Double entropic stochastic resonance
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Stochastic resonance (SR) is an intriguing phenomenon
occurring in systems pertaining to the wide class of peri-
odically modulated noisy systems which includes many
different theoretical and experimental situations [1-10].
SR relates to a remarkable idea that changed our common
perception of noise [4]: in particular, ambient noise may
play a constructive role in amplifying feeble signals or
may facilitate noisy transport. The phenomenon has been
well studied mainly in systems having an intrinsic ener-
getic potential whose origin is the presence of interac-
tions. However, the prevalent role of interactions in the
dynamics of a system is by no means general. It is indeed
the free energy what controls the dynamics and it could
happen that the entropic contribution plays a leading role.
One example is the case of ion channels, where the role of
entropic contributions for the phenomenon of SR has also
been addressed [11-14].

Here, our focus is on stochastic resonance phenomena in
confined systems, where stylized, purely geometrical const-
rictions may lead to a dominant entropic potential with
a strong impact on the transport characteristics [15-18]
that may exhibit a SR behavior in some situations [19-21].
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In this letter we discuss a purely entropic resonant behav-
ior in a geometrically confined system in the presence
of a longitudinal, constant bias and an oscillating force.
This new resonant phenomenon is distinctly different and
goes beyond the standard SR picture in several aspects.
First, its origin is strictly entropic and is solely associated
with geometric unevenness and confinement; in particu-
lar, there is no energetic barrier in the system. Second,
the situation is characterized by the presence of two peaks
in the amplification factor signaling two different optimal
values of the noise strength. Finally, the enhancement of
the amplification associated to the second peak is not due
to noise activation, but rather is due to an optimal sensi-
tivity of the intra-well dynamics to noise; it emerges when
the entropic barrier disappears.

To illustrate this phenomenon, we consider the dynam-
ics of a Brownian particle in the two-dimensional struc-
ture depicted in fig. 1. The time evolution of this particle,
occurring in a constrained geometry subjected to a sinu-
soidal oscillating force F'(t) and a constant bias F}, acting
along the longitudinal direction of the structure, can be
described by means of the Langevin equation, written in
the overdamped limit as

1 = Foee— F(t) eo + VIRRTED, (1)
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Fig. 1: Schematic illustration of the two-dimensional structure
confining the motion of the Brownian particles. The symmetric
structure is defined by a quartic double well function, cf. eq. (2),
involving the geometrical parameters L,, L, and b. Brownian
particles are driven by a sinusoidal force F(t) and a constant
bias F}, acting along the z-direction.

where r denotes the position of the particle, v is the
friction coefficient, e, is the unit vector along the axial
direction z, and &(t) is a Gaussian white noise with
zero mean which obeys the fluctuation-dissipation relation
(&i(t) & (t')) =20;;0(t —t') for ¢, j =z, y. The explicit form
of the periodic input signal is given by F(t) = Asin (Q),
where A is the amplitude and €2 is the frequency of the
sinusoidal signal. In the presence of confining boundaries,
this equation has to be solved by imposing no-flow bound-
ary conditions at the walls of the structure.

The shape of the considered 2D structure, fig. 1, which
is mirror symmetric about its z- and y-axis, is defined by

z\* z\? b

where w; and w, correspond to the lower and upper
boundary functions, respectively, L, corresponds to the
distance between the location of the bottleneck and that
of maximal width, L, quantifies the narrowing of the
boundary functions and b is the remaining width at the
bottleneck, cf. fig. 1. The local width of the structure is
given by 2w(x) = wy(z) — wi(z). This particular choice of
the geometry is intended to resemble the classical setup for
SR, namely a double well potential, where two basins are
separated by a barrier. However, we shall show that the
distinct nature of this confined system, dominated by a
purely entropic rather than energetic potential landscape,
gives rise to new phenomena.

For the sake of simplicity, we use reduced, dimensionless
units. In particular, we scale lengths by the characteristic
length L,, time by 7=+~L2/kpTr, which is the charac-
teristic diffusion time at an arbitrary, although typical
reference temperature Ty, force by Fgr =kgTwr/L,, and
frequency of the sinusoidal driving by 1/7. In dimension-
less form the Langevin equation (1) and the boundary
functions (2) read

(2)

—wy (),

dr

4 = Fhea—Flt)ea+ VDE(®),

(3)

wy(z) = —wy (z) = —w(r) = ex* —2ex® — /2,

(4)
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Fig. 2: (Color online) The effective one-dimensional potential
V(z, D), eq. (7), at a constant bias F}, and for increasing noise
strength D. The aspect ratio € and the bottleneck width b of
the structure are set to 1/4 and 0.02, respectively. The grey
shaded regions on the left and right resemble the impenetrable
boundaries. The potential function diverges at xr, and zgr.

where D=T/Tg is the dimensionless temperature and
e=L,/L, is the aspect ratio of the structure.

Reduction of dimensionality. — In the absence of
a time-dependent applied force, i.e., F'(t) =0, and tilt-
ing force, i.e., F}, =0 it has been elaborated previously
[15-20,22] that the 2D Fokker-Planck dynamics corre-
sponding to the Langevin equation (3) can be reduced to
an effective 1D Fokker-Planck equation, reading in dimen-
sionless form

OP(z,t) 0 {D(‘?P(ac,t)

ox

— = V'(z,D) P(z,t 5
ey _20 V@D P}, O
where the prime refers to the derivative with respect to x
and the effective potential is given by [15,20]

V(z,D)=—D In[2w(z)]. (6)

This equation describes the motion of a Brownian parti-
cle in a bistable potential V(x, D) of purely entropic
nature. It is important to emphasize that this bistable
potential was not present in the 2D Langevin dynam-
ics, but arises due to the geometric restrictions associ-
ated to confinement. In general, the diffusion coefficient
will depend on the coordinate x as well [16,17,22-24],
but in the case discussed here this correction does not
significantly improve the accuracy of the reduced kinet-
ics. Therefore we do not further consider this correction.
Notably, for vanishing width 2w(x) at the two opposite
corners of the structure in fig. 1 this entropic poten-
tial approaches infinity, thus intrinsically accounting for
a natural reflecting boundary.

In the presence of a constant bias along the z-direction
of the channel the free energy becomes [15-17]

V(z,D)=—F,z— D In[2w(x)]. (7)

The behavior of this tilted potential is depicted in fig. 2.
In contrast to the purely energetic potentials used for
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classical SR [1,25], the barrier height and the shape of the
potential change with noise strength D. At small D the
strength of the entropic contribution is almost negligible
and the potential can be approximated by V(z,D)=
—Fyx. The corresponding one-dimensional Fokker-Planck
equation in the absence of periodic force reads

OP(xz,t) 0 {DaP(I,t)

22— R, P(:z:,t)} .8

ot Oz

However, in general, the potential function V(z, D),
eq. (7), describes a tilted bistable potential, where the
height of the potential barrier depends on the noise
strength D. The location of the minima also depends on
the noise level, tending to a limiting value of x = 41 for
large D. More importantly, the barrier disappears and the
potential does not exhibit any minima when D is smaller
than a critical value D, which depends on the geometrical
structure and on the tilt. For the shape given by eq. (2)
with e=1/4 and b=0.02, the potential has an inflection
point (i.e., the barrier disappears) when D, =~ 0.144 Fj},.
We will discuss below the relevance of this special situation
in the context of SR.

Spectral amplification. — The response of the system
to the weak periodic input signal, F'(t) = Asin (2¢), is also
a periodic function of time. The mean value of the position
z(t) in the asymptotic time limit (i.e., after the memory of
the initial conditions is completely lost) admits the Fourier
series representation [26,27]

<x(t)>as: Z Mneith7

n=—oo

(9)

with the complex-valued amplitudes M,, which depend
nonlinearly on the driving frequency, driving amplitude
and on the noise strength.

In order to study the occurrence of SR we analyzed the
response of the system to the applied sinusoidal signal
in terms of the spectral amplification 7, which is defined

as [26,27]
(2|Ml|>2
T]— .

Two-state approximation. — If the potential barrier
is sufficiently high and the two basins of attraction are
well separated, the intra-well motion may be neglected,
and a simplified two-state description can be used to get
useful insights into the full dynamics [28,29]. Within the
two-state approximation the transition rate from one well
to the other can be determined in terms of the mean first
passage time (MFPT) [25] to reach a potential minimum
starting out from the other minimum of the tilted bistable
potential V(z, D). Accordingly, the forward (ki) and
backward (k_) rates are given by

(10)

1

ky = 7,
Ti(zs — x4)

(11)

where z_ and =z, indicate the noise(D)-dependent
location of the left and right minima, respectively;
T, (x_ — ;) is the mean first passage time for reaching
x4 starting out at z_; and, vice versa, T_ (z4 — z_) is
the mean first passage time in the backward direction.
More explicitly, the forward and backward mean first
passage times are

SO B il Foy/D (19
+—BL_ . / yu(y) PP (12)

and

1 z_ e—Fbx/D T
T =— dep — d F,y/D
5 gy [ arewenr,

R

(13)

where x;, and xr are, respectively, the left and right
limiting values at which the boundary function vanishes,
see fig. 2. Note that the bias F}, must be small in
order to have two well-separated basins of attraction
(see discussion of the potential). Within the two-state
description the mean position is given by

k+l’+ +k'_27_
9= —7 5.
by + ke

A sinusoidal signal leads to a modulation of the barrier
height of the double well potential and consequently to a
modulation of the rates ki [28]. One obtains the spectral
amplification in the lowest order of A/D, reading

(14)

1 (!'E_;,_*{Zf_)z k+k_ 2 1

T D? fey +k_ (ky +k_)2+Q2

U (15)
Note that for the symmetric case, i.e., ky =k_ =k and
x4+ ==+1, the spectral amplification given in eq. (15)
reduces to the well-known expression,

1 4 k?

- v 1
=D a0 (16)

which in the linear response regime is by construction
independent of the amplitude strength [1,26,27,29].

1D modeling. — The two-state description of the
linear response fails for either large driving amplitudes,
small driving frequencies [1,30] or very weak noise [31].
In such circumstances, the 1D Fokker-Planck equation
has to be considered and the nonlinear response analyzed
[1,27,30,31]. In the presence of a sinusoidal signal F'(t)
the 1D Fokker-Planck reads

OP(z,t) 0 opP
ox

% on +[V'(z, D) + F(t)] P}. (17)

We have integrated numerically the above equation
by spatial discretization, using a Chebyshev collocation
method, and employing the method of lines to reduce the
kinetic equation to a system of ordinary differential equa-
tions, which was solved using a backward differentiation
formula method. Thereby we obtain the time-dependent
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Fig. 3: (Color online) The time averaged mean position Mo
as a function of the noise strength D for different tilting force
values. The solid lines correspond to the numerical integration
of the 1D Fokker-Planck equation, eq. (17), and the dashed
lines correspond to the two-state approximation, eq. (14), i.e.,
Mo =qo. In the potential function we set the aspect ratio
e=1/4 and the bottleneck width b=0.02. The dotted lines
represent the behavior of My at small D obtained by integra-
tion of eq. (8). For the symmetric case (F}, =0) all these lines
collapse to the black solid line, i.e. Mo =0.

probability distribution P(z,t) and the time-dependent
mean value of the position, (z(t)) = [« P(z,t)dz. In the
long-time limit this mean value approaches the period-
icity of the input signal with angular frequency €2, see
refs. [26,27]. After a Fourier-expansion of (z(¢)) one finds
the time averaged mean position My = My(A, D) and
amplitude M; = My(A, D) of the first harmonic of the
response.

The mean position My as a function of the noise
strength D is depicted in fig. 3 for two different tilting force
values. For comparison, the approximated mean position
qo obtained within the two-state modeling is also plotted.
At very small D there is no barrier and the particle
oscillates just in the vicinity of the boundary, either at xr
or z, depending on the direction of the tilt. As the noise
strength increases the barrier height increases, see fig. 2,
and the inter-well (from one well to the other) dynamics
become more dominant. Remarkably, the behavior of the
mean position can be qualitatively captured within the
two-state approximation.

For the 1D modeling the spectral amplification for
the fundamental oscillation is computed accordingly, cf.
eq. (10). The comparison between the results of the
1D modeling and the two-state approximation for the
parameter n as a function of the noise strength D and
for two different tilting force values is depicted in fig. 4.
Within the 1D modeling 7 exhibits a double-peak behavior
for a finite tilt. The appearance of the main peak at higher
D, which is due to the synchronization of the periodic
signal with the activated inter-well dynamics, can be nicely
captured within the two-state model. However, there is
a second peak at small values of noise that cannot be
described within the two-state model. As it is discussed
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Fig. 4: (Color online) The behavior of the spectral amplification
factor 7 as a function of the noise strength D for the same para-
meters as in fig. 3. The solid lines correspond to the numerical
integration of the 1D Fokker-Planck equation, eq. (17), whereas
the dashed lines correspond to the two-state approximation,
eq. (15). The behavior of n at small D obtained by integration
of eq. (8) with a periodic forcing and at the respective tilting
force values is represented with dotted lines. The arrows indi-
cate the critical value D, that corresponds to the vanishing of
the barrier.

before, at small noise strengths there is no barrier and the
particle oscillates in the vicinity of the boundary. As we
increase the noise one can observe a steep rise in 7 with
D which is a consequence of noise helping the particle
to climb higher the potential hill (see fig. 4). The second
peak at small D is attributed to the intra-well dynamics,
and could also be observed for mono-stable energetic
potentials [5,32,33]. The steepness of increase of n depends
on the strength of the tilting force. However, beyond D,
the barrier appears and gets higher as we increase the
noise level, thus leading to a decrease in the amplification
since the dynamics of the particle is now hampered by the
need to overcome a barrier. Therefore, the inflection point
of the effective potential —which marks the appearance of
the barrier— locates the position of a new optimal regime
of noise in terms of signal amplification.

2D numerical simulation. — In order to check the
accuracy of the one-dimensional description we compared
the obtained results with the results of Brownian dynamic
simulations, performed by integrating the full overdamped
Langevin equation (3). The simulations were carried out
using the standard stochastic Euler-algorithm.

The behavior of the spectral amplification n as a func-
tion of the noise strength D for different tilting force values
is depicted in fig. 5. It is worth to mention that the results
of the 1D modeling (lines) are in very good agreement with
the numerical simulations of the full 2D system (symbols)
within a small relative error. As one would expect the reso-
nant behavior is absent for zero tilting force, i.e., for the
purely symmetric case [20], whereas in the presence of a
tilting force, the spectral amplification exhibits a double-
peak structure. As discussed before, the inter-well dynam-
ics is respomnsible of the appearance of the main peak
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Fig. 5: (Color online) The spectral amplification 7 as a function
of the noise strength D at various tilting force values. The
lines correspond to the numerical integration of the 1D Fokker-
Planck equation, eq. (17), whereas the symbols correspond to
the results of the Langevin simulations for the two-dimensional
structure with the shape defined by the dimensionless function
w(z) =—0.252* +0.52> +0.01.

[ — =001

10

Fig. 6: (Color online) Same as in fig. 5, but for various input
signal frequencies.

at higher noise strengths D whereas the second peak at
smaller noise strengths is related to the disappearance of
the barrier. By changing the tilt, the second peak gets
shifted to higher values of noise following the predicted
behavior for the inflection point, namely D~ 0.144 F},.

The behavior of the spectral amplification for different
frequencies is plotted in fig. 6. The height of the main
peak in n at high noise strength increases as the frequency
of the input signal decreases, resembling the behavior of
classical SR [2]. Overall, the perfect double-peak structure
in the spectral amplification is present only at moder-
ate frequency range. A similar behavior of double-peak
SR could also be observed in purely energetic systems,
with a double well potential, either at high input fre-
quencies [27,32] or at small frequencies in the presence
of inertia [34].

Figure 7 depicts the behavior of the spectral amplifica-
tion for different values of the amplitude of the driving
force. The inter-well dynamics responsible of the appear-
ance of the main peak in 7 at higher noise strengths is
not much affected by the variation of the input signal

10

Fig. 7: (Color online) Same as in fig. 5, but for various input
signal amplitudes.

amplitude. In contrast, the second peak is greatly affected
by the amplitude of the input signal. A clear double-peak
structure in 7 can be obtained only at small signal ampli-
tudes, since when the amplitude of the forcing exceed the
bias F3,, the particle can move throughout the whole struc-
ture assisted by the periodic forcing and therefore loses its
sensitivity to the noise strength.

Conclusions. — In this work we have studied the
influence of a constant bias on the resonant response
of a geometrically constrained system. In the absence
of the tilting force the system does not exhibit a SR
behavior [20]. Applying a constant bias, one can bring the
system to an optimal regime where it exhibits a double
ESR in the spectral amplification. We want to stress that
the phenomenon is strictly entropic, since there is no
purely energetic barrier in the system. The ESR emerges
due to the interplay between the tilt and the entropic
barrier which originates in our case from the unevenness of
geometrical restrictions. The double-peak behavior arises
due to two different dynamic regimes: i) a regime, which
is genuine of entropic systems, that occurs at high noise
strengths where the main peak in the amplification is
due to the synchronization of the periodic signal with
noise-assisted hopping events; and ii) a regime, at low
noise strengths, at which the potential has an inflection
point. The system thus becoming optimally sensitive to
noise. Note that noise plays a two-fold role in an entropic
system: on the one hand, it facilitates the dynamics,
but on the other hand it intensifies the strength of the
entropic contribution leading to the appearance of barriers
that hamper transport. The second peak at smaller noise
intensity signals the optimum balance between these
two roles. This double resonant behavior renders the
possibility for complete control of the optimization of
the response of a system in the presence of noise. The
main peak stemming from the inter-well dynamics can
be strikingly controlled by tuning the frequency, while
the second peak can be controlled either by changing
the strength of the tilt or the amplitude of the periodic
input signal. The double resonant peak behavior is a clear
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signature of the richness of dynamical behaviors in driven
confined systems. The occurrence of this phenomenon
depends only on a few controllable parameters that can
be advantageously tuned to achieve an optimal response.
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