n+1)p/2+dZ, g on on
zENp+dZ

where h(u,v) is the density function of the vector (fé My dt, M) and P, is the distribution of
the walk starting at z.

This theorem is deduced by combining weak convergence towards the Brownian meander
with a local limit result for the unconditioned pair (A, S, ). Technically, the hardest part of
the proof of this theorem consists in showing that the distribution of the vector (fé M, dt, M)
has a continuous density h(u,v). This is done in the next section: we give two independent
proofs of this fact. It is worth mentioning that our approach gives, as a byproduct, an integral
representation of wex(x) in terms of h(u,v).

We conclude the introduction by stating the following simple consequence of Theorem 1.2.

COROLLARY 1.3. Asn — oo,

_>07

d
sup n?P(A, =a|T >n) — —wWpne (Lg/z)
aen(n+1)p/2+dZ o an

where wyy. is the density of [ é M, dt.

This result is a local counterpart of Theorem 4 in Takacs [23].
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2. Brownian meander and its area

Set I, = fé B, ds. Let

pt(xv y7 u, U) -

t3 12 t

3 6(u—x—ty)? 6u—x—ty)(v—y) 2v-y)?
ez P {_ + a }

be the transition function of the process (Iy, By)i>o0.
We next recall the definition and some basic properties of the Brownian meander {M;,t €
[0,1]}. Let T = sup{t € [0,1] : By = 0} and A =1 — T. Then one sets

M, =AY?Bria, te(0,1].

This is a time inhomogeneous Markov process with continuous paths. For our purposes, it is
important to know that the meander can be seen as a weak limit of conditioned Brownian
motion. More precisely, Durrett, Iglehart and Miller [9] have shown that

E{Bt,t € [0,1]

néilnBt > —6} = L{M;,t €]0,1]} ase —0

on the space of continuous functions endowed with the topology of the uniform convergence. In
particular, the conditional distribution of the vector (11, By) conditioned on {min;<y B; > —¢}
converges weakly towards the distribution of the vector ([ é M, dt, My). Using this convergence,
we prove the following proposition, which is needed for the derivation of our main result.

PROPOSITION 2.1. The joint distribution of fé M, dt and M, is absolutely continuous with
a continuous density h(u,v). Furthermore, there exists a measure v such that

2
h(u,v) = 1/% <6u— 20+ 4/ —) p1(0,0; u, v)
T

+. /X i v(ds,dz)[p1(0,0;u,v) — pr_s(0,0;u — 2, v)]. (2.1)
2

0Jo

In the proof of Proposition 2.1, we first derive the representation given by (2.1). The
continuity of A is then immediate from the uniform continuity of the integrand in this formula.
It is worth mentioning that (2.1) can be used for checking further smoothness properties of the
density function h. To this end, one needs appropriate dominated convergence bounds for the
integrand p (0, 0; u,v) — p1_5(0,0,u — 2, v).

Proof of Proposition 2.1. Define
P(z’y)(It € du, By € dv, T > t)
du dv '

P, ysu,0) =
where 7 := inf{t > 0: B, = 0}.
Using the strong Markov property, it can be easily seen that
1 poo
P1(0,8;5u,v) = p1(0,&;u,v) —J J P (T eds, I, € dz)pi—s(2,0,u,v)
0 Jo

= p1(0,85u,v) — p1(0,0;u,0)P (T < 1)

1 roo
—l—J J P (1 €ds, I € dz)[pi(0,0;u,v) — p1—s(z,0,u,v)]. (2.2)
0Jo
Since
2
Poo(m>1)=20(e) —1~14/—¢g, &-—0, (2.3)

™
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we have

1 2
Eh_I)I(l) gpl (07 0; w, U)P(Oﬁ) (T > 1) - \/;pl (O? 0;u, U)‘
Furthermore, by Taylor’s formula,

p1(0,&;u,v) — p1(0,0;u,v)

B %(exp{—ﬁ(u B 8)2 +6(u—e)(v—¢e) —2(v - 5)2} - exp{—6u2 + 6uv — 21}2})
- % exp{—6u? + 6uv — 20°}(12u — 6u — 6v + 4v)e + O(<?),

which implies that
1
lin% g(pl(O, g;u,v) —p1(0,0;u,v)) = p1(0,0; u,v)(6u — 2v).
€—>

As a result,
1 2
hII(l) g(pl (07 g5 U, U) - P (07 07 U, U)P(O.E) (T < 1)) =M (07 07 U, U) <6u —2v+ \/j> . (24)
£— : s
In order to deal with the integral term in (2.2), we write
1 poo
J J P (7 €ds, I, € dz)[p1(0,0;u,v) — p1_s(z,0;u,v)]
0Jo

1 poo
= J J P (T €ds, Iy € dz)[p:1(0,0;u,v) — p1_s(0,0;u, v)]
0Jo

1 oo
—l—J J P (7 €ds, I € dz)[pi—s(0,0;u,v) — p1—s(2,0;u,v)]
0Jo
1/&2
= J P(Osl)(T € dS) [pl (0,0;U,'U) - p1—628(070;u7v)]
0

1/e? roo
—l—J J P,y (1 €ds, I, € dz)[p1—c25(0,05u,v) — p1_c25(0,0;u — e3z,v)),
0 0

where the last equality follows from the Brownian scaling. Fix some r € (0,1/2) and write

1/e?
J P(071)(T € dS)[pl(0,0;U,’U) —Pl—EZS(OaO;Ua’U)]
0
r/e?
= J Po,1)(7 € ds)[p1(0,0;u,v) — p1_c24(0, 05 u,v)]
0

1/€2
+ J P(071) (T € d%) [pl (07 0; u, 7)) - p1—828(07 0; u, 7))]'
2

r/e
It is easily seen that

0 6 6u?  6uv 202
apt(0,0;U,U) =~ 7= eXP{—t—g tm - T}

n 2 6u> n 6uv 202 18u? 12uv n 202
——exXpy —— + — — — _ — 4+ — ).
\/Tt? P t3 12 t t t3 12

Noting that this derivative is globally bounded, we infer from Taylor’s formula that

sup s~ '[p1(0,0;u,v) — p1_4(0,0;u,v)| < C. (2.5)
s<1/2
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Combining this with the equality
P Ted 1
(0»1)( 5) 5 3/2 6—1/257

- vor: (2.6)

we obtain
2

r/e
< CJ 573225 ds = 2C\/re. (2.7)

r/e?
J P(O,l)(T € ds)[pl(ovo;u7v) _pl—azs(ovo;u7v)]
0

0

Noting that (2.6) implies
P(o,1)fiT € ds) ~(27) 26737 s s — o0,
s

we obtain, as £ — 0,

1/&2
J ) P(O,l)(T € ds)[pl(()vo) U, U) —p1_525(070;u, U)]

r/e

_ 14oll) v s73/2[p1(0,0;u,v) — p (0,0;u,v)]ds
= . _ ) .
\/% 1Y, Y, W, 1—g2s\Yy YUy Uy

r/e?
1+o(1) Jl —3/2
=——"¢c| s 0,0;u,v) — p1_(0,0;u,v)| ds.
e | 1 (0.000) = 10,050, 0)

Using (2.5) once again, we conclude that

1/e?
lim lim —J Po,1)(7 €ds)[p1(0,0;u,v) — p1_-24(0,0;u,v)]
r—0e—0 & = ’

r

R
= E Jo 5_3/2[]01(0, 0;u,v) — p1—5(0,0;u,v)] ds.

Combining this relation with (2.7), we finally obtain

1 1/52
lin% EJ Po,1)(7 € ds)[p1(0,0;u,v) = p1_.25(0,0; u, v)]
E— 0
1 1
= —\/%J $732[p (0,05 u,v) — p1_s(0,0; u, v)] ds. (2.8)
0

We now turn to the integral

1/£2
J J Po,1)(T €ds, I € dz)[p1--25(0,05u,v) — p1_25(0,0;u — e3z,v)].
0 0

Since the derivative

D (0,0;u,0) = — _6u? | Guv 20} (v 12u
gt T R T T e T [\

is uniformly bounded in ¢,
|P1 250,051, v) — py_e25(0,0;u — 32, v)| < C(u,v)e2.

Therefore,

1/e% pr/ed .
J J P,y (1 €ds, I € dz)[p1-c25(0,05u,v) — p1_c25(0,0;u — £32,0)]
0 0

r/e3
< Cs?’J 2P o1y (I- € dz).
0
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According to formula (2.10) in Isozaki and Watanabe [12]

Poy(l, €dz) 23 .
; _ 9 ‘
dz garyg)° | ol 220
This implies that
/e’ 21/3 r/ed 31/3
P I,cdz) < ——— —1/3 0, — 2/3_—2
Jo Pl €9 S smris) Jo BT anram) C

and, consequently,

1/e2 pr/ed
J J P(071)(T €ds, I € dz)[pl_gzs(0,0;u,v) _pl—azs(oao;u - ggz,’l))]
0 0

< Cr?/l3e, (2.9)

Since p; is uniformly bounded in all variables,
2

r/e® poo
J J . Py (1 €ds, I € dz)[p1-c24(0,05u,v) — p1_2,(0,0;u — £32,0)]
0 r/e

< CP (T < re 2 I, >re %) < CP 1) (T <re 2, max B, > £_1> ,
where in the last step we used the bound I, < 7 max;<, B;. Applying now a good-A-inequality
(see Durrett [8, p.153]) and Doob’s inequality, we have
t<T

P(O,l) <T < rg_z,math > €_1> < 4rP(0’1) <1¥1<aXBt > 5_1) < 8re.
T

Therefore,

r/e® poo
J J P (1 €ds, I € dz)[p1—c24(0,0;u,v) — p1_c24(0,0;u — e3z,0)]| < Cre. (2.10)

0 r/ed

It remains to consider the integral

1/e% oo
J J Po.1)(T € ds, I € dz)[p1_.25(0,0;u,v) — p1_.24(0,0;u — %2, v)].

r/e2 Jr/ed
We start with the Laplace transform of the function P o 1)(7 > t, I > 2). It is easy to verify
that

F(\ p) = /\MJ J e MTHEP G (7 > I > z)dtdz
0 0

=1- E(071)[9_/\T] —E,1) [e 7]+ Eq,1) [e A7 #Ie,

It is well known that
E(O,l)[e_/\T] — e—\/ﬁ‘

Furthermore, for all positive i, one has (see [16, Theorem 1])

Xrulr) Ai((2)'° + 20/ ((2m)**))

E
oble AN (@)
From these equalities, we conclude that
1 AL'(0) AV (20 ((20)2/%))
lim - F(2\, %) = V2X — —=(2u)'/? 2u)"/3. 2.11
Jimy ~F(*A, %) = VA = S @) - S e ) (2.11)
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According to Theorem 2.1(i) in Omey and Willekens [17], the latter convergence implies that

1
lin% -Po1)(7 > te™2 I, > ze73) = G(t, 2), (2.12)
e—0 &
where the function G is determined by the right-hand side in (2.11).
By the fundamental theorem of calculus, we have

pl—EQS(O» 07 u, ’U) - p1_525(0, 07 U — 6327 ’U)

3 2 3

e’z re’s 2 SEI
:—L L —8q8w1?1—q(0,();u—w,v)dqdw—JO %pl((),();u—w,v). (2.13)

Using this representation and exchanging the integrals, we obtain

1/e? oo
J J P(O,l)(T €ds,I; € dz)[p1—528(07 0; u, U) - p1—628(07 O;u — 532:,1))]

r/e2 Jr/e3

rl poo 2 1/€2 00
0
=— p1— (0,0;u—w,v)J J P (m €ds, I, € dz)dwdq
Jo JO 8(]8’11) ! (gvr)/e? J(wvr)/ed 0
(9 00
- 8—p1(0,0;u - w,fu)J P (7 € (r/e?,1/%), 1, € dz) dw
Jo ow (wvr)/ed
rl poo 92
0 qgVvr 1 wvV T
= —“O Jo aqﬁwpl_q(o’om - wav)P(OJ) (7' € (8—2, €_2> A > -3 ) dw dq
e r o1 wVr
_ ), %pl((),O;u —w,v)P 1) (7’ € (6—2, 6—2> I > = ) dw.

Applying now (2.12), we obtain

1 1/52 (o]
—J J P, (T €ds, I € dz)[p1—-25(0,0;u,v) — p1_.25(0,0;u — e32,0)]

€ Jrje2 Jr/esd

1 poo (?2
- JO Jo —0qawpl—q(070,u —w,v)(G(gVr,wVvr)—G1,wVr))dwdg

>0
— J 8—p1(0,0;u —w,v)(G(r,wVvr)—G(l,wVr)dw ase— 0. (2.14)
0 w
The use of the Lebesgue’s dominated convergence theorem is justified by the fact that
e 'Poy(T e (rvag/e?,1/e?), I, > wVr/e®) is uniformly bounded in gw and derivatives
(02 /0qOw)p1—4(0,0;u — w, v), (9/0w)p1(0,0;u — w,v) are integrable.
Let v denote the measure which corresponds to G, that is,

G(t,z) = J h JOC v(ds, dy).

t z

Using this representation and (2.13) with € =1, we can rewrite the limit in (2.14) in the
following way

Jl ro v(ds,dz)[p1_s(0,0;u,v) — p1_4(0,0;u — 2,v)].

T Jr

Letting here r — 0 and taking into account (2.9) and (2.10), we conclude that

1 1/52
U] e € ds L € da)lpr s 0.0000) - pray (0,00 5,0)
0 0

1 poo
— J J v(ds,dz)[p1-s(0,0;u,v) —p1_5(0,0;u — z,v)] ase — 0. (2.15)
0Jo
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Substituting (2.4), (2.8) and (2.15) into (2.2), we obtain

lim 25, (0, &30, 0) = 60— 20+ 1/ 2 | p1(0,0;u,v)
El_r)% €p1 yE3U, V) = w v T p1 (Y, Y u, v

1Y g
+ —| s 0,0;u,v) —p1_5(0,0;u, v
= | R 0,000~ 0,000
1 poo
+J J U(ds, d2)[prs(0,0:0,0) — p1_s(0,0:u — 2,0)].  (2.16)
0Jo

From the definition of the measure v and (2.6), we obtain

fjio I/(dS,dZ) _ i lim P(O’l)(T > 88_2)

ds ds -0 €
d [V @/m)u 2 e /2 qy
11 S€E
ds e—0

_ ™

ds s 2T ’

This equality implies that the expression on the right-hand side of (2.16) is equal to

2 1 o0
<6u —2v + \/;> p1(0,0;u,v) + J J v(ds,dz)[p1(0,0;u,v) — p1—5(0,0;u — z,v)].

0JO

Recalling (2.3), we obtain

P1(0,&;u,v) T [ . /2
lim ——%— = /— | 6u—2 — 0, 0;
ElII(l) o ;)(T = 1) 5 U v+ p p1( , 05 u,v)

+ \/gr JOO v(ds,dz)[p1(0,0;u,v) — p1_(0,0;u — 2,v)]. (2.17)

0 Jo
Since this limit is locally uniform in « and v

uz U2 = 0 .
hm P(I, € [u1,uz], By € [v1,v2] | Itnl{IBt > —¢) —Ehi%J Ll %dudv

_ J J e L CELRC) R
(U5} V1 =0 P 0 E)(T > 1)

for all 0 <wu; <wu2 and all 0 <wv; < wvy. According to the weak convergence tovvards the
Brownian meander, the limit in the first line of the prev1ous display is equal to P( f o M dt €

[u1, us], My € [v1,v2]). Therefore, the distribution of ( .[0 M, dt, My) is absolutely continuous
and its density is given by the right-hand side in (2.17). Therefore, (2.1) is proved. The
continuity of the density again follows from the fact that all the limits are locally uniform
in 4 and v. U

The existence of the density h(u,v) can be seen as follows. Denote
w%e(l’»?/,t) = Ew[e_SIt, B, e dy, T > t]/dy

By the Feynmann—-Kac formula, we conclude that the generator As; of the semigroup
corresponding to ¥5,.(x,y,t) is given by the differential operator

1 92

ST app
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with the Dirichlet boundary condition. First, observe that the operator As with Dirichlet
boundary conditions is essentially self-adjoint (compare, for example, [15, Lemma 3.1]) and
thus gives rise to a unique self-adjoint extension. It is well known (see, for example, [2,
Theorem 3.1]) that the spectrum of this operator is purely discrete, and its eigenvalues —A\,,
can be found by the solving the equation

' (y) = 2syf(y) = = f(y)

with the boundary condition f(0)=0. The general solution is given by Ai((2s)'/3y —
21/3)/s%/3). In order to satisfy the boundary condition, we need to require \, = a,s%/3/2'/3,
where —a,, are zeros of the Airy function.

The sequence (2s)'/6Ai(y(2s)'/? — a,)/Ai'(—a,) is orthonormal, see [24, Section 4.4] for
more details. Therefore, by diagonalization of the self-adjoint operator As,

: & s A9V — an)Ai((2) — a,)
Ume(w,y,6) = =D e ‘(25) (AT (—an))? -

n=1

In view of (2.3), as x — 0,

fne(a:, Y, 1) ™ 2/3 > _o—1/342/3, Ai(y(23)1/3 _ an)
—_— s T 5(23) nzz:l e i

P.(r>1) Ai'(—ay)
Consequently,
—s (Y M, dt T 2/3 > _g-1/8g2/3, Ai(y(23)1/3 —ap)
E[e Jo , M, € dy]/dy = \/;(28) Z e Ai/(—an) . (2_18)

n=1

Integrating over y, we obtain the formula for the Laplace transform of the area of the standard
meander, see also formula (209) in Janson [13],

0
E[e—sf(l) M, dt] _ /3(28)1/3 Z r, 6_2_1/352/3(”‘,
n=1

where
1 [e.e]
= — Ai(z)dz, n=>1.
T Ai’(—an) J_an i(z)dz, n
Setting s = —ir = e~/2r in (2.18) and noting that the real part of (e=*7/2)2/3 is always

positive, we conclude that

> S0 9:N1/3
ir [L M, dt T N2/3 2= V/3(4r)2/3, Al(y( 22?“) an)
E[e!" o My € dy)/dy = \/g( ir) Z e AT

n=1

is decreasing exponentially. In particular, this Fourier transform is integrable. Therefore,
the corresponding measure is absolutely continuous with respect to the Lebesgue measure.
Moreover, this Fourier transform multiplied by any power of r is still integrable. Thus, for every
fixed y, the joint density h(x,y) has derivatives of all orders in x. To obtain the continuity
in g, it suffices to note that the Fourier transform is continuous in y and that this continuity
carries over under the inverse transformation.

3. Local asymptotics for discrete meanders: Proof of Theorem 1.2

First, we state some known limit theorems for random walks and discrete meanders.
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ProrosITION 3.1. If the variance of Sy is one, then, for every B € B(Ri) such that the
Lebesgue measure of 0B equals zero and every starting point z > 0,

y Ay S _p(([ /
rlm Pz W,m eBlr>n| =P OMtdt,]\Il €eB s

where M, is the Brownian meander.
This convergence is immediate from the functional limit theorem for random walks

conditioned to stay positive, which was proved by Bolthausen [3].
Another crucial ingredient of the proof of Theorem 1.2 is the following result.

ProproSITION 3.2.  Under the conditions of Theorem 1.1,

d* a x
2
sup n"P(A, =a,5, =) - =g <T/2’ —1/2>
acn(n+1)p/2+dZ,xenp+dZ g on an

where g(u,v) = p1(0,0;u,v) is the density of the vector (f(l) By dt, By).

—0,

A version of this convergence for absolutely continuous distributions has been proved by
Caravenna and Deuschel [5]. Since the case of discrete random walks needs only some obvious

changes, we omit the proof of this result.
Proposition 3.2 and the boundedness of g imply the following result.

COROLLARY 3.3. There exists a constant C' such that

sup P(4, =a,8, =2) <Cn"2, n>1
a,rEZL

(3.1)

To simplify notation, we give a proof of Theorem 1.2 for z = 0 only. Moreover, we assume,

for the same reason, that d =1 and p = 0.
We start by considering various ‘boundary’ values of a and x. Splitting the trajectory of S,

at n — m, we obtain
P(A,=a,S,=z,7>n)
= Z P(An—m =b,Sn_,m =y, T >n—m)Py(Am :a—bjSm =x,7 >m).
y,b>1

Applying now (3.1) to probabilities P (A,, =a —b,S,, = x,7 > m) and using the following
well-known relation (see, for example, formula (8.10) on p. 419 in Feller’s book [10])

(3.2)

P(r > n) ~ 0n /2 with some positive 6, (3.3)
we obtain, choosing m = [n/2],
C C
sup P(A, =a,5, =z,7>n)< =P(r>n—m) < —. (3.4)
a.zeZ m?2 no/?

If a < 6n3/2, then we infer from (3.2) with m = [n/2] that
P(An :a7Sn =T, T > n) < P(An_m <a, 7> n—m)—2
m
3/2 —m)—
<PAp—m < |7>n m)ns/Q.

In view of Proposition 3.1,

1
P(A,—m < 5n3/2\7‘ >n—m) — P (J M, dt < 23/25).
0
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According to formula (212) in Janson [13],

1
P<J Mtdiﬁé“) NC1€_62/“2 as u — 0.
0

Consequently,

5/2

n sup  P(4, =a,S, =z,7 >n) <Ce /9, (3.5)

a<én3/2 x>1

For a > 2Rn?/?, we have

:<n

P(A,=a,S,=z,7>n)=P (An=a,Sn=:L',r11aXS;€ >2R\/ﬁ77>n>
-

A, =a,S, = m,gléxxsk > Ryn, T > n)

Im

k<n—m

+P <An =a,S, =, max (Syir— Sm) > RVn, 7 > n) )
Using the Markov property and (3.1), we obtain for m = [n/2]
P (An =a,S, = x,giaxSk > Ry/n, 7 > n)

<P (max S = Ry/n, T > m) sup P(A,,_, =0, S0—m =)
k<m y,bEZ
C

< 7
S Wt (Eﬁ%‘s’“ > Rv/n

T > m) < %P (sup]V[t > R\/§> .
n

t<1

In the last step, we used functional limit theorem for random walks conditioned to stay positive.
Furthermore, using (3.4), we obtain

k<n—m

P <An =a,S, =, max (Spir — Sm) = RVn, 7 > n)

< sup P(A4,, =b,5, =y, 7>m)P < max (Sy+k — Sm) = R\/ﬁ>

y,bEZ k<n—m

C
< WP (r%lgalet > R\/Q) .

As a result, we have

5/2

n sup P(A,=a,5,=z1>n) <A(R), (3.6)

a>2Rn3/2 x>1

where A(R) — 0 as R — oo. Since for © > 2R+/n the equality

P(A,=a,S, =z,7>n)=P (An =a,S, =m,1}1€1<ax5k > 2R\/n, T >n)

IN

holds, we have

n°/? sup P(A, =a,S, =z,7m>n) <A(R). (3.7)

a>1, x>2R\/n

For x < 22y/n, we use an alternative representation for P(4,, = a, S, = x,7 > n). Set X/ :=
—Xmt1-i, 1 €{1,2,...,m} and S}, = S + Zle X!, Al = Zle S!. Then it is easy to see that
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if So =S} =0, then

{ym-l—ZS =a—b, y+ Sn =1, m1n(y+5’)>0}

<m
=1 =

= {:cm—l—ZS'—a—b—i—y—a: r+ S, =y, 111111(33+S')>0}

] i<m
Consequently,
P,(An,=a—-08,=2,7>m)=P, (A, =a—-b+y—=u,5, =y, 7 >m)
and
P(A,=a,S,=x,7>n)= Z P(A,—p =b,S0—m =y, 7>n—m)

y,b>1

XPy(A,=a—-b+y—ua0S, =y, >m). (3.8)
From this representation and (3.4), we conclude that

C

(n —m)5/2
It is immediate from the functional Central Limit Theorem (CLT) that Py, (7" > [n/2]) <
Ce. Therefore,

C
P(A,=a,S, =z,7>n) < P,(7" >m) < WP%\/H(T’ >m).

5/2 sup P(4,=4a,5,=x,7>n)<CCe. (3.9)

a>1, x<2e\/n

n

We now turn to ‘normal’ values for the vector (A, S,), that is,
on3/? <a< 2Rn3/?  and 2ev/n < < 2R/n.

For every z define

Bi=Bi(a)={y>1:ly—al<evn} and Bs=Bs(x) =2, \ B(x).
For every m > 1, we have

P(A,=a,5, =z,7>n)=P(4, =0a,5, =,%—m € B1,7 >n)
+P(A, =a,5, =x,5,—m € B2, 7 >n). (3.10)
Set m = [¢3n]. Then, applying (3.4), we obtain, uniformly in a,z > 1,
P(A, =a,5,=2,5,-m € Ba, 7 >n)
= Z P(A,— =05 -m=y,7>n—m)Py(A, =a—0b,5, =x,7>m)

yEBz,b>1
C C -
< n5/2 Z Py(Sm =) < —5P(|Sm| > evn) < S 52 B(e1/?), (3.11)
yEB2
where ®(z) = [7(1/V2r)e™™ */2 du.

Further,
P(An = a, Sn =, Snfm S B17 T > n)
= Z PA,_pm=b5 —m=y,7>n—m)Py(A4,, =a—05b,5, =z,7>m)
yEB1,b>1
= Z PA,_pm=b,8—m=y,7>n—m)P,(A, =a—0b,85, =1
yeB1,b>1

— E P(A,_m =05 -m=y,7>n—-—m)Py(A,, =a—0>b,5, =z,7<m).
yEB1,b>1
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Applying (3.4) to the probabilities in the second sum, we obtain

Z PA,—m=b5 _—m=y,7>n—m)Py(A, =a—05b,5, =z,7<m)

yEB1,b>1
C c , /
S nd/2 Z Py(Sp=27<m)= WPm(Sm € By, 7" <m).
yeEDB

For x > 2z\/n, we have

P.(S), € B, 7 <m)<P (ﬂax Sk > 26\/ﬁ> < CB(=71/2),

Therefore,
Z P(Anfm = b; Snfm =Y, T>n— m)PZII(Am =a— b7 Sm =7, T < m)
yEB1,b>1
< Y G (3.12)
S 52 ' :

It follows from Proposition 3.2 that

Z PA,_ =05 _m=y,7>n—-—m)Py(A4,, =a—-0b,5, =x)

yEBl,b>1
B B B 5 [(a=b—my z—y
- yEBz:b>1 P(An—m - bv Sn—m - y?T >n— m’)m g ( m3/2 ’ m1/2)
1,9=
+o(m?P(1 >n —m)) (3.13)

uniformly in @, > 1. Recalling that m = [e3n] and using (3.3), we obtain
_ _ 9 (a—=b—my z—y
Z P(An—m - b; Sn—m =Y, 7T>n-— m)m g ( m3/2 3 m1/2 >
yEB1,b>1

1- 53 9 a — An—m - Egn‘sn—m T — Sn—m
R {g ( €9/2n3/2 T g3/2p1/2 H{Sn-m € B}

T>TL—7TL:|.

Since g(u,v) — 0 as v — oo uniformly in w,

a—Ap_m — €3n5n—m T—S_m
b;lal:)E [g ( £9/2n3/2 T 23/2p1/2 ) H{Sn—m € Ba}

T>n— m} <ri(e), (3.14)

where 71 () — 0 as € — 0.
It is easy to see that the family {f,.(u,v):=g(a —u,z —v), a,z > 0} is equicontinuous.
Then, applying Proposition 3.1, we obtain

a—Ap_m —NSp_m T — Sp_m
Elg 29/2,3/2 »Bpie )| T m
an=3/2 — (1 = e)3/2u — 3(1 — e)1V20 an= 12 — (1 — %)/ %
— 0(1) + JRi g ( 89/2 ) 63/2 ) h(u, 'U) du d’l)

uniformly in @ and .
Furthermore, as ¢ — 0,

5_6J g <b — (1 =¥y — 31— D2 y— (1 -3V
R3

o2 , =y ) h(u,v)dudv — h(b,y)
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locally uniformly in b,y. From this convergence and (3.14), we conclude that, uniformly in
a € [6n3/2 2Rn3/?] and = € [2e/n, 2R+/n),

A a—Ap_m— 53713/ L y
117131:;1)1) E [g < 572,32 » a2 HSh—m € Bi}|T>n—m
a x
~h (o )| <200 (3:15)

Combining (3.10)—(3.13) and (3.15), we conclude that

a xr

5/2 _ _ _ o f
n’“P(A, =a,S, =x,7 >n) Hh(n3/2,n1/2>‘<7’5(5)

lim sup

n—oo

uniformly in 6n%/? < a < 2Rn?/? and 2¢/n < x < 2Ry/n. Taking into account (3.9)—(3.7), we
arrive at the desired local asymptotic.

4. Proof of Theorem 1.1

We are going to split the path of the excursion and to inverse the time in the second half of the
path. For this reason, we need information on the position of our random walk immediately
before 7 occurs. Let H(x) be the renewal function corresponding to strict ascending ladder
epochs.

LEMMA 4.1.  For every fixed x € Z,
H{(x)

2T

P(S,=z,7=n+1)~ n_?’/QP(X < —x).

Furthermore,

P(r=n+1)~ <Z H(z)P(X < —:c)> (2m) =Y/ 2 3/2,

>0
Proof. First, we note that
P(S,=z,r=n+1)=P(S, =z,7 >n)P(X, 41 < —x).
Further, according to [25, Theorem 6],
H(z) _3
P(S, =z, 7 >n)~—"2p3/2 4.1
( )~ (@)

Thus, the first statement is proved.
Obviously,

Pir=n+1)=> P(S,=2,7>nPX,p1 < —2).
x>0

Since sup, P(S, = z,7 > n) < Cn~!, see [25, Lemma 19),

C
> P(Sp=2,7>n)P(Xpy1 < —1) < = Y P(Xpy1 < —7)
>N " x> N

C
< ZE[X|,|X|>N], Nzo0.

From the finiteness of the second moment, we infer that there exist ¢,, such that 9,, — 0,
6an'/? — 0o and E[X|,|X]| > §,n'/?] = o(n"'/?). Indeed, the finiteness of the second
moment implies the existence of an increasing function f such that lim, .. f(2) = oo and
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EX?f(]X|) < co. Then, by the Markov inequality,
E[X2f(|X]);|X| > 6,n'/?]

E[|X|;|X| > 0,n"/?] <

5an /2 f(6,n1/2)
for every sequence 6,,. Now it is easy to see that the sequence
5, 1= max{n Y4 1/ f(n'/ )} (4.2)
possesses all needed properties.
Consequently,
> P(S,=2,7>n)P(Xnp < —x) =o(n*?). (4.3)

x>=0,nt/2

Using [25, Theorem 6] once again, we obtain

Z P(S, =z,7m>n)P(X,41 < —x)

r<d,nl/2

1 _
_ En 3/2(1 +0o(1)) Z Hx)P(X < —x) | . (4.4)

Combining (4.3), (4.4) and noting that »_

x<pnt/2

H(z)P(X < —z) is finite, we complete the proof.

>0
]
We are now in a position to prove Theorem 1.1. We start with the representation
[o¢]
P(A,=a,1=n+1)= ZP(An =a,8, =z, 7T=n+1)
x=1
o0
= Z P(A,=a,5,=z1m>n)P(X < —z). (4.5)
r=1
Using (3.4), we conclude that
o0
E P(A,=a,5 =z,7>n)P(X < —x)
x>0p,nt/2
<Cn 7 ?E[-X, X < —6,n'? = o(n7?) (4.6)

for 6,, defined in (4.2).
Combining (3.2) and (3.4), we obtain

P(A, =a,S, =z,7 >n) < Cn~%/? Z Pu(A o =a—b+y—x,8,,,=y1 >n/2)
y,b>1
<Cn 2P, (7' > n/2).
According to Corollary 3 from [7], P,(7' >n/2) < Cxn~'/? uniformly in = < §,n'/2.
Therefore, uniformly in a,
Y PAy=0a,8 =27>n)P(X <-2)<Cn 'E[X*, X <-N]. (47
N<a<d,nt/2

It remains to consider fixed values of z. From (3.8), we obtain

P(A,=a,S, =x,7>n)=P(r >n—m)P, (7" >m)X(a,x), (4.8)
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where
Y(a,z) = Z PA, 0, =bS—m=y|T>n—m)
y,b>1
X P;v(A;n :a—b-l—y—:n,S?'n :le, > m)

Applying Theorem 1.2 to probabilities in the previous display, we obtain, uniformly in a and
for every fixed x,

4 3/2p o1/2 3/2(, _ _ 1/2
Z(a,w):2 +O(1)Zh<2 b 2 y)h(Q (a—b+y—x) 2 y)

n4 n3/2 7 pl/2 n3/2 T pl/2
y,b>1

3/2

94 1) [ a/n
= %() J J h(2%%u, 22 20)h(2%/% (a /0% — u),2120) du dv
o Jo

: 24+—20(1)q(a/n3/2). (4.9)

Summing (4.8) over a, we have

n

P(S,=z,7>n)=P(r >n—m)P,(7' >m)
X ZP(Sn_m =ylT>n—m)P,(S,, =y|T >m).

b>1

By the local limit theorem for random walks conditioned to stay positive, see [25, Theorem 5],

sup — 0.

y=1

Y —y?/2n
VnP(S, =y|T>n)— “=e ¥/
Vn

n

Combining this with the fact that S, conditioned on 7/ > n converges, for every fixed z, towards
M, we obtain

ZP(Sn_m =ylr>n—m)P,(S, =y|T >m)~ \/%J ze  2P(M; € dz)

0

b>1
2 (% 5 e I'(3/2)
~ —_ z d == .
n L ° - V2n
As a result,
I'(3/2) /
P(S,=z,7>n)~ P(r>n—m)P.(7 >m).
( )~ —lp Pl > m)
Combining this with (4.1), we obtain
H(x) 1
P —m)P,(7 ~ —. 4.1
(1>n—m)P,(7" >m) 7T (3/2) n (4.10)
Combining (4.8)—(4.10), we obtain, uniformly in a,
2'H
n*P(A, =a,S, = 2,7 >n) — ng)z)q(a/ng/z).

Summing over x from 1 to N, we obtain
N
n3 ZP(An =a,S, =xz,7>n)P(X < —x)
rx=1

4 N

rx=1
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Combining this with (4.5)—(4.7), we conclude that

40(a/n3/?) &
n3P(A, =a,7T=n+1)= 2\/(]_7&—{3/2)) Z H(z)P(X < —2) + o(n™®)

uniformly in a. Hence, in view of Lemma 4.1,

, 29/2 ‘ {
n’*P(A, =a|T=n+1) I‘(3/2)q(a/n )+ o(n ). (4.11)

Uniqueness of the limit implies that (2%/2/T1'(3/2))q(x) = wex(x). This completes the proof of
the theorem.
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