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We study the routing of quantum information in qubit chains. This task is achieved by suitably chosen
time-dependent local fields acting on the qubits. Employing the physics of coherent destruction of tunneling,
we demonstrate that a driving-induced renormalization of the coupling between neighboring qubits provides
the key for controlling the transduction of quantum information between permanently coupled qubits. We
employ this idea for building a quantum router. Moreover, we discuss the experimental implementation with
Penning traps and study the robustness of our protocol under realistic experimental conditions, such as fabri-
cation uncertainties and decoherence.
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I. INTRODUCTION

Entanglement, the inextricable quantum correlation be-
tween two physical objects is a key resource for quantum
informational tasks which promise pushing further our cur-
rent computational limits �1�. This resource, which is pro-
duced through the interaction of two �or more� quantum ob-
jects, needs to be created, used, and transferred under strict
control such that a successful computation can be performed.
Transporting entanglement may be considered as the analog
of electric currents for classical computation, which need to
be produced, then used for computation inside a CPU, and
finally transferred to the output device.

In this paper we will focus on the process of transferring
information once the computation has been performed.
While long-distance quantum communication can be done
quite efficiently with photons �2�, communication inside a
quantum computer will probably use linearly arranged solid-
state qubits �3,4�. Lately, much attention has been paid to
spin chains with nearest-neighbor coupling, which allow for
perfect transfer of quantum information �5–9�. The simplicity
of such chains and the fact that they do not require special
control make them robust for experimental implementations
�10�. It is our belief that a quantum computer will profit from
more complicated devices which allow not only linear propa-
gation but also the possibility to stop the signal at a given
node in a network, reverse its motion, etc., such that the
information can be routed to the desired node with minimal
control. This could be particularly useful in quantum regis-
ters for storin, retrieving, and transfering information con-
tained in different qubits.

The possibility of controlling the transfer in a spin chain
is exciting. Such a chain could be used to inhibit access to
parts of the register or even to divide a signal into two dif-
ferent branches for distribution in a network of nodes pro-
vided that a particular propagation direction can be chosen.
At this point one could argue that for forbidding the propa-
gation through a particular direction we “just need” to switch

off the coupling in that direction �11�. However, coupling
and decoupling qubits are a formidable task �12–15�. There-
fore we should think of an alternative for breaking the sym-
metry and, thus, allowing the transfer in one direction with-
out modifying the inter-qubit couplings.

The mathematics relating to coherent destruction of tun-
neling �16–18� or dynamical localization, i.e., the suppres-
sion of ballistic transport by ac fields �18–22� suitably solves
the objective in the high-frequency limit �23�. Such driving
renormalizes the tunnel matrix elements and has been inves-
tigated previously in the context of ac-driven mesoscopic
transport �20,22,24�. In a recent theoretical work �25�, it has
been suggested to temporarily suppress tunneling between
specific neighboring sites of an optical lattice, such that a
particle will be transported into a direction of choice. Here
we will demonstrate how to use such a dynamical renormal-
ization for transmitting quantum information.

In Sec. II we introduce the concept of a quantum router
and present in Sec. III an according chain model together
with brief explanation of the coherent destruction of tunnel-
ing on which our quantum router relies. Section IV is de-
voted to the development of an according protocol for en-
tanglement distribution and state transfer. A proposal for the
implementation in Penning traps together with an analysis of
the robustness of the method under experimental conditions
is presented in Sec. V.

II. ROUTER FOR QUANTUM INFORMATION

Quantum information processing protocols usually de-
pend on having full control of the qubits and their mutual
interactions. This control relies on external devices such as
lasers or signal generators, which limits the number of qubits
by space considerations. One possible solution of this prob-
lem is applying quantum optimal control techniques to
achieve quantum computation by acting on only a few num-
ber of qubits, leaving the rest evolve under the underlying
and uncontrolled Hamiltonian �26–28�. Another possibility is
splitting the processor into small blocks which, however,
need to be connected �29�. Increasing the complexity of the
network requires the selective coupling and decoupling of
the blocks. We term a device that serves for this purpose
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quantum router.
Let us assume for the moment that we have complete

control of the coupling between every pair of qubits in an
arbitrary array despite that fact that this requires quite so-
phisticated engineering, at least much more than the perfect
unidirectional entanglement transfer described in Refs.
�5–7�. Thus such a specialized piece of architecture is prob-
ably useful only for very specific tasks at particular points
during computation, transfer, and storage. One example is
the hub sketched in Fig. 1, let it be realized by a passive or
an active element. When entanglement arrives at the junc-
tion, it should be routed to an output of choice. The output
channel may either be selected by the router itself or depend
on an additional classical signal containing that information.
Moreover, the router may select the output direction by the
time at which the signal arrives at the hub. This means that
the hub effectively opens the channels in turns and delivers
the signal accordingly.

A main obstacle for the experimental realization of a
router is that it might be difficult if not impossible to simply
turn off the interaction between neighboring qubits. Still,
there exists an indirect way for this task that is based on the
physics of “coherent destruction of tunneling.” Let us con-
sider a chain of qubits with given qubit-qubit interaction de-
termined by the experimental setup. But nevertheless there
exists the possibility of controlling the energy splitting of
each qubit, which is typically less demanding than control-
ling the coupling. Then, as we will demonstrate below, an ac
field with proper amplitude and frequency acting on the qubit
will effectively renormalize the qubit-qubit interaction. It is
even possible to suppress this interaction almost entirely. Af-
ter explaining the underlying mechanism, we apply the idea
to the T-shaped setup sketched in Fig. 2, where Alice sends
a quantum state through the horizontal quantum channel.
When the state arrives at the node, it shall be directed either

to Bob or to Charlie. We demonstrate below that this can be
achieved by applying to the qubit splittings of the vertical
chain an ac control with a ratchetlike amplitude distribution.

Let us point out that our protocol is “cleaner” than other
possibilities, such as bringing the spins out of resonance,
which decouples them as well. This however is plagued with
difficulties since parameter changes �in this case the local
fields� usually lead to unwanted excitations. They become
more likely the faster the parameters are changed. Thus one
will spoil the entanglement unless the parameters are
switched very slowly. Hence one would need to revert all
such unwanted transitions, and thus, the process would be-
come more difficult. Our protocol merely “renormalizes” the
Hamiltonian without the disadvantages of directly changing
the Hamiltonian itself. In this context it is worth mentioning
two recent works which extend spin-chain engineering pro-
viding perfect transfer of Refs. �5,6� to directional state
transfer in two-port architecture �30� and in a few qubit star
network �31�.

III. COHERENT DESTRUCTION OF TUNNELING
IN CHAINS OF QUBITS

We consider entanglement transfer in the vertical qubit
chain of Fig. 2 modeled by the Hamiltonian

H =
1

2�
n

hn�t��n
z +

J

4�
n

��n
+�n+1

− + �n
−�n+1

+ � , �1�

with �n
�= 1

2 ��n
x � i�n

y� and �n
�, �=x ,y ,z the usual Pauli ma-

trices for spin n, while �=1. This Hamiltonian is known as
the isotropic XY model with time-dependent local fields
hn�t�. The qubit-qubit coupling is a standard interaction real-
ized either by direct engineering of the chain or as a rotating-
wave approximation �RWA� where terms of the type �n

+�n+1
+

and �n
−�n+1

− are neglected �32–34�. Furthermore, we will see
that the mechanism explained below can be observed as well
in a bosonic chain of harmonic oscillators for which the
Hamiltonian reads as

FIG. 1. �Color online� Hub configuration. One qubit of an en-
tangled pair is connected to a line with perfect transfer. Then the
entanglement propagates and is later steered to one of the possible
outputs, i.e., distributed to the desired transmission line. This en-
ables quantum communication inside the quantum computer by
both direct state transfer and teleportation once the entanglement of
distant parties has been established.

FIG. 2. �Color online� T-shaped configuration. Alice sends the
state of one of her qubits without dispersion along the horizontal
chain. When the state arrives at the node, an ac field with a ratch-
etlike profile transfers the signal to Bob or to Charlie.
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provided a RWA in the coupling between the oscillators can
be applied, i.e., neglecting the counter-rotating terms anan+1
and an

†an+1
† �35�.

We assume that the onsite qubit splitting possesses a time
dependence stemming from a classical field of the form

hn�t� = Abn cos��t� . �3�

In the interaction picture defined by X̃=U0
†�t�XU0�t�, where

U0�t�=exp�−i��t��z� and �̇�t�=hn�t� /2, Hamiltonian �1�
reads as

H̃�t� = J � ei�n�t��n
+�n+1

− + e−i�n�t��n
−�n+1

+ , �4�

with the phase

�n�t� =
A

�
�bn − bn+1�sin��t� . �5�

In the high-frequency limit �	J, the interaction-picture
Hamiltonian �4� can be replaced by its time average. Thus,
we obtain an effective static XY chain Hamiltonian for which
the coupling between qubits n and n+1 is renormalized ac-
cording to

J → Jeff,n = JJ0�A
bn − bn+1

�
� , �6�

where J0 denotes the zeroth-order Bessel function of the first
kind. Thus, the coupling between sites n and n+1 can be
tuned to zero by choosing driving parameters for which
A�bn−bn+1� /� is a root of J0. This renormalization has been
used to explain the phenomenon of coherent destruction of
tunneling �16–18,36�. Here we use it to steer quantum infor-
mation by temporarily suppressing the interaction between
two particular spins.

IV. PROTOCOLS AND CONTROL MECHANISM

Quantum routers may be useful for various purposes. We
focus in the following on two of them, namely, entanglement
distribution and quantum state transfer. We develop for these
aims protocols that rely on the coherent destruction of tun-
neling �CDT� mechanism introduced in the previous section.
It will turn out that both protocols are closely related.

A. Entanglement routing

An essential resource for quantum communication is a
pair of distant entangled qubits, one at each end of the com-
munication channel �37�. Such pairs can be obtained by cre-
ating the entangled pair locally and subsequently transfer to
each end one partner. Recently, Creffield suggested to use the
CDT mechanism described above for the controlled coherent
propagation in a lattice �25�. Different to this entanglement
transfer is the previously suggested nonlocal creation of en-
tanglement in a spin chain �38,39�.

The topic of this subsection, by contrast, is to create an
entangled pair at Alice’s place and to route one partner to
either Bob or Charlie, see Fig. 2. A possible protocol for this
task is the following: let Alice have a two-qubit entangled
state �
	A that she wants to share with Bob. She will then
attach one of the qubits to a chain with isotropic nearest-
neighbor interaction such that the qubit propagates toward
the node with the vertical chain. If she, for example, owns
the state �
�0�	= ��01	+ �10	� /
2, the horizontal chain has the
initial state

�
	in =
1

2

��1	A�00 ¯ 00	 + �0	A�10 ¯ 00	� , �7�

while the desired final state is

�
	out =
1

2

��1	A�00 ¯ 00	 + �0	A�00 ¯ 01	� . �8�

Such perfect entanglement transfer can be achieved by spe-
cific static couplings �5–7�. The question is now whether
time-dependent fields allow one to route the qubit in a con-
trolled manner from the node of the T junction to either Bob
or Charlie.

When the traveling qubit arrives at the node of the T
junction �see Fig. 2�, coherent destruction of tunneling must
become active such that propagation to, say, Charlie’s branch
is suppressed. Our goal is now to find an ac field such that
the entanglement is perfectly transmitted to Bob. Moreover,
the protocol should be flexible enough to allow routing to
Charlie as well.

We consider now a qubit chain that consists of blocks
with four qubits with the ratchetlike energy splittings �40,41�

bn = �
b , n = 4n�

b + �1, n = 4n� + 1

b + �1 + �2, n = 4n� + 2

b + �2, n = 4n� + 3
� �9�

for integer n�, as is sketched in Fig. 3�a�. It is constructed
such that the energy differences between two neighboring
qubits are given by the sequence �1 ,�2 ,−�1 ,−�2, i.e., their
absolute values alternate between �1 and �2. CDT can now
be employed for temporarily suppressing tunneling between
qubits with the one or the other value of the splitting �note
that J0�−x�=J0�x�, such that the CDT condition is not sensi-
tive to the sign of �1,2�. A field that alternates between these
two possibilities can induce directed transport �25�. We here
use this idea to route entanglement. To be specific, we act on
qubit n the driving field

hn�t� = �0�bn cos��t�
1/�1, 0 
 t � T1

1/�2, T1 
 t � T1 + T2
� �10�

and periodically continued �see Fig. 3�b�� where �0
=2.4048. . . is the smallest positive root of the Bessel function
J0. For this field, the CDT condition Jeff=0 is fulfilled for
the transitions 4n�↔4n�+1 and 4n�+2↔4n�+3 during
the time interval �0,T1�, while the other transitions are
still allowed. For them the effective coupling energy
is Jeff,1=JJ0��0�1 /�2�. The length of the time interval,
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T1=� / �Jeff,1�, corresponds to a half tunnel cycle between qu-
bits 4n� and 4n�+1, such that these qubits exchange their
state. During time interval �T1 ,T1+T2�, we obtain that the
coupling between spins with energy difference �2 is sup-
pressed, while the other coupling is renormalized according
to Jeff,2=JJ0��0�2 /�1�. Thus the second stage has to last for
T2=� / �Jeff,2�.

Next, we test numerically the quality of the entanglement
transfer. Since the isotropic XY model conserves the number
of excited spins, it is sufficient to consider only the subspace
with at most one qubit in state 1, while all other qubits are in
state 0. Then the chain can be mapped to the tight-binding
model

H = �
n

hn�t��n	�n� +
J

2�
n

��n	�n + 1� + �n + 1	�n�� , �11�

with the �N+1�-dimensional state vector

�
�t�	 = �
n=0

N

cn�n	 , �12�

where �n	= �0	A�00¯1n¯00	 denotes the state in which the
nth qubit of the chain is the only one in state 1. In order to
achieve a compact notation, we have introduced the state
�0	= �1	A�0¯0	 for which all qubits are in the ground state,
while Alice’ state is excited.

The main requirement for our protocol is that Alice’s qu-
bit remains entangled with the qubit that propagates to Bob
or to Charlie, respectively. We measure this property by the
concurrence C=max��1−�2−�3−�4 ,0� �42�. The �s are the
ordered square roots of the eigenvalues of the matrix ���y

1

� �y
2�����y

1
� �y

2�, with � being the reduced density matrix of
the considered qubit pair. In our case, the relevant reduced
density matrix is that of Alice’s qubit and qubit n of the
chain. Tracing out all other qubits, we obtain in the basis
��0A0n	 , �0A1n	 , �1A0n	 , �1A1n	� the expression

�A,n =� �
i�0,n

�ci�2 0 0 0

0 �c0�2 cn
�c0 0

0 c0
�cn �cn�2 0

0 0 0 0
� �13�

for which the concurrence reads as

CA,n = 2�c0cn� . �14�

If Alice transfers her qubit directly to the node, i.e., to the
central qubit nnode of the vertical chain, we can start our
numerical calculation with the initial state

�
�0�	 =
1

2

��0	 + �nnode	� . �15�

Figure 4 shows the corresponding time evolution of the con-
currence CA,n. It demonstrates that for a proper onset of the
driving field �Eq. �10��, the entanglement propagates solely
to Bob who finally receives a state that is perfectly entangled
with Alice’s state. For a driving field starting with the larger
of the two amplitudes, the entanglement propagates equally
perfectly to Charlie, see Fig. 2. Thus, one can route the en-
tanglement to a particular end of the vertical chain by choos-
ing a proper initial time of the driving field.
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FIG. 3. �Color online� �a� Spatial variation in the local qubit
energy splittings along the vertical chain. It is chosen such that the
absolute value of differences between two neighboring sites alter-
nates between �1 and �2. �b� Ac field with alternating driving am-
plitude. The amplitudes �see Eq. �10�� are such that tunneling be-
tween qubits with either energy difference �1 or �2 is suppressed.

(b)

(a)

FIG. 4. �Color online� �a� Time evolution of the concurrence
between Alice’s qubit and qubit n of the vertical chain with length
N=13 for the parameters �=10J, b=J, �1=3J, �2=1.5J. Alice’
qubit is initially entangled with the qubit at nnode=7. The onset of
the driving field �Eq. �10�� is such that initially transfer to Charlie is
suppressed. �b� Same as panel �a� but for an arrival time t=T1 at the
node, such that the entanglement propagates to Charlie.
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It is also possible that both Bob and Charlie receive a
state that is entangled with Alice’s state as can be appreciated
in Fig. 5. There the traveling qubit arrives with a delay of t
=T1 /2, such that the routing toward Bob is only half com-
pleted at the time the upward channel is closed and routing to
Charlie begins.

So far we have only discussed the dynamics in the vertical
chain. The reason was that we are interested in the steering
of the entanglement to Charlie or Bob once the entanglement
arrives at the vertical chain. On the other hand, one could
worry about possible dynamical reflections in the connection
node. Intuitively the reflection can be associated with a
change in the sound velocity between the two branches. On
the other hand, for equal coupling constants between the
connection node and the corresponding neighbors in the
horizontal and vertical chains no reflection is expected. To
confirm this picture we plot in Fig. 6 the full dynamics tak-
ing into account both the horizontal and vertical line. For the
horizontal chain we assume also the isotropic XY model �1�
with homogeneous qubit-qubit coupling. The effective cou-
pling �Eq. �6�� between the central node and its neighbor in
the vertical chain is chosen to be the same as the one in the

horizontal line. However and due the different dynamics in
both branches some entanglement is lost in the dynamics
between the third and fourth nodes. In any case the transmit-
ted concurrence lies above 0.98.

Our intuition for the dynamics of the quantum router is
based on the derivation of an effective time-independent
Hamiltonian derived within high-frequency approximation.
In the following we numerically test the results of our high-
frequency approximation for finite driving frequencies. In
Fig. 7 we plot the final concurrence CA,B of Alice’s qubit and
the qubit that Bob receives for different driving frequencies.
We find that the protocol works provided that the driving
frequency is sufficiently large. For chains of length up to N
=100, the final entanglement is quite large, e.g., CA,B
�0.97 for ��30J. For driving frequencies ��20J, the
concurrence already assumes a significantly lower value.

In Fig. 7, we used a driving field with the amplitude ratio
�1 /�2=0.5902 for which the entanglement transfer is as fast
as possible for a given value of J. Then the operation time
and, thus, the total coherence loss are kept to a minimum, see
subsection V 2. In order to obtain the optimized amplitude
ratio, one has to consider that during a full cycle of the
driving field, the entanglement is transported over two sites.
This takes the time

T1 + T2 =
�

2�J0��1/�2��
+

�

2�J0��2/�1��
, �16�

which possesses a minimum for the mentioned ratio and for
the inverse ratio as well.

B. Quantum state transfer

The spin chain can also be used for quantum state trans-
fer, such that a classical communication channel becomes
dispensable �3�. For investigating state transfer, we assume
that Alice owns the state

�
	A = ��0	 + ��1	 , �17�

which she likes to transfer to Bob. In doing so, she initializes
the chain with the first qubit in the target state, while the
other qubits of the horizontal chain are set to the ground
state. For an excitation-preserving spin chain such as the one

FIG. 5. �Color online� Same as Fig. 4 for the arrival time t
=T1 /2 at the node, such that the traveling qubit is split.

FIG. 6. �Color online� Study of dynamical reflection of en-
tanglement at the entrance of the router �joint between horizontal
and vertical lines in Fig. 2�. The amount of entanglement is given
by the concurrence, see Eq. �14�. Here the horizontal chain is
formed by the first two qubits and the rest is router, with the same
parameters as in Fig. 4; a slight reflection is seen, but the transmit-
ted entanglement lies above 0.98.
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ω = 50J
ω = 40J
ω = 30J
ω = 20J

FIG. 7. �Color online� Length dependence of the final concur-
rence for chains of various frequencies. The differences of the en-
ergy splittings are �1=100J and �2=59.02J, corresponding to the
ratio �2 /�1=0.5902 which provides the optimum transfer velocity.
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defined by Hamiltonian �1�, it can be shown that the unitary
evolution of the chain provides Bob with the state �4�

�B = �1 − ���2�cB� ���cB

���cB ���2�cB�
� �18�

written in the basis ��0	 , �1	�. Perfect state transfer corre-
sponds to �cB�=1. For our driven spin chain with different
local qubit splittings and ac fields, each transfer from one
qubit to the next contributes a particular phase shift. Thus,
Bob will receive a state with cB= �cB�ei�. In order to restore
the full state �Eq. �17��, one has to know the total phase shift
�, which requires full knowledge of the transfer process, i.e.,
one has to calibrate the chain before use. Subsequently, a
fixed unique phase shift has to be applied to every signal
coming from the hub. Such hub together with a data sheet
that contains the phase shifts could represent a useful piece
of hardware.

Finally, the quality of the state transfer can be quantified
with the fidelity

F = ��
A��B�
A	� , �19�

which in our case reads as

F = 1 − �1 − CA,B����2�1 − CA,B�1 − 2���2�� , �20�

after the phase has been rotated back. This means that the
fidelity directly relates to the concurrence, CA,B in Eq. �14�,
of the entanglement router.

V. PHYSICAL IMPLEMENTATIONS

A highly accurate and stable confinement of ions in traps
has been achieved in the last decade, together with the pos-
sibility of working in the ground state of the ion motion
�43,44�. This enables the realization of quantum chains that
consist of harmonic oscillators with a nearest-neighbor cou-
pling. The physical origin of the coupling can be Coulomb
interaction between the confined particles or a capacitive
coupling of the ions residing in neighboring wells; see, e.g.,
Refs. �32,33�. For a comprehensive review of according con-
trol and readout techniques, see Ref. �43�.

The Hamiltonian for the excitations in Eq. �11�, with a
general onsite Zeeman field hn�t� can also be implemented
by a chain of harmonic oscillators. The particular form of the
interaction is typically obtained by coupling the spatial coor-
dinates of neighboring oscillators �see Eq. �2�� as is the case
for Coulomb interaction between charged particles in dipole
approximation. Note however that the resulting Hamiltonian
contains terms that create and annihilate phonon pairs. These
terms vanish within rotating-wave approximation, which
means that a mapping to our spin-chain model �Eq. �1��
is possible only if this approximation holds, i.e., if the cou-
pling is much weaker than the time average of an applied
“Zeeman” field, J�h0, where here hn�t�=h0+bn�t�. Notice
that the presence of the constant “Zeeman” field h0 merely
rescales the energies and will not affect the router otherwise.
Experimentally, this field can be realized by an ac voltage
with nonzero mean, such that hn�t�=2��n�t� with the fre-
quency �n�t� proportional to the square root of the applied
voltage.

As a particular example, we consider singly trapped ions
in planar Penning traps, in which neighboring ions couple
capacitively through a conducting wire. Neglecting resonant
absorption in the wire, the coupling for a typical trap size of
1 mm will be roughly 100 times lower than the onsite poten-
tial �33�. For even smaller traps of size 0.1 mm, these quan-
tities still differ by a factor of 10. Thus, engineering the
coupling strength essentially means choosing the correct trap
size. For planar traps, the ion can be moved further away
from the electrodes, which reduces the coupling even more.
In a linear array of trapped ions such as the one of Ref. �32�,
the atoms experience Coulomb interaction. In both cases, the
ratio between interaction strength and onsite potential �� is
proportional to q2 / ���0m�2d3�. The difference in strength
between both approaches is a form factor due to the fact that
the wire-mediated coupling has a given efficiency when
transmitting Coulomb interaction. In the case of direct Cou-
lomb interaction, the coupling is slightly stronger but can be
reduced by pushing the ions far apart from each other be-
cause J is reciprocal to the typical distance between the ions.

It must be noted here that for Penning traps, all param-
eters basically depend on two scales, namely, the trap size
and the voltage. The motional frequency is proportional to

V /d, where V is the applied voltage and d the size of the
trap. Manipulating both scales allows one to achieve the de-
sired parameter values.

Robustness under realistic conditions

In an experiment, one usually faces additional difficulties
not captured by a Hamiltonian with perfectly stable param-
eters. Two such difficulties come to mind, namely imperfec-
tions in the fabrication process and the unavoidable influence
of an environment that causes dissipation and decoherence.

1. Fabrication uncertainties

An essential ingredient to our entanglement distribution
protocol is the action of the onsite ac fields hn
=bn��0� /�i�sin �t during times Ti=� /Jeff,i, with Jeff,1�2�
=JJ0��0�1�2� /�2�1�� �see Eq. �10� and Fig. 3�. This implies
two critical experimental requirements. First, the driving am-
plitudes have to match with good precision the first zero of
the Bessel function, and second, the field amplitudes have to
be switched after a time T1,2.

Trap diameters in the submillimeter range, correspond
to motional frequencies of the order GHz, with a J
�100 MHz, such that the rotating wave approximation is
applicable. Moreover, a driving frequency of the order 0.1
GHz is available with current technology, while commer-
cially available function generators at those frequencies can
have an accuracy of several 109 samples per second. Thus
the switching times can be adjusted with precision �T
=10−3 /J. The uncertainty in J mostly comes from measuring
the distance between trapped ions �typically by fluores-
cence�. Assuming an accuracy of 10%, we obtain the error
�J=10−7J, which corresponds to �T=10−7 /J. Thus, the rel-
evant restriction is the mentioned uncertainty in the function
generator, such that �T=10−3 /J. Concerning the amplitudes,
we assume a relative error in the applied confining voltages
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of the order of 10−6,which yields an amplitude uncertainty of
the order of 10−7J.

For a numerical simulation of these errors, we choose for
each coupling matrix element Ji a random value from the
interval �J−�J ,J+�J� with equal distribution. The interval
width 2�J is determined by the experimental uncertainties
discussed above. Accordingly, we select a field amplitude
from the interval �bn−�b ,bn+�b�. In the following, we denote
ensemble averages of such realizations by an overbar.

We already emphasized in Sec. III that the protocol for
entanglement transfer is closely related to the one for state
transfer. The main difference is that the latter requires knowl-
edge of the extra phase �. It has to be gauged or determined
from theoretical considerations, such that Bob is able to
compensate this phase by a local transformation. When the
system parameters acquire a random component, the extra
phase becomes random as well.

In principle, the additional random phase can be compen-
sated by local transformations. Thus, it cannot influence the
entanglement. Numerically, we have tested that the experi-
mental uncertainties mainly affect this phase, making the
concurrence fairly independent of this type of errors. There-
fore we focus on the impact of the fabrication uncertainties
on the state transfer. Assuming that we can gauge our appa-

ratus, we know that the actual value of �= �̄+�� deviates

from the average by ��. Notice that �̄ can be obtained just by
averaging over many realizations, as we discuss below. Then
the fidelity �19� becomes �cf. Eq. �20��

F = 1 − ���2�1 − 2CA,B cos �� + CA,B
2 �

+ 2���4CA,B�CA,B − cos ��� . �21�

Thus, all the possible errors are captured by the phase devia-

tion �= �̄+��.
Figure 8 shows the frequentness of the accordingly re-

duced values for the fidelity. We have computed the fidelity
�19� for 500 realizations of the spin chain and plotted a his-
togram with bin size 10−3. Obviously, the driving frequency
�=30J yields in most cases a fidelity F�0.98 �panel �a��.
For a larger driving frequency �panel �b��, the fidelity distri-
bution is still peaked at a value larger than 0.99. The standard
deviation, however, is quite large, such that significantly
smaller fidelities become rather likely. Thus, fabrication un-
certainties impose that the driving frequency should not ex-
ceed 30J. On the other hand, we have seen in Sec. IV A that
this value in fact also represents a lower bound for the va-
lidity of the rotating-wave approximation within which the
effective coupling strength �Eq. �6�� has been derived. Thus,
we conclude that the results are best for a driving frequency
of the order �=30J.

2. Dissipation and decoherence

Still we have to consider the main obstacle for any quan-
tum information task, which is dissipation and decoherence
caused by weak but unavoidable coupling of the processor to
a typically huge number of uncontrollable degrees of free-
dom. Irrespective of its physical nature, the environment is
usually modeled as a bath of harmonic oscillators, where

each oscillator couples via its position operator to a system
coordinate �18,45–47�. Here we assume that each qubit n
undergoes pure and independent dephasing, i.e., that each
coordinate �n

z couples to a separate bath.
For weak dissipation, one can eliminate the bath within

second-order perturbation theory and derive a Bloch-
Redfield master equation for the reduced density operator �
of the qubits �48�. Considering, only phase noise on the traps
the equation takes a Lindblad form �49�

�̇ = −
i

�
�H,�� +

�

2 �
n=1

N

��n
z��n

z − �� , �22�

where we have assumed that the effective decoherence rate �
is the same for all qubits. Remarkably, such a master equa-
tion describes, apart from a transient, the decoherence pro-
cess quite accurately �50�. For qubit arrays implemented with
calcium ions confined in a Paul trap, the dephasing rate is
��1 kHz, while the qubit splitting is several MHz. The
heating rate, which would include relaxation terms in the
master equation, is 190 times smaller �51�. This justifies the
phase noise model used here. We will use this numbers for a
rather conservative estimate and assume ��10−4J, where J
�10 MHz.

For qubit chains under the influence of phase noise, the
entanglement decay is determined by the coherence loss, and
one finds that the concurrence decays exponentially with a
rate 2�, i.e., CA,B�t��exp�−2�t� �52�. This can be verified
easily by considering the action of the dissipative kernel in
the master equation on the off-diagonal density matrix ele-
ments �nn�. The entanglement propagation from the middle
of the chain to Bob’s end takes the time �AB= �T1+T2�N /4
�Recall that our ratchet mechanism transports signals during
a time T1+T2 over two sites; see derivation of Eq. �16��.
Thus, we expect that decoherence reduces the finally
achieved entanglement according to
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FIG. 8. �Color online� Fidelity distribution for the initial state
�
	A= ��0	+ �1	� /
2 in a chain with length N=40 and the driving
frequencies �a� �=30 and �b� �=40. The qubits splittings are �1

=100J and �2=59.02J, while the parameter uncertainties read �J

=�b=10−7 and �T=10−3. The data have been obtained from 500
realizations. The resulting standard deviations of the concurrence
are 0.01 and 0.1, respectively.
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CA,B = CA,B�� = 0�e−2��AB. �23�

We numerically computed the time evolution described by
the master equation �22�. The results shown in Fig. 9 confirm
our expectations for the exponential decay. Moreover, they
demonstrate that a decoherence rate of �=10−4J reduces the
concurrence in a chain of length N=60 from CA,B��=0�
=0.98 in the absence of decoherence to a value CA,B=0.95.
This is still sufficiently large for most possible applications.
For a larger decoherence rate, �=10−3J, however, the con-
currence drops significantly. For example, in a chain of
length N=60, we have the already quite small value CA,B
=0.65. Thus, we can conclude that for chains of this length,
transmission of sufficient entanglement is only possible for
decoherence rates that fulfill ��10−4J. For stronger decoher-
ence, a hub with shorter chains is nevertheless possible, in
the extreme limit even one with branches that consist of just
one qubit.

We close our analysis of fabrication uncertainties and de-
coherence by addressing also the fidelity of the state transfer
protocol. In the presence of decoherence, it is no longer pos-
sible to establish an exact relation between the fidelity and
the concurrence �20�. The reason for this is that state transfer
is limited by the dephasing of individual qubits, while the
entanglement decay is influenced by the coherence between
different qubits. The state transfer fidelity to Bob can still be
expressed in terms of Bob’s reduced density matrix �Eq.
�18�� and now reads as

F = 1 − �11 + ���2�2�11 − 1� + 2��10�Re���ei��� , �24�

which implies that again the average phase shift �̄ plays a
role; cf. Eq. �21�.

We find numerically that the final population of Bob’s
qubit, which is described by the density matrix element �BB,
is practically independent of both the decoherence strength �
and the fabrication uncertainties. Without these influences,
the state transfer protocol works almost perfectly, such that
we can approximate this density matrix element by �BB
= ���2. Moreover, we already argued that off-diagonal matrix
elements decay as �B0=��� exp�−��AB� and, thus, the finally
achieved fidelity can be well approximated by

F = 1 – 2����2 − ���4��1 − cos����e−��AB� . �25�

Thus, within some reasonable approximations, we again find
for the fidelity a closed expression that is a function of the
initial state. In fact, for �=0 and CAB��=0�=1, expression
�25� becomes identical with the fidelity �21� for an ideal
chain. This also demonstrates that the fidelity is significantly
affected by both fabrication uncertainties and decoherence,
expressed in Eq. �25� by the random phase shift �� and the
exponentially decaying factor, respectively.

It remains to numerically corroborate the quality of the
approximate result �25�. Figure 10 depicts the numerical re-
sults for a chain of length N=40. It reveals that the maxi-
mum fidelity in the histogram coincides with making ��=0
in Eq. �25�, namely, F=0.99 for �=10−4J and F=0.93 for
�=10−3J. Further the data spread due to the fabrication er-
rors, is pretty the same that in the case without decoherence
�cf. Fig. 8�. This underlines that state transfer with fidelity
F�0.97 is achievable with the experimental realization dis-
cussed above, provided the dissipation rate does not exceed
the value �=10−4J.

VI. DISCUSSION AND CONCLUSION

We have proposed a quantum router that can be employed
for steering one qubit of an entangled pair from Alice to
either Bob or Charlie. A second related application is quan-
tum state transfer. With the experimental realization with ion
traps in mind, we have presented analytical and numerical
results that underline the feasibility of our scheme.

The underlying physics is coherent destruction of tunnel-
ing between two neighboring qubits. This can be achieved by
ac fields with a certain ratio between driving amplitude and
frequency. Since the effective amplitude depends on the dif-
ference of the qubits’ Zeeman energies, a proper sequence of
these energies temporarily suppresses for each qubit the in-
teraction with exactly one of its two neighbors. After half a
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FIG. 9. �Color online� Concurrence decay as a function of the
chain length for two different decoherence rates � �symbols� and
�=30. The solid lines mark the estimate �Eq. �23��. All other pa-
rameters are as in Fig. 8.
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FIG. 10. �Color online� Fidelity spread for a chain of length N
=40 with the initial state �
	A= ��0	+ �1	� /
2. The driving frequency
is �=30 and dissipation strengths �a� �=10−3J and �b� �=10−4J.
The histogram is obtained from 500 realizations yielding a standard
deviation of 0.01 in both of them. All other parameters are as in
Figs. 8 and 9.

ZUECO et al. PHYSICAL REVIEW A 80, 042303 �2009�

042303-8



tunnel cycle, the field amplitude is switched, such that the
suppression is active for the connection to the other neigh-
bor. As a consequence, the qubit is transported into one par-
ticular direction. A main benefit of this mechanism is that it
does not rely on the local control of interaction parameters
but only on the less demanding application of proper ac
fields.

In the T-shaped configuration under investigation, one
partner of an entangled pair is first routed to the node that
connects Alice with Bob and Charlie. When the qubit arrives
at the node, the further propagation depends on which branch
is temporarily closed at that very moment. In particular, we
demonstrated that for a proper phase of the driving field, the
qubit is reliably routed toward the one or the other direction.
The achievable entanglement increases with the driving fre-
quency. For an idealized chain of 100 qubits with realistic
parameters, the corresponding concurrence may assume val-
ues of the order 0.98.

In an experiment, however, the setup and the operation
will not be ideal. Therefore, we have investigated two limit-
ing influences, namely, fabrication imperfections of the de-
sired splitting sequence and the influence of external degrees
of freedom which lead to decoherence. The former reduce
the achievable fidelity, in particular for high driving frequen-
cies, i.e., in the regime in which the idealized model works

almost perfectly. The numerical simulation revealed the ex-
istence of an intermediate frequency regime, in which real-
istic fabrication errors do not significantly reduce the achiev-
able fidelity.

The second limitation leads to the ubiquitous decoherence
which generally represents the main obstacle for the imple-
mentation of quantum information schemes. It turned out
that dephasing does not limit the entanglement or state trans-
fer as long as its rate is roughly three orders of magnitude
smaller than the typical qubit splitting.

In summary, we have demonstrated that the proposed
quantum router should work under realistic conditions such
as fabrication uncertainties and decoherence. The implemen-
tation is feasible not only with ion chains but with practically
all interacting qubit arrays in a T-shaped configuration. Thus
our quantum router may represent an essential building block
in future quantum information networks.
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