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Negative mobility induced by colored thermal fluctuations
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Anomalous transport of non-Markovian thermal Brownian particle dynamics in spatially periodic symmetric
systems that is driven by time-periodic symmetric driving and constant bias is investigated numerically. The
Brownian dynamics is modeled by a generalized Langevin equation with exponentially correlated Gaussian
thermal noise, obeying the fluctuation-dissipation theorem. We study the role of nonzero correlation time of
thermal fluctuations for the occurrence of absolute negative (linear) mobility (ANM) near zero bias, negative-
valued, nonlinear mobility (NNM), and negative differential mobility (NDM) at finite bias away from equilib-
rium. We detect that a nonzero thermal correlation time can either enhance or also diminish the value of ANM.
Moreover, finite thermal noise correlation can induce NDM and NNM in regions of parameter space for which
such ANM and NNM behaviors are distinctly absent for limiting white thermal noise. In parts of the parameter
space, we find a complex structure of regions of linear and nonlinear negative mobility: islands and tongues
which emerge and vanish under parameters manipulation. While certain such anomalous transport regimes fade
away with increasing temperature some specific regions interestingly remain rather robust. Outside those
regimes with anomalous mobility, the ac/dc driven transport is either normal or the driven Brownian particles

are not transported at all.
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I. INTRODUCTION

Out-of-equilibrium transport processes are of prominent
interest in modern statistical physics from all fundamental,
experimental, and device aspects [1,2]. A typical far from
equilibrium problem is generally nonlinear response of a sys-
tem to an external stimulus: For example when an external
constant force F; acts on the system and all other forces are
of zero average, it is expected that the long-time stationary
average particle velocity v becomes an increasing function of
the load F,,. An everyday example is that of a force pushing
objects on a table. A linear Ohmic resistor characteristic con-
stitutes another example: An increase in voltage is accompa-
nied by a linear increase of current. This normal response
behavior is distinct from cases with anomalous transport. Fa-
miliar examples are the emergence of negative differential
mobility or conductivity [3-5], or the nonlinear response in-
volving negative(-valued) nonlinear mobility away from the
linear-response behavior around zero applied voltage. Here
our focus is on yet another anomalous transport behavior,
namely, so-called “absolute negative mobility.” This latter
anomalous transport behavior refers to a regime where the
resulting velocity or current assumes the opposite sign of the
applied force or voltage around the zero-bias regime. While
the negative differential mobility (NDM) is common for an
abundance of nonlinear systems, the phenomenon of the ab-
solute negative mobility (ANM) has been experimentally de-
tected predominantly much less frequently. Some examples
that come to mind are the nonlinear response in
p-modulation-doped GaAs quantum wells [6], or also semi-
conductor superlattices [7], and recently also in driven Jo-
sephson junctions [8]. The phenomenon of ANM can typi-
cally relate to a genuine quantum effect, involving
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asymmetry tunneling dynamics. In contrast, ANM as a result
of classical stochastic dynamics occurs more rare; but it is
expected to occur whenever stylized ratchetlike structures
including geometric entropic barriers are present. A flurry of
recent theoretical [9,10] and some experimental works [8,11]
indeed illustrate such behavior.

The effect of ANM can occur also in the form of a far
from equilibrium phenomenon in driven nonlinear systems
such as in nonlinear underdamped Brownian motion dynam-
ics [12-15] or even in overdamped nonlinear Brownian mo-
tion in presence of time-delayed feedback [16].

In this work we shall focus on the case of time-dependent
driven underdamped Brownian motion occurring in a peri-
odic reflection symmetric potential and driven by thermal
correlated noise. In prior works [12—-14], we have studied the
transport properties of a classical Brownian particle of mass
m moving in a spatially periodic potential V(x)=V(x+L) of
period L and barrier height AV, which is subjected to an
external unbiased time-periodic force F(r)=F(t+T) of period
T=2/Q) with angular frequency () and of amplitude A. Ad-
ditionally, a constant bias F acts on the system. This so
defined Brownian particle dynamics is then modeled by the
driven Langevin equation [12], i.e.,

mi+yx==V'(x) +A cos(Qr+ ¢y) + Fo+ &), (1)

where x=x(r) is a position of the particle at time ¢, a dot
denotes differentiation with respect to time, and a prime de-
notes a differentiation with respect to the Brownian particle
coordinate x. The parameter y denotes the viscous friction
strength and ¢, is an initial phase of the time-periodic driv-
ing. Here, the thermal fluctuations are modeled by zero-mean
Gaussian white noise &(¢) with the Dirac delta autocorrela-
tion function (&(r)&(s))=2vykgTy8(t—s), where kg is the
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Boltzmann constant and 7, denotes the temperature.

We could show that in the above system, there are distinct
regimes of anomalous transport. In particular we can identify
both (i) ANM and (ii) NDM and the phenomenon of (iii)
negative nonlinear mobility (NNM), occurring away from
the linear-response regime with respect to external bias Fj,.
We also remind the reader that Eq. (1) mimics the physical
realization for the behavior of a physical Josephson junction
[12-15]. In this latter case, the periodic potential V(x) has the
explicit sinusoidal form, i.e.,

V(x) = AV sin(2wx/L). (2)

Notably, the theoretical findings for ANM in Josephson junc-
tions has recently been verified experimentally with the work
in Ref. [8].

The layout of the paper is as follows: In Sec. II, we
present the generalized Langevin equation determining dy-
namics of the Brownian particle in presence of exponentially
correlated thermal fluctuations. Next, in Sec. III, we address
the problem of influence of correlated thermal fluctuations
on both ANM and NNM. In the parameter space, we reveal a
refined structure of regions of negative mobility. Outside
these regions, transport is normal or particles are not trans-
ported at all. We find that small nonzero correlation time
does not destroy ANM within tailored parameter regimes
studied previously in the context of current-voltage charac-
teristics of a Josephson-junction device. Section IV provides
summary and some conclusions.

II. PERIODICALLY DRIVEN AND BIASED
NON-MARKOVIAN BROWNIAN DYNAMICS

The thermal noise &(¢) in Eq. (1) is approximated to be
ideally white noise with zero noise correlation time 7.=0. In
real systems, however, the correlation time of thermal fluc-
tuations is only approximately zero. This approximation is
justified if 7, is much smaller than the smallest characteristic
time 7, of the system itself. There are many examples where
this situation is well satisfied in real systems. There are, how-
ever, also situations where the thermal correlation time 7,. is
of order or greater than 7, so that the white-noise approxi-
mation fails [17-19]. In this latter case a modeling based on
the Markovian Langevin Eq. (1) is not correct; instead, the
generalized Langevin equation should then be invoked.

A. Generalized Langevin dynamics

When the thermal noise is correlated, the appropriate
Langevin dynamics is a non-Markovian dynamics with
memory friction described by the so-called generalized
Langevin equation (GLE) [20-24]. It explicitly reads

mx(t) + f K(t—s)x(s)ds == U"(x(1),1) + &(1), (3)
0
where the full potential takes the form

U(x,t) = V(x) — [A cos(Qr + ) + Flx. (4)

This non-Markovian dynamics can be derived from first
principles by means of coupling the system of interest to a
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bath of harmonic oscillators [21,23] with the total system
being prepared in canonical thermal equilibrium [23]. It then
follows from the central limit theorem that the thermal fluc-
tuations &(r) obey a zero-mean stationary typically non-
Markovian Gaussian stochastic process. The autocorrelation
function of the thermal noise &(r) is related to the memory
(frictional) kernel K(r) via the fluctuation-dissipation relation
[20-24],

(&(n)&(s)) = kToK (|t = s). )

Interestingly, due to the nonlinearity of the potential V(x) it is
still an unsolved open problem to derive the explicit form of
the generalized master equation for the single-event non-
Markovian probability p(x,x,t), see in Refs. [22,23,25]; this
task is achieved only in form of a time-convolutionless mas-
ter equation with time-dependent transport coefficients if the
potential V(x) is at most quadratic in x only [23,25]. The
approach yields a general non-Markovian Gauss process for
the equilibrium dynamics [x(z),x(7)].

B. Exponentially correlated thermal fluctuations

The Gaussian thermal fluctuations &(¢) in Eq. (3) are com-
pletely determined by the memory function K(z). If the
memory function K(¢) is the Dirac delta function, i.e., K(z)
=2v48(1), then Eq. (3) reduces to the form (1). A well-studied
form of correlated fluctuations is defined by means of an
Ornstein-Uhlenbeck (O-U) stationary stochastic process for
&(r) [18]. This Gaussian Markov process for the thermal
noise (note that the resulting Brownian dynamics is then still
non-Markovian) is henceforth correlated exponentially. We
next use a Markovian embedding of the GLE dynamics in
Eq. (3). Toward this objective we present the correlation
function in the form

EDE) = keTok (= s) = P20 ()

c

where 7, is the correlation time of the O-U process which we
can then smoothly vary from the limit of white Gaussian
noise (7,=0) to strongly correlated thermal noise (7.> 7).
Because the integral kernel exhibits an exponential form, we
can convert Eq. (3) into a set of ordinary stochastic differen-
tial equations: Let us define the auxiliary stochastic process
w(t) via the relation

w(t) = lf e~ ex(5)ds . (7)
TeJo
Then Eq. (3) is equivalently transformed into the form
mu (1) == U"(x(1),0) = w(2) + &(1), (8)
) =v(1), )
W) = — () + Lo, (10)
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1) == &) + 2k ToT (1), (11)
TC T

c

where the normalized white Gaussian noise I'(r) obeys
(F'(r)I'(s))=68(t—s) while the last equation of this set de-
scribes the O-U noise with the exponential correlation func-
tion (6) [26,27]. Note that in Eq. (8), the linear combination
z(1)=E&(r) —w(t) occurs. By subtracting the two last relation
we then find the set of three coupled Markovian Langevin
equations, modeling the two-dimensional non-Markovian
GLE in Eq. (3), i.e.,

i) =v(1), (12)
1 1
v(1)=—=U"(x(2),1) + —z(1), (13)
m m
. 1 Y 1 —
() =— :z(t) - ;v(t) + ;v’27kBT ol (7). (14)

The corresponding three-dimensional Fokker-Planck equa-
tion for p(x,v,z,t) is numerically cumbersome to implement
for V(x) a nonlinear spatially periodic function. Alternatively
we apply direct numerical methods for the solution of the
three coupled Langevin equations in Egs. (12)—(14).

The limiting case of white noise has been analyzed in
detail in Refs. [12—14], where a numerical method has been
described, see also in Refs. [28,29]. In the remaining of this
work we shall use the dimensionless form of the set of Egs.
(12)—(14). In doing so we scale coordinate x and time ¢ as
follows:

PO S (15)
B L, B 7'0’ 0= AV '
Then, the set of Egs. (12)—(14) is recast as
X=Y, (16)
Y==W(X)+acos(wi+ ¢y) +f+Z, (17)
.1y 1 s
Z=——7Z--"Y+—\29DE{), (18)
TL. c TL.
where
70 L
Y=—v, Z=— 19
v N (19)

and a dot denotes differentiation with respect to the rescaled
time 7. Here, Y=Y(f) is the dimensionless velocity of the
Brownian particle and Z=Z(7) denotes the corresponding di-
mensionless random force. The remaining rescaled param-
eters are: (1) the friction coefficient y=(y/m)7y=1y/7,
equals the ratio of two characteristic times, namely, time 7,
and the relaxation time of the velocity degree of freedom,
i.e., ,=m/ v, (2) the correlation time 7,=7./7y; (3) the po-
tential W(X)=V(x)/AV=W(X+1)=sin(27X) possesses unit
period and barrier height AV=2; (4) the amplitude a
=LA/AV and the frequency w=Q7, (or the period 7
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=27/ w); (5) the load f=LF,/AV; (6) the zero-mean white
noise &(7) is correlated as (&(7)&(5))=8(F-$) with a rescaled
noise intensity D=kpT,/AV. The latter is given as the ratio
of two energies, thermal energy, and half of barrier height of
the potential V(x).

From here on, we shall use only these dimensionless vari-

ables and shall omit the notation‘“hat” in all quantities in Egs.
(16)—(18).

III. NUMERICAL RESULTS FOR BROWNIAN
NON-MARKOVIAN ANOMALOUS TRANSPORT

We next study numerically the long-time transport char-
acteristics of the nonlinear Brownian dynamics with memory
friction. In particular we shall focus on the current feature as
given by the long-time averaged velocity v =(Y). This aver-
aging is performed as follows: First we perform an average
over all realizations of the thermal fluctuations which yields
a temporally varying quantity. A second temporal average is
over the cycle period of the external ac driving. Because the
resulting asymptotic long-time dynamics is not necessarily
ergodic (i.e., independent of chosen initial conditions) in all
phase space we also need to perform an average over unbi-
ased initial conditions. We have chosen uniformly distributed
initial positions X(r=0)=X,, over one period of the periodic
potential W(X); the initial velocities Y(r=0)=Y,, are unbiased
and taken as uniformly distributed in the interval [-2,2] and
the initial phase ¢, € [0,27r]. The symmetry consideration of
Eq. (3) then implies that this average velocity v(f) as a func-
tion of the external constant force f is an odd function, i.e.,
v(=f)=-v(f); thus v(f=0)=0. Therefore we will in our nu-
merics only consider the half-axis with f=0.

We have used the Stochastic Runge-Kutta algorithm of
the second order [30] with a time step typically 10~ (for
small correlation times 7 smaller time steps were taken). All
calculations have been performed on Nvidia Tesla C1060
using CUDA environment, which accelerated the speed of
simulations by almost three orders of magnitudes compared
to CPU implementation. The detailed description of the
implementation can be found in [31].

Because, as showed with previous works with white ther-
mal noise [ 12—15], the transport dynamics becomes very rich
indeed in the parameter space exhibiting all, namely, ANM,
NDM, and NNM. As it must be expected this richness does
not diminish with yet another parameter of variation, namely,
the correlation time of thermal noise 7. Also it must be kept
in mind that it is impossible to scan numerically over all
possible parameter space of the driven nonlinear Brownian
dynamics. In the following we shall focus our numerical
study to regimes in parameter space that are (i) experimen-
tally accessible [12-14] and (ii) exhibit a peculiar complex-
ity for the nonlinear response.

Clearly, the resulting velocity v=v(f) is typically nonlin-
ear in external bias f. The linear-response behavior is defined
for small bias f—0 as

v(f = 0)=pf,

where the (linear) mobility w can become negative, u<O0.
This regime will be termed absolute negative mobility

(20)
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FIG. 1. (Color online) Illustration of destructive role of finite
thermal noise correlations on absolute negative mobility (ANM):
The averaged long-time velocity v of the ac driven Brownian par-
ticle is depicted as a function of the externally applied, static force
f. The chosen system parameters are a=4.578, w=4.9, y=0.9, and
D=0.001. While white thermal noise (7,=0) does depict ANM this
is increasingly diminished upon increasing the correlation time of
thermal noise until it merges into a normal positive mobility
behavior.

(ANM); i.e., an anomalous transport regime for which the
particle is transported in the opposite direction to the exter-
nally applied force f. Moreover, negative nonlinear mobility
(NNM) refers to an anomalous transport regime for which
we find v(f)/f <0 in some finite intervals of f, being disjoint
from the interval around f=0. Finally, regimes of negative
differential mobility (NDM), when dv(f)/df <0 in some in-
tervals of f, can be detected.

A. Controlling ANM with noise correlation time
1. Undoing ANM with small noise correlation time

We first consider small bias values f and study the linear
(f—0) response and the accompanying nonlinear response
with increasing f to larger values for specific parameter set-
tings. We first zoom into a parameter regime for which we
find ANM for 7.=0. An example is depicted with Fig. 1. If
the correlation time 7, increases, starting out from zero, we
observe a diminishing ANM with increasing 7, until it dis-
appears and turns into normal positive-valued mobility upon
increasing 7, further. Put differently, the mobility coefficient
w in Eq. (20) starts to increase from negative values, passes
through zero, and eventually becomes positive. For 7.
>0.035, the velocity monotonically increases in the region
of small bias f with u>0. Note that the dimensionless cor-
relation time is rather short in comparison to the other char-
acteristic time scales, that is with the characteristic time scale
7p=1, the characteristic velocity relaxation time scale 1/%
=1.117,, and the period of the driving force 7=1.287,.

A first main finding therefore is that even a small finite
thermal noise correlation time can diminish and even undo
ANM.

2. Enhancing ANM and creating NNM

Upon scanning the parameter set to a different forcing
strength of the ac driving we find that thermal noise correla-
tions can in fact also enhance rather than diminish the value
of ANM. This is illustrated in Fig. 2, panel (a), for noise
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FIG. 2. (Color online) Illustration of constructive role of thermal
noise correlations on absolute negative mobility: The averaged
long-time velocity v of the Brownian particle is depicted as a func-
tion of the bias force f for selected values of the noise correlation
time 7, of thermal fluctuations. The system parameters are different
from Fig. 1 and read a=4.1293, w=4.9, y=0.9, and D=0.001. (a)
Within this regime we find that a small thermal noise correlation
time can enhance ANM. (b) Upon further increasing thermal noise
correlation time 7, from the values shown in (a) we observe a turn-
over into ANM again (case 7.=0.07); followed by a NNM behavior
(7.=0.0985). Finally reentry into a normal transport regime is ob-
served at small bias with a regime exhibiting NDM as f is increased
further (7,=0.12).

correlation times varying in the interval 7. [0,0.028]. Be-
yond 7,=0.028 ANM diminishes again, exhibiting also re-
gimes with NNM (7,.=0.05).

It is intriguing to note that within this parameter setting a
further increase in the correlation time yields an opposite
behavior, see panel (b) in Fig. 2. The mobility coefficient u
then is decreasing from positive values and next turns into
ANM again. The most pronounced ANM value occurs
around 7,=0.08 (not shown) before entering a regime with
coexistence of both ANM and NNM around 7.=0.1. For
larger correlation time we find normal linear mobility fol-
lowed up in the nonlinear regime with a region exhibiting
NDM.

We note that the various situations described above do
occur and can coexist in other settings of the parameters.

B. Correlation time induced Islands and tongues
of ANM and NNM

While in the previous subsection we have varied the ex-
ternal bias f away from zero we next keep this bias fixed at
f=0.1 and scan instead the correlation time 7. versus the
ac-driving strength a. The emerging asymptotic averaged ve-
locities are then depicted in color-coded plots as shown in
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FIG. 3. (Color online) Regions of negative (nonlinear) mobility
manifested either as ANM or also NNM, in the parameter plane
given by {a,7.} for three different temperatures, D=0.0001,
0.001,0.01 (top to bottom). The remaining parameters are fixed:
namely, a=4.1293, w=4.9, y=0.9, and f=0.1.

Fig. 3 for three different settings of the temperature 7,,. Our
comprehensive numerical investigations reveal a rich diver-
sity of structures, formed by regions of both, ANM and
NNM. In Fig. 3, we depict how the parameter plane {a, 7.} is
divided into regions of normal [v(f)>0 for f>0] and
anomalous [v(f) <0 for f> 0] transport. In doing so here we
do not discriminate between ANM and NNM. Both these
transport behaviors are jointly presented. Not unexpected,
there occur in this parameter plane several domains with
anomalous transport features. The geometric structure of
these domains in the depicted regime of the {a, 7.} variation
is very complex. Let us remind ourselves that the underlying
deterministic dynamics is chaotic in some regimes and there-
fore fractal structures of certain domains must be expected to
exist. We are interested in the stability of those domains in
parameter space for which ANM and/or NNM occur. Two
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thermal situations, namely, “low” and ‘“high” temperatures
are shown for comparison. At low temperature, cf. the upper
panel, we reveal the refined structure with many narrow,
slim, and twisted regions of ANM-NNM. Some of those re-
gions, the “tongues,” survive with correlation time 7. ap-
proaching zero (i.e., the horizontal abscissa) and there are
“islands” of negative mobility which disappear for 7.=0. If
one fixes one of the parameters, say 7.=0.1, intervals of
negative mobility are clearly noticeable: there are several
intervals of the amplitude a e (q;,a;,;) for which ANM-
NNM can be detected. Outside these intervals, a normal re-
sponse to the load f is found.

If temperature is increased, this small temperature struc-
ture is increasingly washed out; i.e., it becomes smoother.
Many previously existing domains of ANM-NNM behavior
start to shrink or vanish altogether. We detect a few robust
regimes for which anomalous transport persists, namely, a
few islands and a few tongues. The most robust such island
against increasing noise strength (temperature) is the island
located around {a,7.}={6.56,0.31}. This domain even sur-
vives at high temperatures.

We emphasize that such complicated regimes of ANM-
NNM are not just rare occurrences: they can be verified with
numerically arbitrarily-high-accuracy calculations and over
extended intervals in parameter space. Given the complexity
of the underlying dynamics with time-dependent ac driving
nonlinearity and in presence of noise with finite correlation
time, the observed behavior is clearly beyond a sensible ana-
lytical description.

C. Current-voltage characteristics of a realistic
Josephson-junction device

As an application of the above theoretical study we con-
sider next a Josephson junction for which the anomalous
conductance has been measured in Ref. [8]. The relation in
Eq. (1) with the potential (2) models the resistively and ca-
pacitively shunted Josephson junction, also known as the
Stewart-McCumber model [32-34]. It contains three additive
current contributions: a Cooper pair tunnel current character-
ized by the critical current /;, a normal (Ohmic) current char-
acterized by the normal-state resistance R, and a displace-
ment current due to the capacitance C of the junction. For
this model, the position x of the Brownian particle translates
into is the phase difference ¢ between the macroscopic wave
functions of the Cooper pairs on both sides of the junction,
ie., x=¢, the mass m=(f/2¢)>C, the friction coefficient
=(fi/2e)*(1/R), the barrier height AV=(#/2e)I, and the pe-
riod L=27r. The load Fy=(%i/2¢)l, is given by means of the
dc-bias current, the amplitude A=(%/2¢)l,, and the fre-
quency ) define the external ac current. The velocity v=x
translates into the voltage across the junction. The experi-
mental results for the Josephson junction presented in Ref.
[8] show very good agreement with the Stewart-McCumber
model with the following set of parameter values: namely,
the dimensionless amplitude of the ac current a=13.874, the
frequency w=2.75, the friction coefficient y=2.264, and the
(white) noise intensity D=0.000 895. We note that Eq. (3)
can serve as a generalization of the Stewart-McCumber
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FIG. 4. (Color online) Role of nonzero thermal noise correla-
tions on absolute negative mobility for a parameter set correspond-
ing to the anomalous Josephson-junction transport regime used in
the experiment in Ref. [8]. The long-time averaged voltage v across
the junction is depicted as a function of the externally applied dc
current f. The corresponding dimensionless parameters are a
=13.874, w=2.75, y=2.264, and D=0.000 895. The white thermal
noise regime (i.e., 7.=0) depicts ANM behavior which is sustained
for short correlation times of the thermal noise. For increasingly
larger correlation times ANM is diminished and eventually vanishes
all together and crosses over into a normal positive mobility behav-
ior. Still, negative-valued, nonlinear mobility can occur far away
from equilibrium; note the nonlinear response behavior for 7
=0.02 and around f~0.6.

model toward a regime of validity to lower temperatures
where finite correlations of the thermal fluctuations increas-
ingly play a significant role [34]. We numerically find that at
small nonzero correlation time of the thermal fluctuations
ANM is sustained within tailored parameter regimes, as stud-
ied previously in the context of current-voltage characteris-
tics of a ac driven Josephson-junction device in Ref. [8], see
Fig. 4. With increasing thermal noise correlation time ANM
is weakened and finally turns into normal behavior followed
by a regime of NNM far away from equilibrium. This feature
of finite thermal noise correlation is of relevance from an
experimental point of view when measuring mobility as a
function of temperature. We can also conclude from this
study that at the temperature of the experiment performed in
Ref. [8], the white thermal noise approximation is seemingly
well satisfied.
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IV. CONCLUSIONS

With this study we numerically analyzed the role of non-
zero correlation time of thermal fluctuations on the anoma-
lous transport regimes of underdamped non-Markovian
Brownian particles that are driven by time-periodic and static
forces. We detected a rich variety of anomalous transport
behavior in an experimentally wide parameter space where
anomalous transport can be monitored. The regions of abso-
lute negative mobility and negative nonlinear mobility form
complicated structures in parameter space with stripes, fi-
bers, and islands, see Fig. 3. At low temperatures these struc-
tures can unambiguously be attributed to finite correlations
of thermal fluctuations. Such correlations are either construc-
tive or destructive in nature with respect to the size of
anomalous transport coefficients such as mobility. A subse-
quent increase of temperature tends to blur these structures.
Nevertheless, there occur stable “islands” with anomalous
negative-valued mobility behavior which are solely induced
by nonzero thermal noise correlations (Fig. 3).

In the regime of linear mobility response, such nonzero
thermal correlations are found either to diminish or also to
enhance the regime of absolute negative (linear) mobility,
dependent on the specific parameter setting for ac-driving
strength and/or remaining parameters.

We also have compared our predictions in a parameter
regime of a recent experiment on anomalous response behav-
ior in a ac/dc driven Josephson junction [8]: The observed
ANM behavior is sustained for small thermal noise correla-
tion time but increasingly fades out with increasing thermal
noise correlation (in Fig. 4).
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