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1. Introduction

Chemical reactions have provided ubiquitous and versatile
examples of activated transitions between two metastable states,
formed by the reactants and products. In a chemical reaction the
energy necessary for the activation most often stems from the
(classical or even quantum mechanical) thermal energy that may
accumulate in a single reaction coordinate and finally enable a
transition from reactants to products [1–4]. In contrast to these
thermally assisted escape processes other additional sources of
energy may externally be provided for example by driving a
system with metastable states by periodic forces. Such periodically
driven stochastic systems present a particular class of nonequilib-
rium processes that exhibit a broad variety of fascinating effects
[5–7] such as stochastic resonance [8], directed transport of
Brownian particles in ratchet type periodic potentials [9–11] or
other anomalous transport properties as for example negative
mobility [12]. Apart from an external periodic driving, these
systems typically are subject to nonlinear dynamical laws and
additionally experience fluctuating forces describing the random
impact of the environment of the considered system [13]. Without
the fluctuating forces the presence of nonlinearities often renders
these systems multistable, i.e. such systems may approach differ-
ent attractors [14], depending on their initial states. In combina-
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tion with weak fluctuating forces these attractors become
metastable states, which means that the system will be found most
of the time in or close to one of these states while transitions be-
tween these states present rare events.

Each of the principal constituents of the dynamics of a periodi-
cally driven nonlinear stochastic system is characterized by typical
time scales such as the correlation time of the fast random forces
(ff), sff , relaxation times s of the deterministic part of the dynam-
ics, the period T of the driving force and the times sms of typical so-
journ within the different metastable states (ms). In this work we
will assume that the correlation times of the fluctuating forces are
much shorter than all other time scales such that a Markovian
description of the dynamics is appropriate. Hence, we model the
fluctuating forces by white noise ðsff ¼ 0Þ which moreover will
be assumed to be Gaussian and weak. As a consequence of these
assumptions the characteristic sojourn times of the metastable
states are finite but much larger than any of the deterministic
characteristic times ðsms � sÞ [3]. This time scale separation im-
plies that the transitions between the metastable states constitute
a discrete Markovian process which will be investigated in more
detail in the present work. We will demonstrate that this discrete
process forms the backbone of the original continuous process on
time scales that are much larger than the deterministic relaxation
times s.

Finally, the magnitude of the driving period T in relation to the
deterministic time scales s has a decisive influence on the system’s
dynamics. In the so-called semiadiabatic limit [15] the driving per-
iod is large compared to typical deterministic relaxation times
independently of how large the driving period is compared with
the typical sojourn times. Then the time dependent transition rates
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are given by the frozen rates, i.e. their time dependence only
results from the slow change of those system parameters that
are varied by the driving process [16]. Within this framework sto-
chastic resonance [17] and the dynamics of neuron models [18]
have successfully been described.

Outside the regime of the so called semiadiabatic limit the es-
cape rates no longer instantly follow but rather lack behind the
periodic driving [19]. In the present paper we investigate this re-
gime of intermediate to fast driving in more detail and present
effective methods to characterize the large time behavior of peri-
odically driven Fokker–Planck processes with metastable states.

Previous works on periodically driven processes with metasta-
ble states most often have been focussed on particular aspects such
as on the dependence of the average life time of a metastable state
[20,21], of the exponentially leading part of escape rates within lin-
ear response theory [22], or on rates in the weak noise limit
[23,24].

We close this section with a short outline of the paper. In Sec-
tion 2 we introduce some important concepts of the deterministic
dynamics of a periodically driven system with coexisting attrac-
tors. In Section 3 two alternative formulations of the conditional
probability density function are presented for events that are sep-
arated by a time that is much larger than the characteristic deter-
ministic time s. The first form originates from the Floquet
representation of the conditional probability density of a periodi-
cally driven Markov process [5,6] while the second expression
explicitly refers to the dynamics of the metastable states. This sec-
ond expression in particular contains quantities that characterize
specific probability densities for each metastable state as well as
localizing functions that allocate probabilities to the metastable
states given the state of the full continuous system. In Section 4
we find equations of motion both for these metastable state spe-
cific probability densities and the localizing functions by compar-
ing the two formulations of the conditional probability density at
large times. In Section 5 the theory is exemplified and numerically
tested for a bistable Brownian oscillator. Section 6 closes with a
summary.
2. Characterization of the deterministic dynamics

In the deterministic limit the considered system is described by
the motion of a state x in a d dimensional state space R governed
by a set of d coupled differential equations

_x ¼ fðx; tÞ; ð1Þ

where the vector field fðx; tÞ periodically depends on time with per-
iod T, i.e. fðx; t þ TÞ ¼ fðx; tÞ. We denote the trajectory emanating at
the time s from the point y by Xðtjy; sÞ and assume that in the
asymptotic limit of large times the motion is bounded and charac-
terized by a set of n P 2 different attractors AaðtÞ � R, a ¼ 1 . . . n,
such that each trajectory approaches either of the attractors
depending on its initial state and starting time, i.e.
Xðtjy; sÞ ! x 2AaðtÞ for t � s sufficiently large. This relaxation pro-
cess happens on a characteristic deterministic time scale of the con-
sidered system. The attractors periodically depend on time, i.e.

Aaðt þ TÞ ¼AaðtÞ: ð2Þ

To each attractor a domain of attraction DaðsÞ exists that consists of
all states y at time s from which the ath attractor is reached. It is
formally defined as DaðsÞ ¼ fyjXðtjy; sÞ 2AaðtÞ for t � s!1g. At
each fixed time the domains of attraction form a partition of the
state space into disjoint subsets, which in general periodically de-
pend on time

Daðt þ TÞ ¼ DaðtÞ: ð3Þ
3. Conditional probability density of time-periodic Fokker–
Planck processes with metastable states

3.1. Floquet representation

In many cases the description of a system in terms of determin-
istic equations of motion is sufficient in order to determine the typ-
ical behavior of the system with adequate accuracy. However, the
presence of weak random perturbations, which often can be mod-
eled by Gaussian white noise, causes different effects depending on
the considered time scales: on characteristic time scales of the
deterministic motion only insignificant deviations from the deter-
ministic motion typically occur; those trajectories that start close
to the boundaries of the domains of attraction though are excep-
tional because they may be influenced even by small noise, cross
the border of the deterministic domain of attraction and, in this
way, come close to a ‘‘wrong” attractor with finite probability; all
other trajectories are markedly influenced on much longer time
scales only on which transitions between the deterministic, locally
stable states become likely. Hence, these states lose their stability.
Nevertheless, for sufficiently weak noise the system is found most
of the time close to one of the formerly stable states. Transitions
between these states do occur with certainty even though this hap-
pens rarely. Therefore such states can be considered as metastable.

Under the influence of Gaussian white noise the deterministic
dynamical system (1) becomes a Markov process that is character-
ized by a Fokker–Planck operator of the following form [25,26]

LðtÞ ¼ �
Xd

i

@

@xi
K iðx; tÞ þ

Xd

i;j

@2

@xi@xj
Di;jðx; tÞ: ð4Þ

We here will restrict ourselves to periodically driven processes
where the drift K iðx; tÞ and possibly also the diffusion Di;jðx; tÞ peri-
odically depend on time with a common period T. Hence,
Lðt þ TÞ ¼ LðtÞ. The time evolution of the system’s probability den-
sity function (pdf) qðx; tÞ is governed by the Fokker–Planck equation

@

@t
qðx; tÞ ¼ LðtÞqðx; tÞ: ð5Þ

In the deterministic limit the diffusion matrix vanishes and the drift
K iðx; tÞ approaches the deterministic drift fiðx; tÞ having the proper-
ties discussed in Section 1.

A particular solution of the Fokker–Planck equation is the con-
ditional pdf qðx; tjy; sÞ to find the process at the state x at time t un-
der the condition that it was at the state y at time s. It can formally
be expressed in terms of the Floquet representation in the follow-
ing way [5–8,15]

qðx; tjy; sÞ ¼
X

i

eliðt�sÞwiðx; tÞuiðy; sÞ; ð6Þ

where wiðx; tÞ and uiðy; sÞ are Floquet eigenfunctions and li are the
corresponding Floquet exponents. They satisfy pairs of mutually ad-
joint Floquet equations reading

@

@t
wiðx; tÞ ¼ LðtÞwiðx; tÞ � liwiðx; tÞ;

� @

@t
uiðx; tÞ ¼ LþðtÞuiðx; tÞ � liuiðx; tÞ;

ð7Þ

with natural boundary conditions with respect to the state variable
x. Here LþðtÞ denotes the backward operator that is defined as the
formal adjoint of the Fokker–Planck operator (4) and hence reads:

LþðtÞ ¼
Xd

i

K iðx; tÞ
@

@xi
þ
Xd

i;j

Di;jðx; tÞ
@2

@xi@xj
ð8Þ

Both types of eigenfunctions are periodic in time
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wiðx; t þ TÞ ¼ wiðx; tÞ;
uiðx; t þ TÞ ¼ uiðx; tÞ:

ð9Þ

The Floquet functions wiðx; tÞ and ujðx; tÞ are mutually orthogonal
for eigenvalues li – lj and can be normalized such thatZ

dxujðx; tÞwiðx; tÞ ¼ di;j; ð10Þ

where di;j denotes the Kronecker symbol. The Floquet exponents lj

have real parts that are negative or at most zero.
The representation of the conditional probability in terms of the

Floquet functions further requires that these functions form a com-
plete set in the sense thatX

i

wiðx; tÞuiðy; tÞ ¼ dðx� yÞ; ð11Þ

where dðxÞ denotes the Dirac d function. We note that Eqs. (7), (10)
and (11) do not uniquely determine the Floquet functions because
gauge transformations of the form

�wjðx; tÞ ¼ gjðtÞwjðx; tÞ;
�ujðx; tÞ ¼ g�1

j ðtÞujðx; tÞ;

�lj ¼ lj þ
2pi
T

nj; nj 2 Z

ð12Þ

with gauge factors

gjðtÞ ¼ cje2pinjt=T ; cj 2 C; cj – 0 ð13Þ

generate new Floquet eigenfunctions, cf. Ref. [27]. Here Z and C de-
note the sets of integer and complex numbers, respectively and i the
imaginary unit.

For the sake of definiteness we assume that the gauge chosen
for the Floquet representation of the conditional pdf (6) is such that
the Floquet exponents assume their smallest possible absolute val-
ues. The Floquet spectrum consisting of these Floquet exponents
then contains the value l0 ¼ 0. We assume that this Floquet expo-
nent is not degenerate [28] if the diffusion matrix is different from
zero. The corresponding eigenfunction of LþðtÞ is constant with re-
spect to x and t and can be chosen as u0ðx; tÞ ¼ 1; the eigenfunc-
tion w0ðx; tÞ of LðtÞ is a non-negative and normalized function
giving the uniquely defined asymptotic pdf. Hence, it is the unique
solution of the Fokker–Planck equation (5) that is approached at
time t from any initial state in the remote past at s! �1. As a Flo-
quet eigenfunction it is periodic in t. The normalizationZ

R
dxw0ðx; tÞ ¼ 1 ð14Þ

follows from Eq. (10) together with the fact that u0ðx; tÞ ¼ 1.
For vanishing noise, the diffusion matrix Di;jðx; tÞ vanishes and

the backward operator becomes a first order partial differential
operator Lþ0 ðtÞ ¼

P
ifiðx; tÞ@=@xi with fiðx; tÞ being the components

of the deterministic vector field fðx; tÞ governing the deterministic
motion, Eq. (1). For a dynamical system with n coexisting attractors
the characteristic functions of the domains of attraction represent
n independent periodic solutions of the backward equation
�@u0=@t ¼ Lþ0 ðtÞu0. Each of the solutions is unity on one of the do-
mains of attraction and zero outside. All other periodic solutions
are linear combinations of these characteristic functions. That
means that a deterministic system with n locally stable states pos-
sesses an n-fold degenerate Floquet eigenvalue l0 ¼ 0. As dis-
cussed above, in the presence of noise, the formerly locally stable
states become metastable. The n-fold degeneracy of l0 ¼ 0 is lifted,
but at sufficiently weak noise there remains a group of n Floquet
exponents one of which is exactly zero and the others aquire a
small negative real part. We call them the slow Floquet exponents.
For sufficiently small noise this group of slow Floquet exponents
stays well separated from all other Floquet exponents. For large
time lags, the slow Floquet exponents and the corresponding Flo-
quet eigenfunctions completely determine the conditional pdf
which becomes

qðx; tjy; sÞ ¼
Xn�1

i¼0

eliðt�sÞwiðx; tÞuiðy; sÞ for t � s� s; ð15Þ

where the sum only runs over the group of n slow Floquet expo-
nents i.e. over those exponents with the smallest absolute values.
All other Floquet exponents are determined by the deterministic
time scales all of which are much shorter than those given by the
slow Floquet exponents. Here s denotes the slowest deterministic
time scale.

3.2. Alternative representation of the conditional probability at large
times

In the presence of metastable states the process of moving from
a state y at time s to a state x at a much later time t may be subdi-
vided into three consecutive steps that correspond to three contri-
butions to the conditional probability qðx; tjy; sÞ: Within the typical
relaxation time s, compared to which the considered time span
t � s is supposed to be very large, the initial state y will be allocated
to either of the metastable states b with a probability vbðy; sÞ;
within the remaining time t � s� s � t � s the process may visit
several other metastable states and will be found in the state a
at the final time t with a probability pða; tjb; sÞ. Given the final dis-
crete state a, the actual continuous states are distributed with a
pdf qðx; tjaÞ. For sufficiently small noise the times within which
the first and the last steps are performed are negligibly short com-
pared to the total time t � s. Therefore, the initial allocation to a
metastable state a and the final allocation to a continuous state x
can be considered as instantaneous events. Moreover, all three
steps are independent of each other and therefore the conditional
probability qðx; tjy; sÞ results as

qðx; tjy; sÞ ¼
X
a;b

qðx; tjaÞpða; tjb; sÞvbðy; sÞ: ð16Þ

This particular form of the conditional pdf was derived in the semi-
adiabatic limit [16] which is defined by the regime for which the
driving is slow compared to the characteristic local relaxation times
but not necessarily slow compared to the typical transition times
between metastable states [15]. We claim that this particular form
of the conditional pdf remains to hold true also beyond the semiadi-
abatic limit, i.e. in situations when the driving period is comparable
or even faster than the local relaxation times. The rare occurrence of
the transitions between the metastable states is the only condition
required for Eq. (16) to hold. It implies the separation of the times
needed to perform the first and the third step compared to the
much larger time of the second step and justifies the independence
of these three steps and their respective contributions to the condi-
tional probability. Below, we will infer the main properties of these
three sets of functions qðx; tjaÞ;vaðx; tÞ and pða; tjb; sÞ from their
according definitions.

(i) Each localizing function vaðx; tÞ assumes an almost constant
value very close to unity within the domain of attraction
DaðtÞ and vanishes outside. Close to the border of DaðtÞ,
the localizing function vaðx; tÞ smoothly interpolates
between these two values. At each point x all n functions
vaðx; tÞ exactly add up to unity:X
a
vaðx; tÞ ¼ 1: ð17Þ
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(ii) Each a-specific pdf qðx; tjaÞ is a strongly peaked function of x
about the corresponding attractor AaðtÞ and rapidly decays
away from the attractor. As pdf it is normalized to unityZ
R
dxqðx; tjaÞ ¼ 1; ð18Þ

where the integration extends over the full state space R.
Within the respective domains of attraction DaðtÞ the a-spe-
cific pdf almost coincides with the asymptotic pdf w0ðx; tÞ up
to a normalizing factor.
Property (i) of the localizing function allows one to determine
the probability paðtÞ of finding the metastable state a realized at
time t for a given pdf qðx; tÞ in the following way

paðtÞ ¼
Z

R
dxvaðx; tÞqðx; tÞ: ð19Þ

On the other hand, one can assign to a given set of probabilities
paðtÞ a pdf qpðx; tÞ by decorating the metastable states a with the
a-specific pdfs yielding

qpðx; tÞ ¼
X

a
qðx; tjaÞpaðtÞ: ð20Þ

In order that Eqs. (19) and (20) are compatible with each other, i.e.
that Eq. (19) reproduces the prescribed probabilities paðtÞ for
qðtÞ ¼ qpðtÞ, the localizing functions and the a-specific pdfs must
form a biorthonormal set of functions, i.e.Z

R
dxvaðx; tÞqðx; tjbÞ ¼ da;b: ð21Þ

For a Fokker–Planck process the time evolution of a pdf qðx; tÞ is
determined by the conditional pdf according to

qðx; tÞ ¼
Z

R
dyqðx; tjy; sÞqðy; sÞ: ð22Þ

For large time lags t � s the conditional pdf can be written as in Eq.
(16). Using Eqs. (16), (19) and (21) one obtains from Eq. (22) for the
propagation of the probabilities paðtÞ

paðtÞ ¼
X
a;b

pða; tjb; sÞpbðsÞ: ð23Þ

This relation expresses the occupation probabilities of the metasta-
ble states at a time t in terms of the corresponding probabilities at
an earlier time s. Eq. (23) hence confirms the interpretation of
pða; tjb; sÞ as the conditional probability of the coarse grained pro-
cess of the metastable, discrete states a ¼ 1 . . . n.

In order to derive an equation of motion for the probabilities
paðtÞ one differentiates both sides of Eq. (19) with respect to time,
uses the Fokker–Planck equation (5), and expresses the pdf by
means of Eq. (21) in terms of the probabilities pbðtÞ. In this way
one obtains

_paðtÞ ¼
Z

R
dx

@vaðx; tÞ
@t

qðx; tÞ þ vaðx; tÞLðtÞqðx; tÞ
� �

¼
X

b

ka;bðtÞpbðtÞ; ð24Þ

where the time dependent rates ka;bðtÞ are defined as

ka;bðtÞ ¼
Z

R
dx
@vaðx; tÞ

@t
qðx; tjbÞ þ

Z
R

dxvaðx; tÞLðtÞqðx; tjbÞ: ð25Þ

Eq. (17) implies that the sum over the first index of the rates van-
ishes, i.e.

P
aka;bðtÞ ¼ 0. Therefore, Eq. (24) can be brought into the

familiar form of a master equation [29]

_paðtÞ ¼
X
b – a

ka;bðtÞpbðtÞ �
X
b – a

kb;aðtÞpaðtÞ: ð26Þ
We expect that for sufficiently low noise the quantities ka;bðtÞ do not
become negative for a – b and therefore represent proper rates. A
formal proof of the positivity though is not available. Negative val-
ues of ka;bðtÞ would indicate a breakdown of the basic assumption
that the long time behavior of the process is described by a rate
process.

4. Localizing functions, a-specific pdfs and transition rates

Comparing the two expressions (15) and (16) one finds that the
a-specific pdfs qðx; tjaÞ can be expressed as linear combinations of
the first n Floquet eigenfunctions wiðx; tÞ and the localizing func-
tions vaðx; tÞ can be written in terms of uiðx; tÞ. This leads to the
linear relations

qðx; tjaÞ ¼
Xn�1

i¼0

Ci;aðtÞwiðx; tÞ; ð27Þ

vaðx; tÞ ¼
Xn�1

i¼0

Da;iðtÞuiðx; tÞ; ð28Þ

where Ci;aðtÞ and Da;iðtÞ are yet undetermined, time dependent coef-
ficients. The orthogonality relations (10) and (21) and the linear
independence of the first n Floquet eigenfunctions imply the follow-
ing orthogonality relations of the coefficients Ci;aðtÞ and Di;aðtÞ:X

i

Da;iðtÞCi;bðtÞ ¼ da;b;X
a

Ci;aðtÞDa;jðtÞ ¼ di;j:
ð29Þ

For i ¼ 0 the normalization of the Floquet function w0ðx; tÞ, see Eq.
(14), and of the a-specific pdfs qðx; tjaÞ, see Eq. (18), leads to

C0;aðtÞ ¼ 1: ð30Þ

Next we derive sets of coupled equations of motion for the localiz-
ing functions and the a-specific pdfs.

4.1. Transition rates

Using the Floquet representation of the a-specific pdfs and
localizing functions, (27) and (28), in combination with the Floquet
equations (7) we obtain for the rates from Eq. (25)

ka;bðtÞ ¼
X

i

ð _Da;iðtÞCi;bðtÞ þ Da;iliCi;bðtÞÞ

¼
X

i

ð _Da;iðtÞD�1
b;i ðtÞ þ Da;ili D�1

b;i ðtÞÞ; ð31Þ

where we expressed the coefficient matrix Ci;bðtÞ as the inverse of
Db;iðtÞ by means of Eq. (29). Assuming for the moment that the rates
ka;bðtÞwere known we can rewrite Eq. (31) as of an equations of mo-
tion for the coefficients Da;iðtÞ and Ci;aðtÞ reading

_Da;iðtÞ ¼
X

b

ka;bðtÞDb;iðtÞ � Da;iðtÞli; ð32Þ

� _Ci;aðtÞ ¼
X

b

Ci;bðtÞkb;aðtÞ � liCi;aðtÞ: ð33Þ

It is interesting to note that these are just the Floquet equations
of the master Eq. (26) and, moreover, that the slow Floquet expo-
nents of the Fokker–Planck equation coincide with the Floquet
exponents of the master equation. This is a consequence of the fact
that the master equation specifies the transitions between the
metastable states, and, therefore, represents the backbone of the
long time evolution of the Fokker–Planck process.

With the help of Eq. (32) and the Floquet equations (7) the fol-
lowing equations of motion for the a-specific pdfs and the localiz-
ing functions are obtained
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@

@t
qðx; tjaÞ ¼ LðtÞqðx; tjaÞ �

X
b

kb;aðtÞqðx; tjbÞ; ð34Þ

� @

@t
vaðx; tÞ ¼ LþðtÞvaðx; tÞ �

X
b

ka;bðtÞvbðx; tÞ: ð35Þ

These two sets of equations for the functions qðx; tjaÞ and vaðx; tÞ
are adjoint to each other such that the biorthonormality of the a-
specific and the localizing functions, see Eq. (21), continues to hold
for all times once it holds true at a particular instant of time. Eqs.
(34) and (35) represent a central result of this work.

The set of coupled equations (34) can be interpreted as the mo-
tion of n replicas of the original process. Each replica is labeled by
one of the attractor indices a. The corresponding processes are de-
scribed by the Fokker–Planck equation (5) with additional source
and sink terms,

P
b – akb;aðtÞqðx; tjaÞ and �

P
b – akb;aðtÞqðx; tjbÞ,

respectively. This means that, say, the a-process dies with proba-
bility

P
b – akb;aðtÞqðx; tjbÞ and instantly resurrects with probabilityP

b – akb;aðtÞqðx; tjaÞ such that the total probability
R
R dxqðx; tjaÞ of

each replica is conserved for all times. A natural requirement on a
process described by the set of Eq. (34) is the positivity of the prob-
abilities qðx; tjaÞ. For an arbitrary choice of the rates ka;bðtÞ this
property generally will be violated in the course of time. Only for
the correct choice of the transition rates the positivity is guaran-
teed to hold. In principle, it is this requirement which determines
the rates ka;bðtÞ on the basis of Eq. (34).

In view of the fact that Eqs. (34) and (35) are coupled sets of
equations not only for the functions qðx; tjaÞ and vaðx; tÞ, respec-
tively, but that in these equations also the time dependent rates
ka;bðtÞ are unknown, it would be very difficult to solve these equa-
tions exactly. Therefore appropriate approximation schemes have
to be devised. This will be done in the remaining part of this
section.

4.2. Absorbing boundary approximation: a-specific pdfs

Assuming the appropriateness of the rate description, i.e. in par-
ticular the positivity of ka;bðtÞ for all a – b, one can decompose the
sum on the right hand side of Eq. (34) into a sink term
�
P

b – akb;aðtÞqðx; tjbÞ and a source term
P

a – bkb;aðtÞqðx; tjaÞ.
These sink and source terms result from the diagonal and non-
diagonal parts of the rate matrix ðka;bðtÞÞ, respectively. The sink
terms are linear combinations of the functions qðx; tjbÞ, which
are strongly concentrated about the positions of the corresponding
attractors AbðtÞ with b – a.

We approximate these narrow, even though continuously dis-
tributed sink terms by replacing them with sharp, absorbing states
lying on the boundaries @BbðtÞ of domains BbðtÞ. Each domain
BbðtÞ contains the immediate neighborhood of the attractor
AbðtÞ in such a way that the boundary @BbðtÞ separates the corre-
sponding attractor from the remaining state space. Within this
absorbing boundary approximation we obtain an uncoupled set of
equations for the a-specific pdfs reading

@

@t
�qðx; tjaÞ ¼ LðtÞ�qðx; tjaÞ þ kaðtÞ�qðx; tjaÞ; for x 2 RaðtÞ;

�qðx; tjaÞ ¼ 0; for all x 2 @BbðtÞ with b – a;
ð36Þ

where

kaðtÞ � �ka;aðtÞ ¼
X
b – a

kb;aðtÞ ð37Þ

denotes the total decay rate of the state a which is the sum over the
individual rates from a to all other states b. The restricted state
space RaðtÞ is obtained from the full state space R by excluding
the immediate neighborhoods BbðtÞ of all metastable states b being
different from a. Hence, it is defined as
RaðtÞ � R n [b – aBbðtÞ: ð38Þ

On this restricted state space the function �qðx; tjaÞ is expected to
represent a valid approximation of the a-specific pdf qðx; tjaÞ.

We search for the periodic solution of Eq. (36) which can be ob-
tained in the following way. First one numerically solves the source
free problem

@

@t
~qðx; tjaÞ ¼ LðtÞ~qðx; tjaÞ;

~qðx; tjaÞ ¼ 0; for all x 2 @BbðtÞ with b – a
ð39Þ

with an initial condition that is positive in a small neighborhood of
the attractor AaðtÞ and vanishes everywhere else. Because of the
absorbing boundary conditions at @BbðtÞ, with b – a, the auxiliary
function ~qðx; tjaÞ decays in time, i.e.

NaðtÞ ¼
Z

RaðtÞ
dx~qðx; tjaÞ ð40Þ

is a decreasing function of time. Here the integral is extended over
the restricted state space RaðtÞ excluding the domains BbðtÞ;b – a,
as defined in Eq. (38). The normalized function

�qðx; tjaÞ ¼ ~qðx; tjaÞ=NaðtÞ ð41Þ

then satisfies the Eq. (36) with the total outgoing rate given by

kaðtÞ ¼ �
_NaðtÞ
NaðtÞ

: ð42Þ

The such constructed solution ~qðx; tÞ=NaðtÞ approaches a periodic
function in time on the time scale of the deterministic dynamics,
and presents an approximation to the a-specific function qðx; tjaÞ.
The other rates kb;aðtÞ leaving the metastable state a follow from
the flux associated with qðx; tjaÞ through the boundaries @BbðtÞ

kb;aðtÞ ¼
Z
@BbðtÞ

dS � jðx; tjaÞ; a – b; ð43Þ

where dS denotes the surface element on @BbðtÞ pointing towards
the metastable state AbðtÞ, and jðx; tjaÞ the probability current car-
ried by the pdf �qðx; tjaÞ. Its components read

jiðx; tjaÞ ¼ K iðx; tÞ�qðx; tjaÞ �
X

l

@

@xl
Di;lðx; tÞ�qðx; tjaÞ: ð44Þ

This is a generalization of the well known flux-over-population
expression for the rate [3,30–32]. The stationary flux carrying pdf
of the classical flux-over-population expression is replaced by the
flux carrying time-periodic pdf �qðx; tjaÞ which is normalized to
one, whence also the population is one. The decisive difference to
the classical flux-over-population expression lies in the fact that
in Eq. (43) the flux is determined as the probability flowing per time
directly into the final metastable state, which because of the sur-
rounding absorbing boundary acts as an outlet, rather than through
a ‘‘saddlepoint” or ‘‘bottleneck” on the common part of the separa-
trices @DaðtÞ and @DbðtÞ of the initial and the final metastable state.
In the time independent case both expressions coincide under the
condition that a region containing the final metastable state and
the bottleneck in question is free of sources [33]. In contrast, in
the time-periodic case the probability current contains a periodic
contribution which in general has a nonuniform phase, i.e. the
phase depends on the location x. Therefore, the instantaneous prob-
ability flux through the bottleneck in general differs from the flux
into the outlet. A large portion of probability flowing through the
bottleneck, say within the first half of the period may flow back dur-
ing the second half of the period. Only the time averages over one
period of the probabilities flowing through the bottleneck and into
the outlet do coincide.
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4.2.1. a-Floquet functions and rates
The functions ~qðx; tjaÞ which satisfy the Fokker–Planck equa-

tion (39) on the restricted state space RaðtÞ defined in Eq. (38)
are closely related to the Floquet functions waðx; tÞ of the Fokker–
Planck operator restricted to RaðtÞ with absorbing boundaries on
the surfaces of the excluded regions BbðtÞ. These a-Floquet func-
tions, as we call them, are the solutions of the corresponding Flo-
quet equations which read

@

@t
wa

i ðx; tÞ ¼ LðtÞwa
i ðx; tÞ � la

i w
a
i ðx; tÞ; for x 2 RaðtÞ; n ¼ 1;2; . . .

wa
i ðx; tÞ ¼ 0; for x 2 @BbðtÞ; b – a:

ð45Þ

Because of the absorbing boundaries at all but one metastable states
the Floquet spectrum consisting of the a-Floquet eigenvalues la

i

completely lies in the complex half plain with negative real part.
We denote the a-Floquet eigenvalue closest to zero by la

1 . The abso-
lute value of the real parts of all other a-Floquet eigenvalues are
much larger, i.e. jla

1j � jla
i jfor all i – 1. In the deterministic limit

la
1 approaches zero, whereas all other a-Floquet eigenvalues stay

finite.
In terms of the a-Floquet eigenfunctions the solution of Eq. (39)

becomes

~qðx; tjaÞ ¼
X
i¼1

ciela
i

twa
i ðx; tÞ; ð46Þ

where ci are constant coefficients whose values depend on the
choice of the initial distribution. For times which are large on the
deterministic time scale, all terms in the sum become negligibly
small apart from the first term corresponding to la

1. Hence, we
obtain

~qðx; tjaÞ / ela
1twa

1ðx; tÞ; ð47Þ

and, by proper normalization

�qðx; tjaÞ ¼ wa
1ðx; tÞR

RaðtÞ dxwa
1ðx; tÞ

: ð48Þ

With Eq. (42) the total rate kaðtÞ follows as the negative logarithmic
derivative of the normalization

R
RðtÞ dxwa

1ðx; tÞ. It becomes

kaðtÞ ¼ �la
1 þ raðtÞ; ð49Þ

where

raðtÞ ¼ �
d
dt

ln
Z

RaðtÞ
dxwa

1ðx; tÞ: ð50Þ

The average of raðtÞ over one period vanishes because raðtÞ is the
derivative of a periodic function. Hence, with Eq. (49) the a-Floquet
eigenvalue la

1 is given by the negative averaged total rate.
If one performs the time derivative in Eq. (50) one finds

raðtÞ ¼ �
d
dt

R
RaðtÞ dxwa

1ðx; tÞR
RaðtÞ dxwa

1ðx; tÞ

¼ �
R
RaðtÞ dx LðtÞwa

1ðx; tÞ � la
1w

a
1ðx; tÞ

� �
R
RaðtÞ dxwa

1ðx; tÞ

¼
X
b – a

R
@BbðtÞ

P
i;j

dSi
@
@xj

Di;jðx; tÞwa
1ðx; tÞR

RaðtÞ dxwa
1ðx; yÞ

þ la
1

¼
X
b – a

kb;aðtÞ þ la
1: ð51Þ

In the second equality the time derivative was performed. There,
the time dependence of the domain RaðtÞ does not contribute be-
cause the a-Floquet function vanishes on the boundary @RaðtÞ ¼
[b – a@BbðtÞ. The time derivative of wa

1ðx; tÞ was expressed by Eq.
(45). In the next step the integral involving the Fokker–Planck oper-
ator was written by means of Gauss’ theorem in terms of surface
integrals over the boundary of RaðtÞ. The terms in the sum on b
are the ratios of the probability fluxes through the boundaries
@BbðtÞ carried by the a-Floquet function wa

1ðx; tÞ, see Eq. (44), and
the corresponding populations

R
RaðtÞ dxwa

1ðx; tÞ. According to the
Eqs. (43) and (48) the terms in the sum on b agree with the individ-
ual rates kb;aðtÞ.

4.3. Absorbing boundary approximations: localizing functions

The same type of approximation as for the a-specific pdfs may
also be applied to the equations of motion for the localizing func-
tions: By neglecting those terms on the right hand side of Eq. (35)
that are proportional to the rates ka;bðtÞ with b – a and by intro-
ducing absorbing boundary conditions on the hypersurfaces
@BbðtÞÞ; b – a we obtain a set of uncoupled equations for approxi-
mate a-localizing functions �vaðx; tÞ reading

� @

@t
�vaðx; tÞ ¼ LþðtÞ�vaðx; tÞ þ kaðtÞ�vaðx; tÞ; for x 2 RaðtÞ;

�vaðx; tÞ ¼ 0; for all x 2 @BbðtÞ with b – a:
ð52Þ

This absorbing boundary approximation is again justified because
the rates ka;bðtÞ are much smaller than the inverse time scales of
the deterministic dynamics which govern the motion within the do-
mains of attraction. Moreover it is consistent with the above
approximation for the a-specific pdfs in the sense that the integrals
of the products of the a-specific and the respective localizing func-
tion are independent of time, i.e.

d
dt

Z
RaðtÞ

dxvaðx; tÞqðx; tjaÞ ¼ 0 ð53Þ

as follows from Eqs. (36) and (52). Note that the time dependence of
the integration domain RaðtÞ does not contribute because the inte-
grand vanishes at the boundary. The biorthonormality of the local-
izing functions and specific pdfs cannot be strictly maintained
within this approximation. The deviations though are expected to
be exponentially small with respect to the noise strength because
of the small overlap of these functions for different metastable
states. As in the case of the a-specific functions the total decay rate
kaðtÞ need not be known in order to determine the a-localizing
functions. Rather one again may first determine an auxiliary func-
tion ~vaðx; tÞ as the solution of the source free equation

� @

@t
~vaðx; tÞ ¼ LþðtÞ~vaðx; tÞ;

~vaðx; tÞ ¼ 0; for all x 2 @BbðtÞ with b – a:
ð54Þ

Because of the dissipative nature of the backward operator LþðtÞ it is
convenient to integrate this equation backward in time. A forward
integration easily may run into numerical problems because
unavoidable errors would grow exponentially in time. As an appro-
priate final condition for ~vaðx; t0Þ one may choose a function which
is constant on the domain of attraction Daðt0Þ and zero everywhere
else. The solution of this final value problem will approach a peri-
odic solution on the time scale of the deterministic dynamics. This
asymptotic periodic solution must be normalized at each instant of
time by the integral of its product with the corresponding a-specific
function to yield the required approximation of vaðx; tÞ

�vaðx; tÞ ¼
~vaðx; tÞ
ZaðtÞ

; ð55Þ

where

ZaðtÞ ¼
Z

RaðtÞ
dx~vaðx; tÞ�qðx; tjaÞ: ð56Þ
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Using the Eqs. (36) and (54) one finds

kaðtÞ ¼
_ZaðtÞ
ZaðtÞ

: ð57Þ

This relation confirms that the function given by the Eqs. (55) and
(56) indeed is a solution of Eq. (52).
Fig. 2. The line dividing the log10X – log10A parameter plane into an upper
monostable and a lower bistable region of the deterministic dynamics _x ¼ �V 0ðx; tÞ
is marked by the thick, red solid curve. The blue, thin straight line indicates the
value of the forcing strength, Aad ¼ 2=ð3

ffiffiffi
3
p
Þ, below which the potential Vðx; tÞ has

two minima for all times t. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 3. The attractors x�1ðtÞ; x1ðtÞ and the separatrix x0ðtÞ of the deterministic
dynamics _x ¼ �V 0ðx; tÞ for the driving strength A ¼ 0:5 and frequency X ¼ 1.
5. Periodically driven Brownian bistable oscillator

In order to exemplify the theory developed above and to check
its consistency we consider an overdamped bistable Brownian
oscillator driven by an external force that varies periodically in
time. We choose a bistable quartic potential Vðx; tÞ that depends
periodically on time, see Fig. 1. In conveniently chosen dimension-
less variables it reads

Vðx; tÞ ¼ �1
2

x2 þ 1
4

x4 � Ax sin Xt; ð58Þ

where t is time and x the position of the Brownian particle. The
strength of the periodic modulation is denoted by A and its fre-
quency by X. Depending on the values of A and X the deterministic
overdamped dynamics in this time dependent potential is either
monostable or bistable as displayed in Fig. 2. In the present context
we are only interested in the bistable region in which the determin-
istic dynamics _x ¼ �V 0ðx; tÞ possess two stable limit cycles x�1ðtÞ
and x1ðtÞ and an unstable limit cycle x0ðtÞ forming the separatrix be-
tween the two attractors, see Fig. 3. The diffusion matrix D is taken
as constant. The Fokker–Planck operator then becomes

LðtÞ ¼ @

@x
V 0ðx; tÞ þ D

@2

@x2 ; ð59Þ

where V 0ðx; tÞ denotes the derivative of the potential with respect to
x. The corresponding Fokker–Planck and backward equations were
numerically solved by a collocation method based on a representa-
tion of the solution in terms of Chebishev polynomials of degree 5
[34]. For all calculations a fixed number N ¼ 1201 of break-points
in the interval [�3,3] was used. At the ends of the interval reflecting
boundary conditions were imposed. In the case of the forward equa-
tion an accuracy of 10�10 led to stable results whereas for the back-
ward equations an accuracy of 10�12 turned out to be necessary in
order to avoid numerical artefacts. Throughout this paper we used
a fluctuation strength given by D ¼ 1=40. At vanishing driving
strength A ¼ 0 the resulting bistable symmetric potential then pos-
sesses a barrier height per noise energy of DV=D ¼ ½Vð0; 0Þ�
Vð1;0Þ	=D ¼ 10.
Fig. 1. The bistable potential Vðx; tÞ, Eq. (58), is depicted as a function of the
position x for different times t ¼ 0 (red, dashed line), t ¼ 0:2T (blue, solid line), and
t ¼ 0:4T (black, dotted line) where T denotes the period of the driving and for the
driving strength A ¼ 0:1. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
5.1. Flux-over-population rates

We first numerically determined the time dependent solution
~qðx; tj � 1Þ of the Fokker–Planck equation (39) on the restricted
state space R�1ðtÞ ¼ ½�3; x1ðtÞ	 with a reflecting boundary at
x ¼ �3 and an absorbing boundary at the position of the right
attractor x1ðtÞ and with an initial condition that is sharply located
at the position of the other attractor x�1ð0Þ. After a number n of
periods T ¼ 2p=X of the driving frequency X had elapsed the
remaining population N�1ðtÞ was identified as

N�1ðtÞ ¼
Z x1ðtÞ

�3
dx~qðx; tj � 1Þ; ð60Þ

see also Eq. (40), and the renormalized pdf

�qðx; tj � 1Þ ¼ ~qðx; tj � 1Þ=N�1ðtÞ; ð61Þ

as well as the rate

k1;�1ðtÞ ¼ �
_N�1ðtÞ
N�1ðtÞ

ð62Þ

were determined. The number n of transient periods was chosen
such that k1;�1ðtÞ remained unchanged upon a further increase of
n. For different values of X appropriate numbers n are collected in
Table 1. In Fig. 4 the rates k1;�1ðtÞ are displayed as functions of time
for various driving frequencies. For small frequencies the time
dependent rate approaches its adiabatic form [16] that is given by
the inverse mean first time that a process needs to move from
x ¼ x�1ðtÞ to x ¼ x1ðtÞ in the frozen potential. The rate then reads [3]



Table 1
Number of transient periods.

X n

1 100
0.5 50
0.1 10
0.01 5
0.001 3

Fig. 4. The rate k1;�1ðtÞ following from Eq. (62) displays a maximum as a function of
t=T that becomes lower and shifts towards later times within one period if the
frequency X increases. For the frequency X ¼ 10�3 the rate is indistinguishable
from the adiabatic rate (63) (black, solid line). The other curves display the rates for
X ¼ 10�2 (blue, dotted line), 0.1 (red, dash-dotted line), 0.5 (brown, dashed line)
and 1 (green, thick dots); in the asymptotic limit X!1 the constant rate kav (thin
solid line) given by Eq. (64) is approached. In all cases the driving strength is A ¼ 0:1
and the noise strength D ¼ 0:025. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 5. The times at which the rate k1;�1ðtÞ assumes its extrema do hardly depend on
the amplitude A. The rate is displayed for various values of A ¼ 0:1 (solid, red), 0.2
(dotted, blue), 0.3 (dash-dotted, black), and 0.4 (dashed, green); in all cases the
frequency is X ¼ 10, and the noise D ¼ 0:025. Note that for the large amplitude
A ¼ 0:4 > Aad the deterministic attractors x
1ðtÞ are dynamically stabilized, see also
Fig. 2. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 6. The specific pdf �qðx; tj � 1Þ is depicted as a function of the position x for
various times t ¼ 0:12T (red, dashed), 0:37T (blue, solid), 0:62T (black, dotted), and
0:87T (green, dashed-dotted) for the driving frequency X ¼ 1, driving amplitude
A ¼ 0:1 and noise strength D ¼ 0:025. Outside the displayed interval the specific pdf
continues to decay. It vanishes at the position of the attractor x1ðtÞ. The vertical
lines indicate the positions of the attractor x�1ðtÞ at the respective times. These
positions almost coincide with the maxima of the specific pdfs at the respective
times. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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kad
1;�1ðtÞ ¼ D

Z x1ðtÞ

x�1ðtÞ
dxeVðx;tÞ=D

Z x0ðtÞ

�3
dye�Vðy;tÞ=D

" #�1

: ð63Þ

For larger frequencies the maximal value of the rate shrinks and
also becomes delayed with respect to the driving force. In the limit
of high frequencies it approaches the time independent rate kav of a
Brownian particle moving in the potential Vðx; tÞ ¼ T�1 R T

0 dtVðx; tÞ
averaged over one period of the driving force. For the potential gi-
ven by Eq. (58) the average is symmetric and given by
Vðx; tÞ ¼ Vðx; 0Þ. Hence the rate in the limit of high driving frequen-
cies coincides with the value of the adiabatic rate at t ¼ 0:

kav ¼ kad
1;�1ð0Þ: ð64Þ

Due to the symmetry of the averaged potential, the rate kav also de-
scribes the opposite transition from the state x1ðtÞ to x�1ðtÞ, whence
we skipped the index.

At a fixed frequency the rate k1;�1ðtÞ decreases with decreasing
amplitude A approaching the time independent value kav, see Fig. 5.

The specific pdf �qðx; tj � 1Þ given by Eq. (61) represents a peri-
odic current carrying pdf with an absorbing state at the attractor
x1ðtÞ. It possesses a single maximum the location of which closely
follows the deterministic motion of the attractor x�1ðtÞ, see Fig. 6.
The pdf is asymmetric about its maximum with a breathing width
that is wider if the maximum is closer to the position of the separ-
atrix x0ðtÞ.

The approximate localizing function �v�1ðx; tÞ of the left meta-
stable state x�1ðtÞ on the restricted state space R�1ðtÞ was obtained
from the solution ~v�1ðx; tÞ of the backward equation (54) with
absorbing boundary condition at the right metastable state x1ðtÞ.
In order to guarantee for sufficient numerical stability, the integra-
tion of the backward equation has to be performed backward in
time from some t0 to times t < t0. The final function ~v�1ðx; t0Þ
was chosen such that it assumes the constant value 1 for all
x 2 ½�3; x�1ðt0Þ	 then decreases monotonically and reaches zero at
the right metastable state.

After the same number n of transient periods as for the corre-
sponding characteristic pdf, see Table 1, the normalization integral
(56)

Z�1ðtÞ ¼
Z x1ðtÞ

�3
dx~v�1ðx; tÞ�qðx; tj � 1Þ ð65Þ

was determined. The rates k1;�1ðtÞ that follow from the logarithmic
derivative of Z�1ðtÞ, cf. Eq. (57), were compared with the rates ob-
tained from Eq. (62). They are identical within numerical accuracy.

Finally, the localizing function �v�1ðx; tÞ was determined by nor-
malizing ~v�1ðx; tÞ with Z�1ðtÞ. For an example see Fig. 7. We note
that the position where the localizing function assumes the value
1/2 coincides with the location of the separatrix at the respective
time.

5.2. Floquet approach

Here we construct the specific pdfs and the localizing functions
in terms of Floquet eiegenfunctions on the basis of the Eqs. (27)
and (28). In the present case of two metastable states these equa-
tions simplify to read



Fig. 7. The localizing function �v�1ðx; tÞ interpolates between the values 1 at the
attractor x�1ðtÞ and 0 at x1ðtÞ. It is displayed at various instants of time, t ¼ 0:12T
(red, dashed), 0:37T (blue, solid), 0:62T (black, dotted), and 0:87T (green, dash-
dotted). The vertical lines denote the positions of the separatrix of the deterministic
dynamics at the corresponding times, see Fig. 3. In the inset a magnification of the
center part of the plot marked by a rectangle is depicted. It demonstrates that the
localizing functions very precisely assume the value 1/2 (horizontal line) at the
positions of the separatrices indicated by the vertical lines. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 2
Number of transient periods needed to reach convergence of the Floquet function
w0ðx; tÞ and Floquet exponent l1 .

X n l1

1 10,000 �4:46� 10�5

0.5 2000 �9:46� 10�5

0.1 1000 �1:54� 10�4

0.01 1000 �1:58� 10�4

0.001 100 �1:58� 10�4
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qðx; tj 
 1Þ ¼ w0ðx; tÞ þ C
1ðtÞw1ðx; tÞ; ð66Þ

v
1ðx; tÞ ¼
C�1ðtÞ

C�1ðtÞ � C
1ðtÞ
� 1

C�1ðtÞ � C
1ðtÞ
u1ðx; tÞ: ð67Þ

Here we skipped the first index i of Ci;aðtÞ since only the values for
i ¼ 1 are nontrivial in the case of two metastable states. For
i ¼ 0;C0;aðtÞ ¼ 1 always holds, see Eq. (30).

To further evaluate these equations (i) the first two Floquet
functions of the forward and the backward equation and (ii) the
coefficients C
1ðtÞwere determined numerically. The Floquet func-
tion w0ðx; tÞ belonging to the Floquet eigenvalue l0 ¼ 0 is the peri-
odic solution of the Fokker–Planck equation (5) and (59) with
reflecting boundary conditions at x ¼ 
3. As initial condition we
chose

w0ðx;0Þ ¼
expð�Vðx;0Þ=DÞR 3

�3 dx expð�Vðx; 0Þ=DÞ
: ð68Þ

The Fokker–Planck equation was numerically solved for n periods of
the driving force. We designated this number n in such a way that
after subsequent n=10 periods the L1-norm of the difference of the
two solutions was less than 10�5, i.e.

kw0ðx;1:1nTÞ � w0ðx;nTÞk1 6 10�5; ð69Þ

where the L1-norm of a function f ðxÞ on the interval [�3,3] is de-
fined by the integral of the its absolute value as

kf ðxÞk1 ¼
Z 3

�3
dxjf ðxÞj: ð70Þ

The numbers n found in this way are collected in Table 2 for differ-
ent values of the driving frequency. The Floquet function w1ðx; tÞ
and the corresponding Floquet exponent l1 were obtained from
the solution of the Fokker–Planck equation (5) and (59) with reflect-
ing boundary conditions at x ¼ 
3 and the initial condition

~w1ðx;0Þ ¼ dðx� x�1ð0ÞÞ: ð71Þ

After a transient period of duration nT with n given by Table 1 the
logarithm of the L1-norm of the difference between ~w1ðx; tÞ and
w0ðx; tÞ was plotted as a function of time for several periods. Its log-
arithm ln k~w1ðx; tÞ � w0ðx; tÞk1 is the superposition of a declining lin-
ear and a periodic function of time with period T of the driving. The
Floquet exponent l1 can be read off from the inclination of the lin-
ear contribution. The results are presented in Table 2. We note here
that the method of the a-Floquet functions defined on a restricted
phase space with an absorbing state at, say x1ðtÞ, see Section
4.2.1, gave Floquet exponents l�1

1 which coincide with those based
on the full state space up to 4 or 5 digits. The same agreement was
obtained from the time average of the rates obtained by either of
the methods described in the previous Section 5.1. Once the Floquet
exponent l1 is known, the still unnormalized Floquet eigenfunction
is obtained as

w1ðx; tÞ ¼ e�l1tð~w1ðx; tÞ � w0ðx; tÞÞ: ð72Þ

The first two Floquet eigenfunctions, which were normalized with
respect to the L1-norm, are displayed in Fig. 8. The Floquet eigen-
function of the backward operator belonging to the Floquet expo-
nent l0 ¼ 0 is known to be constant, i.e. u0ðx; tÞ ¼ 1. In order to
determine the Floquet eigenfunction u1ðx; tÞ belonging to l1 we
solved the backward equation

� @

@t
~u1ðx; tÞ ¼ LþðtÞ ~u1ðx; tÞ ð73Þ

with the initial condition

~u1ðx;0Þ ¼ sign ðxÞ �
�1 jxjP 0:1

100 � ðjxj � 0:1Þ2 � 1 jxj 6 0:1:

(
ð74Þ

After a transient time of duration nT with n given in Table 1 all con-
tributions from higher Floquet functions have become negligible
and ~u1ðx; tÞ assumes the form

~u1ðx; tÞ ¼ c0 þ el1tc1u1ðx; tÞ: ð75Þ

Knowing the Floquet exponent l1 we determined the constant c0

such that ½ ~u1ðx; tÞ � c0	 expð�l1tÞ becomes a periodic function of
time which is proportional to the sought-after function u1ðx; tÞ.
The normalization of u1ðx; tÞ is chosen such thatZ 3

�3
dxu1ðx; tÞw1ðx; tÞ ¼ 1: ð76Þ

The spatial and temporal dependence of u1ðx; tÞ is depicted in Fig. 9
for the same parameter values as for the periodic pdf displayed in
Fig. 8.

Once the Floquet functions wiðx; tÞ for i ¼ 0;1 are known the
coefficients C
1ðtÞ can be determined from the condition that the
a-specific pdf qðx; tjaÞ is negligibly small in the vicinity of the other
metastable state xbðtÞ ða – bÞ. Hence the integration on both sides
of Eq. (66) over a small neighborhood of x�ðtÞ gives a negligibly
small contribution and thus leads to the following expression for
the coefficients C
1ðtÞ

C
1ðtÞ � �
R x�1ðtÞþ�=2

x�1ðtÞ��=2 dxw0ðx; tÞR x�1ðtÞþ�=2
x�1ðtÞ��=2 dxw1ðx; tÞ

: ð77Þ

As an example the coefficient C�1ðtÞ is displayed in Fig. 10 for differ-
ent values of the driving frequency. The interval length was chosen
as � ¼ 0:1. Once the first two Floquet eigenfunctions and the coeffi-
cients C
1ðtÞ are known, the specific pdfs qðx; tj 
 1Þ and the local-
izing functions v
1ðx; tÞ can be calculated and compared with the



Fig. 8. The first two Floquet eigenfunctions w0ðx;0Þ (red, solid line) and w1ðx; 0Þ
(blue, dashed line) of the Fokker–Planck operator (59) of a driven Brownian
oscillator in a bistable potential (58) for the driving strengths A ¼ 0:1, driving
frequency X ¼ 1 and noise strength D ¼ 2:5� 10�2 at t ¼ 0 that are displayed in
panel (a) are strongly localized in the vicinity of the two metastable states at x
1ð0Þ.
Both functions are normalized such that their L1-norms are one, i.e.
kwiðx; tÞk1 ¼

R 3
�3 dxjwiðx; tÞj ¼ 1. The two functions almost agree with each other

up to a change in sign close to the unstable point x0ð0Þ. In panel (b), the time
dependence is indicated for the asymptotic pdf w0ðx; tÞ for four different times 0:12T
(red, dashed line), 0:37T (blue, solid line), 0:62T (black, dotted line) and 0:87T
(green, dash-dotted line). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. The Floquet eigenfunctions u1ðx; tÞ of the backward operator for the times
0:12T (red, dashed line), 0:37T (blue, solid line), 0:62T (black, dotted line) and 0:87T
(green, dash-dotted line) are almost constant apart from a narrow region about the
unstable fixed point x0ðtÞ. The parameters are with A ¼ 0:1;X ¼ 1 and
D ¼ 2:5� 10�2 the same as in Fig. 8. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. The specific pdf qðx;0j � 1Þ was determined by three different methods: As
the flux carrying periodic pdf �qðx; tj � 1Þ in the presence of a sharp absorbing
boundary at x1ðtÞ (red, dashed line), and as a linear combination of the first two
Floquet eigenfunctions, see Eq. (66), with coefficients either determined by Eq. (77)
(blue, solid line), or from the solution of the Floquet problem of the master equation
(black, dotted line), see the discussion below. Only in the magnification displayed in
the inset a deviation of the results of these methods becomes visible in the vicinity
of the metastable state x1ð0Þ � 0:98 where �qðx0ð0Þ;0j � 1Þ ¼ 0. We expect that
these small deviations become even smaller at smaller noise strength. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 10. The variability of the coefficient C�1ðtÞ within one period T of the driving
decreases with increasing frequency X ¼ 10�3 (red, dashed), 10�2 (blue, solid), 10�1

(black, dotted) and 1 (green, dash-dotted). The other parameters are with A ¼ 0:1
and D ¼ 2:5� 10�2 the same as in Fig. 8. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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results for �qðx; tj 
 1Þ and �v
1ðx; tÞ, respectively, obtained by the
flux-over-population method. We here restrict ourselves to a com-
parison for the specific pdf qðx; tj � 1Þ for fast driving with X ¼ 1.
Fig. 11 demonstrates the perfect agreement. Only in the immediate
vicinity of the metastable state a difference becomes visible upon
strong magnification.

Moreover, from the coefficients C
1ðtÞ and the Floquet exponent
l1 the rate k�1;1ðtÞ and k1;�1ðtÞ can be determined according to Eq.
(33) which simplifies for k1;�1ðtÞ in the case of two metastable
states to
k1;�1ðtÞ ¼
l1C�1ðtÞ � _C�1ðtÞ

C1ðtÞ � C�1ðtÞ
: ð78Þ

A comparison of these rates with those obtained by the reactive flux
method is presented in Fig. 12 for different values of the driving
frequency. A qualitatively good agreement is obtained for all fre-
quencies whereby deviations become more visible for higher
frequencies.

5.3. Decoration

Finally, we numerically investigated the crucial assumption that
after a sufficiently large transient period the pdf qðx; tÞ takes the
form of Eq. (20), i.e. it is determined by the solutions of the master
Eq. (26), paðtÞ, which are decorated by the a-specific pdfs qðx; tjaÞ.
As a quantitative measure of the distance between the numerically
exact solution qðx; tÞ of the Fokker–Planck equation (5), with the
Fokker–Planck operator (59), starting at the metastable state
x�1ð0Þ, i.e. with the initial condition (71), and an approximate form
qaðx; tÞ of the pdf we employed the L1-norm (70) of the difference
of these functions. The assumed asymptotic form

qaðx; tÞ ¼ qðx; tj1Þp1ðtÞ þ qðx; tj � 1Þp�1ðtÞ ð79Þ



Fig. 12. A comparison of the flux-over-population rates (fop rates) (lines) with the
Floquet rate expressions (F rates) following from Eq. (78) (symbols) is presented for
frequencies X ¼ 0:01 (fop rates: red, solid line; F rates: crosses) and X ¼ 0:1 (fop
rates: blue, dashed line; F rates: circles) in panel (a), and for X ¼ 0:5 (fop rates: red,
solid line; F rates: crosses) and X ¼ 1 (fop rates: blue, dashed line; F rates: circles) in
panel (b). The remaining parameters are with A ¼ 0:1;D ¼ 2:5� 10�2 the same as in
Fig. 8. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 13. The comparison of the approximations II and III for the coefficient C�1ðtÞ
shows perfect agreement for driving frequencies X 6 0:1, see panel (a) for X ¼ 0:1
(method II: crosses, method III: solid line). Relatively small but on the scale of the
variability apparent deviations between the methods become visible for X ¼ 0:5
(red, method II: crosses, method III: solid line) and X ¼ 1 (blue, method II: circles,
method III: dashed line) in panel (b). The remaining parameters in both panels are
with A ¼ 0:1;D ¼ 2:5� 10�2 the same as in Fig. 8. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 14. After a short relaxation time, the decadic logarithm of the L1 distance
between the numerical solution of the Fokker–Planck equation and the proposed
asymptotic form (79) reveals a perfect agreement with qIII within the expected
numerical precision of the solution of the Fokker–Planck equation (black, dash-
dotted line). In the case of the first method (red, solid line) which uses the
decoration with the current carrying densities, the absorbing boundary conditions
at one of the metastable states leads to a larger distance from the asymptotic pdf.
This also happens with method II (blue, dashed line) which is based on the estimate
(77) of the coefficients C
1ðtÞ which lacks a rigorous foundation. Yet the observed
agreement is very good even for rather fast driving with the frequency X ¼ 1. The
remaining parameters are with A ¼ 0:1;D ¼ 2:5� 10�2 the same as in Fig. 8. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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requires the knowledge of the probabilities p
1ðtÞ which was ob-
tained as the solution of the master equation

_p1ðtÞ ¼ �k�1;1ðtÞp1ðtÞ þ k1;�1ðtÞp�1ðtÞ;
_p�1ðtÞ ¼ k�1;1ðtÞp1ðtÞ � k1;�1ðtÞp�1ðtÞ;
p1ð0Þ ¼ 0; p�1ð0Þ ¼ 1;

ð80Þ

where the flux-over-population expressions were taken for the
rates, see Section 5.1. For the specific pdfs we employed three dif-
ferent approximations: First we used the current carrying pdfs
�qðx; tj 
 1Þ introduced in Section 5.1. These functions were ex-
tended onto the full state space [�3,3] by assigning the value zero
beyond their respective domains of definition, i.e. we defined

qIðx; tj � 1Þ ¼
�qðx; tj � 1Þ for � 3 6 x 6 x1ðtÞ;
0 for x1ðtÞ 6 x 6 3;

�

qIðx; tj1Þ ¼
0 for � 3 6 x 6 x�1ðtÞ;
�qðx; tj1Þ for x�1ðtÞ 6 x 6 3:

� ð81Þ

As a second and third approximation, in the following referred
to as approximations II and III, we used the specific pdfs (66) with
the numerically determined Floquet functions, see Section 5.2, and
determined the coefficients C
1ðtÞ in two different ways. The
approximation II was obtained by using Eq. (77) for the coefficients
C
1ðtÞ. The approximation III is based on the fact that these coeffi-
cients obey the Floquet equations (33) of the backward master
equation. We numerically solved these equations under the
assumption that the rates are given by the flux-over-population
expressions. The resulting functions c
1ðtÞ then coincide with the
sought-after coefficients C
1ðtÞ ¼ qc
1ðtÞ up to a common propor-
tionality constant q. Finally this coefficient was determined such
that the distance between the numerical solution of the Fokker–
Planck equation and the approximation III, i.e. kqðx; tÞ�
qIIIðx; tÞk1, became minimal at t ¼ nT with n from Table 1. The coef-
ficients C
1ðtÞ obtained in this way are compared with those used
in the approximation II, see Fig. 13. The relative deviation between
the coefficients C
ðtÞ resulting from the approximations II and III
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were smaller than 5� 10�4 in all investigated cases. Clear devia-
tions are visible only on the scale of the variability of the coeffi-
cients for frequencies X > 0:1, see Fig. 13.

The distances between the numerically exact solution of the
Fokker–Planck equation and the pdfs obtained from the decoration
of the metastable states according to the three methods described
above are displayed in Fig. 14. In all cases, after a short initial time,
an exponential relaxation sets in until the pdfs obtained from
method II as well as from the decoration with the current carrying
pdfs saturate at a distance of the order of 2� 10�4. For method III it
does so at the smaller distance of 2� 10�6. This is a clear indication
that the asymptotic pdf is indeed of the form of Eq. (79). This hence
corroborates a basic assumption of our work about the structure of
the pdf at large times.
6. Summary

We investigated the large time stochastic dynamics of periodi-
cally driven systems with metastable states governed by a Fokker–
Planck equation. On time scales larger than the typical determinis-
tic time scale this dynamics can be completely characterized by the
localizing functions, the a-specific pdfs and the conditional occu-
pation probabilities of the metastable states. The latter are solu-
tions of a Markovian master equation with time dependent rates.
These rates can be expressed in terms of the localizing functions
and the a-specific pdfs, see Eq. (25).

Using the Floquet representation of the conditional pdf in the
large time limit we obtained coupled equations of motion for the
a-specific densities and an adjoint set of equations for the localiz-
ing functions. Most interestingly, these equations of motion can be
interpreted in the spirit of Farkas’ [30] and Kramers’ [31] idea to
construct a flux carrying stationary solution by imposing conve-
nient sources and sinks. To each a-specific density an a-process
can be assigned that evolves according to the same dynamical laws
as the original process with the only difference that it can instantly
be translocated in state space. These translocations are governed
by sinks and sources that cause a sudden death of an a-process,
say, at a point x and the instant resurrection of the same process
at a different point y in state space. The sinks are determined by
the sum of transition rates out of the metastable state a multiplied
by those b specific pdfs corresponding to states that can directly be
reached from a. The source is given by the total rate to leave state a
multiplied by its specific pdf. In this way the conservation of prob-
ability of each specific pdf is guaranteed. Due to the resulting intri-
cate coupling and the dependence on the unknown rates, an exact
solution is difficult to construct and one must rely on approximate
methods to solve this set of equations of motion for the a-specific
pdfs.

An efficient way of approximation is based on the fact that at
weak noise the a-specific pdfs are expected to be strongly localized
in the region of the according metastable state. This allows one to
effectively decouple the equations for the a-specific pdfs (as well
as those for the localizing functions) and to calculate a current car-
rying pdf in the presence of sharply absorbing states. The rates of
all transitions leaving the considered metastable state can then
be calculated by means of a flux-over-population expression [30–
32]. In contrast to the case without time dependent driving it is
important to calculate the probability flux flowing directly into
the final metastable state. In the time independent case this flux
is the same through all hypersurfaces in state space separating
the initial from the final metastable state. In the presence of peri-
odic driving the total flux through a hypersurface in general de-
pends both on time and on the location of the chosen
hypersurface. The proper rate therefore must be determined from
the probability flux flowing directly into the final metastable state.
We illustrated our theory with the example of a periodically
driven bistable Brownian oscillator. In contrast to a slowly driven
bistable oscillator, at finite frequencies bistability extends to larger
amplitudes of the driving force. We found that the flux-over-pop-
ulation method based on the a-specific pdf with an absorbing
boundary at the final metastable state requires a much lesser com-
putational effort than the direct application of the Floquet ap-
proach. In the former case the solution of the Fokker–Planck
equation with the appropriate boundary conditions converges on
the order of the deterministic time scale, whereas for the second
method the convergence of the Floquet functions is only reached
after several transitions between the metastable states have taken
place on average.

We note that based on the absorbing boundary approximation
the transition rates can also be determined by means of numerical
simulations of the Langevin equations of the considered Fokker–
Planck process [17–19].

We finally tested the crucial assumption of our theory saying
that the probability density resulting as the large time solution
of the Fokker–Planck equation can be represented as the product
of the probabilities of the metastable states decorated by the spe-
cific pdfs. The time dependence of the probabilities of the metasta-
ble states was obtained from the solution of the master equation
with the numerically determined flux-over-population rates. The
specific pdfs obtained by the absorbing boundary approximation
already lead to an excellent agreement with the numerically exact
solution of the Fokker–Planck equation on time scales larger than a
few characteristic deterministic times. A more elaborate calcula-
tion of the specific pdfs in terms of Floquet eigenfunctions of the
Fokker–Planck operator led to a further improvement of the agree-
ment by two orders of magnitude confirming our assumption.
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