
Many-Body Coherent Destruction of Tunneling

Jiangbin Gong,1,2,* Luis Morales-Molina,1,3 and Peter Hänggi1,4

1Department of Physics and Center for Computational Science and Engineering, National University of Singapore,
Singapore 117542, Singapore

2NUS Graduate School for Integrative Sciences and Engineering, Singapore 117597, Singapore
3Facultad de Fı́sica, Pontificia Universidad Católica de Chile, Santiago 22, Chile
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A new route to coherent destruction of tunneling is established by considering a monochromatic fast

modulation of the self-interaction strength of a many-boson system. The modulation can be tuned such

that only an arbitrarily, a priori prescribed number of particles are allowed to tunnel. The associated

tunneling dynamics is sensitive to the odd or even nature of the number of bosons.
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The phenomenon of coherent destruction of tunneling
(CDT) [1,2] by a driving field has been one seminal result
in studies of quantum dynamics control. Direct observation
of CDTwas recently achieved in several experiments [3,4],
one of which [4] involving noninteracting cold atoms in a
double-well potential. CDT in interacting many-body sys-
tems has also attracted considerable interest, with previous
work focusing on driving fields on resonance with the
interaction energy [5,6]. The Mott-superfluid transition in
ultracold systems via a mechanism similar to single-
particle CDT has also been observed experimentally [7].

Traditionally, the driving field in CDT studies is to
directly modulate the bare single-particle levels of an un-
driven system. For example, in a two-level theory of CDT,
the driving field is to modulate the energy difference
between two bare levels. By contrast, in this work we
expose a new route to CDT by taking advantage of the
particle-particle interaction in a many-body system.
Specifically, we consider the CDT in a two-mode Bose-
Hubbard model that describes a two-mode Bose-Einstein
condensate (BEC). We show, both analytically and com-
putationally, that a monochromatic off-resonance driving
of the self-interaction strength of the BEC can induce
different types of CDT without a direct modulation of the
mode-energy bias. Interestingly, this makes it possible to
precisely control, at least in principle, the number of
bosons allowed to tunnel. Another remarkable prediction
is the sensitivity of the full-quantum dynamics to the even
or odd nature of the number of bosons. Note that in other
contexts such as matter-wave solitons, intriguing effects of
a periodic modulation of the self-interaction strength of a
BEC (the so-called ‘‘Feshbach-resonance management’’)
have been discovered [8], but on the mean-field level only.

Consider then the following Bose-Hubbard Hamiltonian
for a two-mode BEC:

H ¼ v@ðayl ar þ ayr alÞ=2þ gðtÞ@ðayl al � ayr arÞ2=4; (1)

where r and l are mode indices, ak and a
y
k (k ¼ r, l) are the

bosonic annihilation and creation operators, v describes
the constant tunneling rate between the two modes, and
gðtÞ is the interaction strength between same-mode bosons.
We use the unit of v to appropriately scale all the parame-
ters such that v, gðtÞ, and t all become dimensionless

variables. The total number of bosons N ¼ ayl al þ ayr ar
is a conserved quantity and the dimension of the Hilbert
space is N þ 1. Using the Schwinger representation of

angular momentum operators, namely, Jx ¼ ðayl ar þ
ayr alÞ=2, Jy ¼ ðayr al � ayl arÞ=ð2iÞ, and Jz ¼ ðayl al �
ayr arÞ=2, Eq. (1) reduces to

HðtÞ ¼ v@Jx þ gðtÞ@J2z : (2)

The Hilbert space is expanded by the eigenstates of Jz,
denoted jmi, with Jzjmi ¼ mjmi. The mode population
difference is given by the expectation value of 2Jz. For
later use, we also define Jþ � Jx þ iJy. Note that there is

no energy bias between the two modes and that the time
dependence of the Hamiltonian arises from gðtÞ, which is
assumed to be [8]

gðtÞ ¼ g0 þ g1 cosð!tÞ: (3)

Under appropriate conditions HðtÞ describes a BEC dis-
tributed in the two wells of a double-well potential [4], in
the ground band and the first-excited band associated with
an accelerating optical lattice [9], or in two hyperfine
levels. For convenience, below we focus on the first con-
text, which can be best realized by optical superlattices
[10]. Hence rðlÞ denotes the right (left) well. Our central
idea is to use an off-resonance oscillation in gðtÞ to switch
off the tunneling between the left and right wells.
The Floquet operator associated with HðtÞ is given by

F̂ � T fexp½�i
R2�=!
0 Hðt0Þ=@dt0�g, where T is the time-

ordering operator. Its eigenstates are the Floquet states,
with eigenvalues expð�i�2�=@!Þ, where � is the quasi-
energy. Because HðtÞ apparently possesses a parity sym-
metry, namely, it is invariant upon an exchange of the
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indices l and r, the Floquet states can be chosen as either
positive-parity or negative-parity states. If two opposite-
parity Floquet states cross or touch, then similar to the
single-particle CDT mechanism, their superposition,
which is still a Floquet state, breaks the left-right symmetry
and hence CDT occurs [11].

Figure 1 depicts that the degeneracy between opposite-
parity states can easily occur, thus suggesting that CDT is
possible via solely a monochromatic modulation in the
self-interaction strength. Next, we examine some detailed
features presented in Fig. 1, for g0 ¼ 0, N ¼ 10, and v ¼
1 as an example. In Fig. 1(a), ! ¼ 40 � v ¼ 1, and three
values of g1=! for which level degeneracies occur are
explicitly marked by vertical dashed lines. At point I, the
level crossing involves two positive-parity states and one
negative-parity state. At point II, two pairs of opposite-
parity states become degenerate simultaneously. At
point III, three states in the middle of the Floquet spectrum
cross, and two additional pairs of opposite-parity Floquet
states also touch each other. Similar spectral patterns can
be found in other regimes of g1=!. In Fig. 1(b),! ¼ 2� is
quite comparable to v ¼ 1. In this intermediate-frequency
case, the spectral patterns become more complicated.
Nevertheless, as indicated by those vertical dashed lines

in Fig. 1(b), when g1 increases, the spectral pattern in
Fig. 1(b) becomes analogous to those seen in Fig. 1(a).
We develop below a theory for the Floquet spectrum in

the high-frequency regime, with its validity condition ela-
borated later. In that regime, the full Floquet theory can be
expanded to the first order of 1=! [2] and a static effective
Hamiltonian Heff for the driven quantum dynamics can be
obtained by averaging out the driving-field effects [12].
Explicitly,

Heff ¼ !

2�

Z 2�=!

0
e½iAðtÞJ2z �ðg0@J2z þ v@JxÞe½�iAðtÞJ2z �dt;

(4)

where AðtÞ ¼ R
t
0 g1 cosð!tÞdt ¼ ðg1=!Þ sinð!tÞ. Using

the identity in the SU(2) algebra, i.e., eiAðtÞJ2z Jxe�iAðtÞJ2z ¼
ðJþ=2ÞeiAðtÞð2Jzþ1Þ þ c:c:, where c.c. means complex con-
jugate of the preceding term, and substituting this into
Eq. (4) to perform the integral, we obtain the effective
Hamiltonian,

Heff ¼ g0@J
2
z þ ðv@Jþ=2ÞJ 0½g1ð2Jz þ 1Þ=!� þ c:c:;

(5)

where J 0ðxÞ is the ordinary Bessel function of order zero.
Equation (5) indicates that the net effect of a fast modula-
tion in gðtÞ is the rescaling factor J 0½g1ð2Jz þ 1Þ=!�,
which depends on Jz, i.e., the population difference be-
tween the two wells. Further, a nonzero g0 leads to the
g0@J

2
z term in Heff . It is well known that this term can

induce population localization via a self-trapping mecha-
nism. To isolate population localization due to possible
CDT phenomena from that due to self-trapping, wewill not
consider cases with nonzero g0 until much later.
In the eigenrepresentation of Jz, Heff is a tri-

diagonal matrix. Further, if hm� 1jHeffjmi ¼ 0, then
hmjHeffjm� 1i ¼ 0, and we must also have
h1�mjHeffj�mi ¼ h�mjHeff j1�mi ¼ 0 due to symme-
try consideration. These four zero matrix elements divide
the tridiagonal matrix of Heff into three uncoupled sub-
spaces, i.e.,

Heff ¼
hl 0 0
0 hi 0
0 0 hr

2
64

3
75; (6)

where hl represents a submatrix of Heff in the subspace
spanned by states jN=2i; jN=2� 1i; . . . ; jmi (assuming
m> 0), hr represents a submatrix of Heff in the subspace
spanned by states j�N=2i; j�N=2þ 1i; . . . ; j�mi, and hi
represents the third block matrix involving other remaining
basis states. Therefore, if hm� 1jHeffjmi ¼ 0, then (i) the
transition between jmi (j�mi) and all other basis states
jm0i (j�m0i) with m0 <m will not occur, (ii) the Floquet
states must display degeneracy because hr is identical with
hl due to the parity symmetry of HðtÞ, and (iii) the dimen-
sion of hr or hl, namely, (N=2�mþ 1), also gives the
expected number of degenerate pairs.

FIG. 1 (color online). Quasienergy spectrum versus g1=!.
Vertical dashed lines indicate the location (i.e., g1=!� 0:267,
0.344, and 0.481) of level degeneracies. Dotted (solid) lines are
for states with negative (positive) parity. N ¼ 10, g0 ¼ 0, and
v ¼ 1. In (a), ! ¼ 40 and in (b), ! ¼ 2�. Spectral details
around the square are shown in the inset in (b), with two-
level-crossings. Here and in other figures all variables are
dimensionless.
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Suppose there are N � i (i) particles in the left (right)
well. Without loss of generality, we assume i < N=2.
The associated quantum state is given by jmi ¼
jN=2� ii. Using Eq. (5), one finds that the condition
hm� 1jHeffjmi ¼ 0 is equivalent to

J 0fg1½N � ð2iþ 1Þ�=!g ¼ 0: (7)

As such, if g1½N � ð2iþ 1Þ�=! is tuned to become one
root of J 0ðxÞ, then the tunneling of one more particle from
the left well to the right well (hence m ! m� 1) becomes
prohibited if the left well has already released i particles to
the right well.

We now compare the theoretical result of Eq. (7) with
our computationally precise results in Fig. 1. For the cases
in Fig. 1(a), theoretically the spectral degeneracy is ex-
pected to occur when g1½10� ð2iþ 1Þ�=! becomes a root
of J 0ðxÞ. In particular, for the first root of J 0ðxÞ at x�
2:405 and for i ¼ 0, 1, 2, the predicted degeneracy is at
g1=! � 0:267, 0.344, and 0.481, with the pair number of
level degeneracies in each case given by the dimension of
hr, i.e., iþ 1. This is in perfect agreement with the three
marked degeneracy points shown in Fig. 1(a). It is now also
possible to explain why the level crossings in the middle of
the spectrum in Fig. 1(a) can involve three states. This is
because (i) if N is even and g0 ¼ 0, Heff always has a zero
eigenvalue due to its tridiagonal structure, and (ii) when the
dimension of hr and hl is odd, they can present two addi-
tional zero eigenvalues. Interestingly, for sufficiently large
g1, such agreement between theory and numerics may
persist for the intermediate-frequency case in Fig. 1(b).
For example, the degeneracies marked by the three vertical
lines in Fig. 1(b) occur at g1=!� 2:007, 2.133, and 2.986.
These values, when multiplied by [N � ð2iþ 1Þ] for i ¼ 0,
1, 2, respectively, are the 6th or 5th root of J 0ðxÞ. Note,
however, that the subtle crossing behavior depicted in the
inset of Fig. 1(b) is beyond our theory.

With a normalized population imbalance hSi �
2hJzi=N, Fig. 2(a) shows the numerically exact population
dynamics associated with the three marked points in
Fig. 1(a). The initial state is that all particles are in the
left well. In the first case for g1=!� 0:267, hSi is seen to
stay at almost unity and hence in essence the tunneling
between the two wells is completely suppressed. In the
second case for g1=!� 0:344, our theory predicts that the
tunneling suppression occurs only when hSi becomes 0.8.
As seen in Fig. 2(a), hSi indeed oscillates between 0.8 and
1.0. Similarly, in the third case, hSi oscillates between 1.0
and �0:6, confirming our theory that the tunneling stops
if two particles are already released to the right well.
Excellent agreement is obtained at other level degener-
acy points. These features signify one key aspect of our
many-body CDT: It depends sensitively on the number of
particles that have already tunneled. With the same initial
condition, in Fig. 2(b) we also show the three intermediate-
frequency cases marked earlier by the vertical lines in
Fig. 1(b). The associated population dynamics still agrees

with our theory. Because the predicted CDT points are
independent of the actual tunneling rate v, we found that
even if an oscillation in v is considered [which can be
induced by the modulation in gðtÞ], analogous results can
be obtained. For the case shown in the inset of Fig. 1(b),
which is beyond our high-frequency theory, almost com-
plete population delocalization is observed in the inset of
Fig. 2(b).
Figures 3(a)–3(c) schematically illustrate the three rep-

resentative CDT cases studied in Figs. 1(a) and 2(a). In
Fig. 3(a), no particle is allowed to tunnel, and in Figs. 3(b)
and 3(c), one or two particles have tunneled and then CDT
occurs. Consistent with this picture, Fig. 3(d) depicts the
numerically time-averaged hSi, denoted hhSii, as a function
of g1=!, for N ¼ 10 and! ¼ 40. It is seen that as g1=! is
scanned at a rather low resolution, the value of hhSii is
either zero or close to ‘‘magic’’ nonzero numbers (�1:0,
�0:9, and �0:8; . . . ). Figures 3(a)–3(c) also provoke us to
reinterpret our theoretical finding. In particular, for g0 ¼ 0,
the energy difference between the two configurations in
Figs. 3(a) and 3(b) [Figs. 3(b) and 3(c)] is g1@ cosð!tÞ�
½N � ð2iþ 1Þ� with i ¼ 0 (i ¼ 1). As such, even though
there is no direct modulation of the energy bias between
the two wells, the oscillation in gðtÞ still causes a modula-
tion of the effective bias between different configurations.
With this interpretation, we are able to rederive Eq. (7)
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FIG. 2 (color online). (a) Time dependence of hSi for g0 ¼ 0
and N ¼ 10, with ! ¼ 40 in (a) and ! ¼ 2� in (b). From top to
bottom, values of g1=! are associated with the three vertical
lines (from left to right) in Fig. 1(a) for panel (a) and in Fig. 1(b)
for panel (b). For comparison, a case with g1=! ¼ 10:5=40 ¼
0:2625 is also shown in (a). The inset of (b) is for the first level
crossing shown in the inset of Fig. 1(b).
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by analogy to standard single-particle CDT theory. This
analogy also makes clear that the precise condition for
our high-frequency approximation should be ~v �
maxð!;

ffiffiffiffiffiffiffi
�!

p Þ [2], where ~v � v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � iÞðiþ 1Þp

is the cou-
pling strength between states jN=2� ii and jN=2� i� 1i,
and � � jg1½N � ð2iþ 1Þ�j is the amplitude of the effec-
tive bias. For i � N, this condition becomes v �
maxð !ffiffiffi

N
p ;

ffiffiffiffiffiffiffiffiffi
g1!

p Þ. This well explains our early observation

from Fig. 1(b) that as g1 increases, the spectral pattern in
intermediate-frequency cases starts to resemble those in
Fig. 1(a) and becomes more perspicuous with our theory.

Let us now turn to cases with nonzero g0. If the system is
close to a CDT point, J 0½g1ð2Jz þ 1Þ=!� is small, the g0
term in Heff will dominate, and hence the associated self-
trapping effect may induce a strong population imbalance
on a very long-time scale. Taking one small window of
g1=! in Fig. 3(d) as an example, we compare g0 � 0 with
g0 ¼ 0 cases in Fig. 3(e). Clearly, as g0 increases, the
width of the hhSii profile in Fig. 3(e) increases significantly.
This interplay between self-trapping and CDT is analogous
to that in a two-mode optical waveguide system where the
mode bias is periodically modulated [13]. The peak value
of hhSii is also seen to change with g0. We conclude that on
one hand, a small nonzero g0 is beneficial to experiments
because it reduces the sensitivity of hhSii to the exact
values of g1=!; on the other hand, however, the predicted
particle-number-dependent CDT effect may be buried by
self-trapping if g0 is too large.

Our findings have potential applications in probing and
exploring genuine quantum coherence in BEC. In particu-
lar, the dynamics under a preestablished CDT condition

may be dramatically changed upon adding bosons to the
system. As an example, we consider the CDT point I in
Fig. 1(a), where J 0½g1ðN � 1Þ=!� ¼ 0 for N ¼ 10. If we
let N ! N þ 2 by adding two particles to the left well,
then because we still have J 0fg1½ðN þ 2Þ � 3�=!g ¼ 0,
Eq. (7) suggests that the CDT will be reestablished after
one particle is tunneled to the right well. However, if we let
N ! N þ 1 by adding only one particle to the left well,
then because (N � 1) cannot be written as ðN þ 1Þ �
ð2iþ 1Þ for any i, J 0fg1½ðN þ 1Þ � ð2iþ 1Þ�=!g is in
general nonzero for fixed g1=!, and as a result, all of the
particles start to tunnel back and forth between the two
wells. The minor difference between adding an even and
adding an odd number of bosons is thus greatly amplified
by CDT, a prediction also confirmed by our numerical
experiments. Similar behavior is obtained if more particles
are added to the system. This odd-even sensitivity to the
particle number is absent in any mean-field theory of a
BEC, providing a possible means for accurate counting or
efficient filtering of the number of bosons. Certainly, as
implied by the results in Fig. 3(e), this is possible only if g0
is sufficiently small such that the hhSii profiles associated
with different particle numbers do not overlap.
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[10] S. Fölling et al., Nature (London) 448, 1029 (2007);
M. Anderlini et al., Nature (London) 448, 452 (2007).

[11] This is already exploited in a delta-kicked system; see
M. P. Strzys, E.M. Graefe, and H. J. Korsch, New J. Phys.
10, 013024 (2008).

[12] S. Kohler, J. Lehmann, and P. Hänggi, Phys. Rep. 406, 379
(2005); see pp. 401–402.

[13] X. Luo, Q. Xie, and B. Wu, Phys. Rev. A 76, 051802
(2007).

(b) (c)(a)

0.2 0.3 0.4 0.5
g

1

0

0.2

0.4

0.6

0.8

1

I II III

/ω
0.34 0.35

g
1

-0.2

0

0.2

0.4

0.6

0.8

1

/ω

(e)(d)

〈〈S〉〉

FIG. 3 (color online). (a)–(c) Schematic picture of particle-
number-dependent CDT. In case (a), no particle tunnels, and in
cases (b) and (c), only one or two particles tunnel and then CDT
occurs. (d) Long-time average of hhSii versus g1=! for ! ¼ 40
and g0 ¼ 0, with g1=! scanned at a rather low resolution.
(e) Same as in (d), but with g1=! scanned in small steps around
the regime of 0.343, with g0=! ¼ 1=144 (j), g0=! ¼ 1=288
(m), and g0 ¼ 0 (d). The total time used for averaging is 20 000
in dimensionless units.
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