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We generalize the dispersive theory of the Jaynes-Cummings model beyond the frequently employed
rotating-wave approximation �RWA� in the coupling between the two-level system and the resonator. For a
detuning sufficiently larger than the qubit-oscillator coupling, we diagonalize the non-RWA Hamiltonian and
discuss the differences to the known RWA results. Our results extend the regime in which dispersive qubit
readout is possible. If several qubits are coupled to one resonator, an effective qubit-qubit interaction of Ising
type emerges, whereas RWA leads to isotropic XY interaction. This impacts on the entanglement characteristics
of the qubits.
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I. INTRODUCTION

More than 40 years ago, Jaynes and Cummings �1� intro-
duced a fully quantum-mechanical model for the interaction
of light and matter, which are represented by a single har-
monic oscillator and a two-level system, respectively. Within
dipole approximation for the interaction that model is ex-
pressed by the Hamiltonian

H =
��

2
�z + ��a†a + �g�x�a† + a� , �1�

where �� is the level splitting of the two-level system,
henceforth “qubit,” � is the frequency of the electromagnetic
field mode, and g is the dipole interaction strength. The Pauli
matrices ��, �=x ,y ,z, refer to the two-level system, while
a† and a denote the bosonic creation and annihilation opera-
tors of the electromagnetic field mode. This model describes
a wealth of physical phenomena rather well and by now is a
“standard model” of quantum optics. A particular experimen-
tal realization of the Hamiltonian is an atom interacting with
the field inside an optical cavity, usually referred to as cavity
quantum electrodynamics. Corresponding experiments have
demonstrated quantum coherence between light and matter
manifest in phenomena such as Rabi oscillations and en-
tanglement �2,3�.

Despite its simplicity, the Hamiltonian �1� cannot be di-
agonalized exactly and, thus, is often simplified by a
rotating-wave approximation �RWA�. There, one expresses
the qubit-cavity interaction in terms of the ladder operators
��= 1

2 ��x� i�y�. In the interaction picture with respect
to the uncoupled Hamiltonian, the coupling operators �+a,
�−a† and �−a, �+a† oscillate with the phase factors
exp��i��−��t� and exp��i��+��t�, respectively. Operating
at or near resonance, the cavity-qubit detuning is small,
��−����+�, so that the former operators oscillate slowly,
whereas the latter exhibit fast “counter-rotating” oscillations.
If in addition, the coupling is sufficiently weak g
�min�� ,��, one can separate time scales and replace the
counter-rotating terms by their vanishing time average. Then
one obtains the Jaynes-Cummings Hamiltonian �1�

HRWA =
��

2
�z + ��a†a + �g��−a† + �+a� . �2�

Lately, new interest in Jaynes-Cummings physics has
emerged in the solid-state realm. There, one implements ar-
tificial atoms with Cooper-pair boxes �charge qubits� �4� or
superconducting loops �flux qubits� �5�. The role of the cav-
ity is played now by a transmission line or a superconducting
quantum interference device �6,7� or even a nanomechanical
oscillator �8�. Since the first experimental realizations in
2004 �4,5�, a plethora of results has been obtained, such as
quantum-non-demolition-like readout of a qubit state �9�, the
generation of Fock states �10�, the observation of Berry
phases �11�, multiphoton resonances �7�, entanglement be-
tween two qubits inside one cavity �12,13�, and the demon-
stration of a two-qubit algorithm �14�.

These experiments have in common that they operate in
the strong-coupling limit, that is, the coupling g is larger than
the linewidth of the resonator. On the other hand, g is typi-
cally two orders of magnitude less than the qubit and reso-
nator frequencies. In this scenario, the Jaynes-Cummings
model �2� has been shown to describe the experiments faith-
fully.

Of practical interest is the dispersive limit, in which the
qubit and the resonator are far detuned compared to the cou-
pling strength g� ��−�� �6,15�. In this regime, a non-
demolition-type measurement of the qubit can be performed
by probing the resonator �4,16�. Moreover, it is possible to
simulate quantum spin chains with two or more qubits that
are dispersively coupled to one resonator �12,14,17�. The
complementary architecture of two cavities dispersively
coupled to one qubit allows building a quantum switch �18�.
All these ideas have been developed from the RWA model
�2� in the dispersive limit or from according generalizations
to many qubits or many oscillators. Thus, these theories are
restricted to the range

g � �� − �� � � + � , �3�

where the first inequality refers to the dispersive limit, while
the second one has been used to derive the RWA Hamil-
tonian �2� from the original model �1�.
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In recent experiments, efforts are made to reach an even
stronger qubit-cavity coupling g. Thus, it will eventually be
no longer possible to fulfill both inequalities in Eq. �3� �19�.
In particular, when trying to operate in the dispersive limit,
the second inequality may be violated, so that RWA is no
longer applicable. Non-RWA effects of the model Hamil-
tonian �1� have already been studied in the complementary
adiabatic limits ��� and ��� �20–22�. Furthermore, Van
Vleck perturbation theory has been used in the resonant and
close-to-resonant cases �23�. Polaron transformation �24�,
cluster methods �25�, wave-packet approach �26�, and even
generalized RWA approximations �27� have also been con-
sidered. Finally, with the method of small oscillations �28�,
effective models were found for the different resonances be-
yond the RWA approximation �29�. Motivated by the impor-
tance of the dispersive regime and in view of the experimen-
tal tendency toward stronger qubit-oscillator coupling, we
present in this work a dispersive theory beyond RWA, so that
the second condition in Eq. �3� can be dropped. This means
that our approach is valid under the less stringent condition

g � �� − �� , �4�

which implies that the detuning is not necessarily smaller
than � and �. In order to set the stage, we briefly review in
Sec. II the dispersive theory within RWA. In Sec. III, we
derive a dispersive theory for Hamiltonian �1� beyond RWA,
which we generalize in Sec. IV to the presence of several
qubits.

II. DISPERSIVE THEORY WITHIN RWA

The dispersive limit is characterized by a large detuning
	=�−� as compared to the qubit-oscillator coupling g.
Thus,


 =
g

	
�5�

represents a small parameter, while the RWA Hamiltonian �2�
is valid for ��−����+�. Then it is convenient to separate
the coupling term from the RWA Hamiltonian, i.e., to write
HRWA=H0+�gX+ with the contributions

H0 =
��

2
�z + ��a†a , �6�

X� = �−a† � �+a . �7�

Applying the unitary transformation,

DRWA = e
X−, �8�

one obtains for the transformed Hamiltonian HRWA,disp
=DRWA

† HRWADRWA to second order in 
: HRWA,disp=HRWA

+
�HRWA ,X−�+ 1
2
2��HRWA ,X−� ,X−�, which can be evalu-

ated to read as

HRWA,disp =
��

2
�z +

�g2

2	
�z + ��� +

�g2

	
�z	a†a . �9�

The physical interpretation of Eq. �9� is that the oscillator
frequency is shifted as

� → � � g2/	 , �10�

where the sign depends on the state of the qubit. If one now
probes the resonator with a microwave signal at its bare reso-
nance frequency �, the phase of the reflected signal pos-
sesses a shift that depends on the qubit state. This allows one
to measure the low-frequency dynamics of the qubit �6�.
Since, according to Eq. �9�, the qubit Hamiltonian ��� /2��z
commutes with the dispersive coupling ��g2 /	��za

†a, this
constitutes a quantum nondemolition measurement of the qu-
bit, which has already been implemented experimentally
�4,22,30,31�. In turn, the qubit energy splitting is shifted de-
pending on the mean photon number n= 
a†a�. Accordingly,
one can also measure the mean photon number and even
perform a full quantum state tomography of the oscillator
state �32�. Note also that besides the condition of 
 being
small, the perturbational result �9� is accurate only if the
mean photon number 
n� does not exceed the critical value
ncrit=1 /4
2. For larger photon numbers, higher powers of the
number operator a†a must be taken into account �33,34�.
Henceforth, we restrict ourselves to the so-called linear dis-
persive regime, in which the photon number is clearly below
the critical value ncrit.

III. DISPERSIVE THEORY BEYOND RWA

It is now our aim to treat the original Hamiltonian �1� in
the dispersive limit accordingly, i.e., to derive an expression
that corresponds to Eq. �9� but is valid in the full dispersive
regime defined by inequality �4�. Going beyond RWA, we
have to keep the counter-rotating coupling terms

Y� = �+a† � �−a , �11�

which are relevant if either of the relations g�min�� ,�� or
��−����+� is violated. Separating again the qubit-
oscillator coupling from the bare terms, we rewrite Hamil-
tonian �1� as

H = H0 + �gX+ + �gY+, �12�

which differs from HRWA by the last term. It will turn out that
a unitary transformation corresponding to Eq. �8� is achieved
by the operator

D = e
X−+
̄Y−. �13�

Here we have introduced the parameter


̄ =
g

� + �
=

g

2� − 	
, �14�

which obviously fulfills the relation 
̄�
, since � and � are

positive. Thus, whenever 
 is small, 
̄ is small as well. Nev-

ertheless, under condition �4�, 
 and 
̄ may be of the same
order.

Proceeding as in Sec. II, we define the dispersive Hamil-
tonian Hdisp=D†HD. Using the commutation relations
�Y+ ,Y−�=�z�2a†a+1�−1, �� /2�z+�a†a ,Y−�=−��+��Y+,
and �Y� ,X��=�z�a2+ �a†�2�, we obtain the expression
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Hdisp =
��

2
�z + ��a†a +

�g2

2
� 1

	
+

1

2� − 	
	�z�a† + a�2,

�15�

which is valid up to second order in the dimensionless cou-

pling parameters 
 and 
̄.
As compared to the RWA result �9�, we find two differ-

ences. First, the prefactor of the coupling has a contribution

that obviously stems from 
̄. Second and more importantly,
the coupling is no longer proportional to the number operator
a†a but rather to �a†+a�2. Thus, the operator Y� has turned
into the counter-rotating contributions a2 and �a†�2. For this
reason, the dispersive Hamiltonian �15� is not diagonal in the
eigenbasis of the uncoupled Hamiltonian H0.

Nevertheless, it is possible to interpret the result as a
qubit-state dependent frequency shift by the following rea-
soning. Let us interpret ��a†a as the Hamiltonian of a par-
ticle with unit mass in the potential 1

2�2x2, where x
=�� /2��a†+a�. Then the qubit-oscillator coupling in Eq.
�15� modifies the potential curvature �2, such that the oscil-
lator frequency undergoes a shift according to

� → �̄ = ��1 �
2g2

�
� 1

	
+

1

2� − 	
	 . �16�

Again the sign depends on the qubit state. To be consistent
with the second-order approximation in g, we have to expand
also the square root to that order. This complies with the
experimentally interesting parameter regime, where g��.
We finally obtain

�̄ = � � g2� 1

	
+

1

2� − 	
	 . �17�

As for the RWA Hamiltonian, we find that the qubit state
shifts the resonance frequency of the oscillator. This result is
not only of appealing simplicity but also has a rather impor-
tant consequence. Dispersive readout is possible even when
the qubit-oscillator coupling is so strong that condition �3�
cannot be fulfilled, that is, when the RWA result is not valid.

For a quantitative analysis of our analytical findings, we
compare the frequency shifts �10� and �17� with numerical
results. In doing so, we diagonalize the Hamiltonian �1� in
the subspace of the qubit state �↓ �, where �z�↓ �=−�↓ �. The
results are depicted in Fig. 1.

For a qubit splitting � close to the cavity frequency �, i.e.,
outside the dispersive regime, the analytically obtained fre-
quency shifts diverge. This behavior is certainly expected for
an expansion in g /	. For a relatively small coupling g /�
0.025, the RWA result �panel �a�� agrees very well with the
numerical data in the dispersive regime. In the case of larger
coupling strengths g /��0.05, the predictions from RWA ex-
hibit clear differences. The general tendency is that RWA
overestimates the frequency shift for blue detuning 	=�
−��0, while it predicts a too small shift for red detuning.

The data shown in panel �b� demonstrate that the treat-
ment beyond RWA yields the correct frequency shift in the
entire dispersive regime, i.e., whenever the detuning signifi-
cantly exceeds the coupling �	��g. Thus, as long as the

coupling remains much smaller than the oscillator frequency
g��, it is always possible to tune the qubit splitting � into a
regime in which inequality �4� is fulfilled. Moreover, the
excellent quantitative agreement of our analytical result �17�
with the numerically exact solution indicates the feasibility
to determine g from measurements at stronger couplings
�19�.

A particular limit is 	→−�, which corresponds to a van-
ishing qubit splitting �→0. In this case, it is obvious from
Hamiltonian �1� that the coupling to the qubit merely entails
a linear displacement of the oscillator coordinate, while the
oscillator frequency remains unaffected. This limit is per-
fectly reproduced by our non-RWA result �17�, irrespective
of the coupling strength. The RWA result, by contrast, pre-
dicts a spurious frequency shift, indicating the failure of
RWA.

IV. SEVERAL QUBITS IN A CAVITY

An experimentally relevant generalization of model �1� is
the case of several qubits coupling to the same oscillator. The
corresponding Hamiltonian reads as �35�

H = �
j

� j

2
� j

z + ��a†a + �
j

g j� j
x�a† + a� , �18�

where the index j labels the qubits. As for the one-qubit case,
the RWA is frequently applied and yields the Tavis-
Cummings Hamiltonian �36�
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FIG. 1. �Color online� Oscillator frequency shift as function or
the qubit splitting �=�+	 for the spin state �↓ � obtained �a� within
RWA �Eq. �10�� and �b� beyond RWA �Eq. �17��. The lines mark the
analytical results, while the symbols refer to the numerically ob-
tained splitting between the ground state and the first-excited state
in the subspace of the qubit state �↓ �.
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H = �  � j

2
� j

z + ��a†a + �  g jX+
j , �19�

where X�
j =� j

−a j
†�� j

+a j �cf. Eq. �6��.

A. Dispersive theory within RWA

We obtain for each qubit the dimensionless coupling pa-
rameter 
 j =g j / �� j −��. The dispersive limit is now deter-
mined by �
 j��1 for all j. Effective decoupling of the qubits
and the cavity to second order is then achieved via a trans-
formation with the unitary operator exp�− j
 jX−

j � �cf. Eq.
�8��. The resulting dispersive Hamiltonian reads as �35�

Hdisp = ��a†a +
�

2 
j
�� j +

g2

	 j
	�i

z + �
j

g2

	 j
a†a�z

j

+ �
j�k

J jk�� j
−�k

+ + � j
+�k

−� . �20�

Remarkably, the oscillator entails an effective coupling be-
tween the qubits with the strength

J jk = g jgk� 1

	 j
+

1

	k
	 , �21�

which has already been observed experimentally �12�. It has
been proposed to employ this interaction for building qubit
networks �17� and for generating qubit-qubit entanglement
�37–39�. Moreover, quantum tomography of a two-qubit
state has been implemented by probing the cavity at its bare
resonance frequency �40�. In this scenario, the oscillator fre-
quency exhibits a shift depending on a collective coordinate
of all qubits. Consequently, the cavity response experiences a
phase shift from the ingoing signal, which in turn contains
information about that collective qubit coordinate.

B. Dispersive theory beyond RWA

As in Sec. III for the one-qubit case, we now extend the
dispersive theory of the Tavis-Cummings model beyond
RWA, taking into account the counter-rotating terms of the
Hamiltonian �18�. In analogy to transformation �13�, we em-
ploy the ansatz

D = exp� 
 jX−
j + 
̄ jY−

j � , �22�

where Y−
j =� j

−a−� j
+a† and 
̄ j =g / �2�−	 j�. Following the

lines of Sec. III, i.e., expanding the transformed Hamiltonian

to second order in 
 and 
̄, we obtain the dispersive Hamil-
tonian

Hdisp = D†HD = ��a†a +
�

2 
j

� j� j
z

+
�

2 
j

g j
2� 1

	 j
+

1

2� − 	 j
	�a† + a�2� j

z

+ �
j�k

J̄ jk� j
x�k

x. �23�

We have introduced the modified coupling strength

J̄ jk = gigk� 1

	 j
+

1

	k
−

1

2� − 	 j
−

1

2� − 	k
	 , �24�

which describes the effective interaction between qubits j
and k, and represents the extension of Eq. �21� beyond RWA.
The dispersive shifts of the qubit and cavity frequencies
given by the second and third terms of Eq. �23� are equally
modified as compared to the RWA result �20�.

Interestingly enough, the effective qubit-qubit interaction
in Eq. �23� is of the Ising type � j

x�k
x, whereas RWA predicts

the isotropic XY interaction � j
+�k

−+� j
−�k

+ �see Eq. �20��.
Thus, the treatment beyond RWA predicts a qualitatively dif-
ferent effective model and not merely a renormalization of
parameters. The Ising term even persists in the limit 1 /	 j
�1 / �2�−	 j�. Nevertheless, one can recover the RWA
Hamiltonian �20� by writing the interaction term as � j

x�k
x

=� j
+�k

−+� j
+�k

++H.c. and performing a RWA for the Ising
coupling. This corresponds to discarding small-weighted rap-

idly oscillating terms of the type J̄ jk� j
+�k

++H.c.
The difference between the effective models �20� and �23�

has some physically relevant consequences. First, in contrast
to the RWA result �20�, Hamiltonian �23� does not conserve
the number of qubit excitations, which will affect the design
of two-qubit gates �35�. Moreover, both models possess dif-
ferent spectra, which influences entanglement creation. For
instance, the ground state of Hamiltonian �23� for two degen-
erate qubits ��1=�2� coupled to one cavity is �0���↓↓�
− �J /2���↑↑�� except for normalization and thus exhibits
qubit-qubit entanglement. By contrast, the corresponding
ground state of the multiqubit RWA Hamiltonian �20� is the
product state �0��↓↓�. For the case of Hamiltonian �23�, ther-
mal qubit-qubit entanglement will consequently be present at
zero temperature and even at thermal equilibrium �41,42�.

V. SUMMARY

We have generalized the dispersive theory for a qubit
coupled to a harmonic oscillator to the case of far detuning.
In this limit, it is no longer possible to treat the qubit-
oscillator interaction Hamiltonian within the RWA. There-
fore, previous derivations need some refinement. It has
turned out that diagonalizing the Hamiltonian analytically up
to second order in the coupling constant is possible as well
beyond RWA. The central result is that as within RWA, the
oscillator experiences a shift of its resonance frequency; the
sign of the shift depending on the qubit state. In this respect,
the difference between both approaches seems to be merely
quantitative. Nevertheless, our result implies an important
fact for currently devised qubit-oscillator experiments with
ultrastrong cavity-qubit coupling, namely, that dispersive qu-
bit readout is possible as well in that regime. The comparison
with numerical results has confirmed that our approach is
quantitatively satisfactory in the whole dispersive regime.

The corresponding treatment of many qubits coupled to
the same oscillator is equally possible. In such architectures,
the oscillator mediates an effective qubit-qubit interaction,
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which may be used for gate operations and entanglement
creation. We have revealed that the form of the effective
interaction depends on whether or not one employs RWA.
While RWA predicts an isotropic XY interaction, the inclu-
sion of the counter-rotating terms yields an interaction of
Ising type. This difference impacts on various proposed en-
tanglement creation protocols as soon as they operate in the
far-detuned dispersive regime.
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