Tail Asymptotics for the Supercritical
Galton—Watson Process in the Heavy-Tailed Case
V. 1. Wachtel®, D. E. Denisov’, and D. A. Korshunov*

Abstract—As is well known, for a supercritical Galton—Watson process Z,, whose offspring
distribution has mean m > 1, the ratio W, := Z,/m"™ has almost surely a limit, say W.
We study the tail behaviour of the distributions of W,, and W in the case where Z; has a
heavy-tailed distribution, that is, Ee*?* = co for every A > 0. We show how different types of
distributions of Z; lead to different asymptotic behaviour of the tail of W,, and W. We describe
the most likely way in which large values of the process occur.

1. INTRODUCTION
Let Z,, be a supercritical Galton—Watson process with Zy = 1 and m := E Z; > 1. By definition,

Zn

Zn+1 = Z fl(n)7
i=1
where fi("), i,n=20,1,..., are independent identically distributed random variables with distribu-

tion F on ZT = {0,1,2,...}; by F(z) we denote the tail of F, F(z) := P{¢ > 2}.

Put Wy, := Z,/m"™. As is well known (see, e.g., |2, Theorem 1.6.1]), W;, — W a.s. as n — 0.
IfE&logé < oo, then EW =1, so P{W > 0} > 0 (see [2, Theorem 1.10.1]).

Our goal is to consider asymptotic probabilities of large deviations for the martingale se-
quence {W,,} and for its limit W. More precisely, we are going to find asymptotics for P{W,, > x}
as  — oo in the whole range of n > 1.

The tail behaviour of the martingale limit is one of the classical problems in the theory of
supercritical Galton-Watson processes. The study of P{WW > x} was initiated by Harris [14], who
showed that if ¢ is bounded, then

logE eV = 7 H(u) + O(1) as  u — 00,

where H is a positive multiplicatively periodic function and 7 is defined by the equality m” =
max{k: P{{ = k} > 0}. This information on the generating function can be translated into
asymptotics of tail probabilities. It was done by Biggins and Bingham [4]:

log P{W > z} ~ —2?/ 0~V M (z), (1.1)

where M is also a positive multiplicatively periodic function; hereinafter we write f(z) ~ g(x)
as x — oo if f(x)/g(x) — 1. Bingham and Doney [5, 6] found asymptotics for P{W > z} in
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the case when ¢ is regularly varying with noninteger index o < —1 (for the case of integer a see
De Meyer [8]). In [4] one can find results similar to (1.1) for the left tail of W in the case when
the minimum offspring size is at least 2. Fleischmann and Wachtel [11, 12] found exact (without
logarithmic scaling) asymptotics for P{W,, € (0,z)} and P{W € (0,z)} as x — 0. These two papers
give a complete description of the asymptotic behaviour of the left tail of W. It is possible to adapt
the method from [12] to upper deviation problems for processes with polynomial offspring generating
functions. As a result one gets exact asymptotics for P{W > z} as  — oo (see [12, Remark 3]).

In all the papers mentioned above, the proofs were based on the fact that ¢(u) := Ee~*W
satisfies the Poincaré functional equation, p(mu) = f(¢(u)), where f stands for the offspring
generating function. In the present paper we do not use that equation. Instead, we apply recently
developed probabilistic techniques for sums of independent identically distributed random variables
and for Galton—Watson processes with heavy tails.

We work with the following classes of distributions.

The distribution of a random variable ¢ is called heavy-tailed if E e = oo for every A > 0.

We say that a distribution F' on R is dominated varying, and write F' € D, if

F(x/2)
sup ) < 0. (1.2)

A distribution F' on R is called intermediate reqularly varying if

lim lim inf M =
el0 z—00 F(x)
Note that any regularly varying distribution is intermediate regularly varying. Any intermediate
regularly varying distribution is dominated varying.
For any positive function h(x) — oo, we say that F' is h-insensitive if F(x + h(x)) ~ F(z) as
x — oo. A distribution F' is intermediate regularly varying if and only if F' is h-insensitive for
any positive function h such that h(z) = o(z) as x — oo; in other words, if F' is o(z)-insensitive
(see [13, Theorem 2.47]).
We say that a distribution ' on R™ with mean m is strongly subexponential, and write F' € S*, if

/F(a: —y)F(y)dy ~ 2mF(x) as x — o0.
0

Among strongly subexponential distributions are intermediate regularly varying, log-normal and
Weibull distributions with parameter 8 < 1. Any dominated varying distribution is in &* if it is
long-tailed, that is, constant-insensitive.

A distribution F' is called rapidly varying if, for any € > 0,

F(z(1+¢)) = o(F(x)) as x — 00.

Clearly, this class includes the Weibull distributions F(x) = e~ with parameter 3 > 0. The
log-normal distribution is also rapidly varying. This class does not include intermediate regularly
varying distributions.

Theorem 1. Let F be a dominated varying distribution such that, for some d > 0 and ¢ < oo,

F(acy) < cF(z)

forall x, y>1. (1.3)

Then there exist constants ¢ > 0 and ¢y < 0o such that

ciF(z) <P{W, > 2} < coF () for all =z, n. (1.4)
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If, in addition, F is an intermediate reqularly varying distribution, then, uniformly in n,

n—1
P{W,, >z} ~ Zmiﬁ(miﬂaﬁ) as T — o0. (1.5)
i=0
In particular,
o0 . .
P{W, >z} ~ Z m'F(mitir) as x,n — oo (1.6)
i=0
and
e p— .
P{W >z} ~ Zm’F(m’Hx) as T — oo. (1.7)
i=0

As follows from the proof of Lemma 9 (see Section 3 below),

P{Igz}xfgk) > mka} ~ mFF(mF ) as T — 00
1S4k

and the term m*F(m**'z) in (1.5)(1.7) describes the probability of the existence of a very pro-
ductive particle in the kth generation. We can informally restate (1.5)—(1.7) as follows:

-1
{Wn >z}~ nL_J {?Sl%ffgk) > mkHa?} and {W >a}~ @{%%ffl(k) > mkH:c}.

Moreover, if F(z) is regularly varying with index a < —1, then, uniformly in n,

m—(a—l)k

Y iy mo(ehi

]P’{maxfi(k) > mhtly ‘ Wy > 37} — as T — oQ.

i<Z
In the limit n — oo we get the geometric distribution with the parameter m~(®~1). Therefore,
atypically large values of the limit W are caused by a very productive particle which lives in one of
the initial generations, and the number of this generation is random with the geometric distribution
mentioned above.

If we assume the second moment of ¢ to be finite, then we may relax the regularity condition
on F'; namely, we may consider distributions which are not necessarily intermediate regularly varying
as was assumed in Theorem 1.

Theorem 2. Let F be a dominated varying distribution and condition (1.3) hold. If E&? < oo
and F is an x"-insensitive distribution for some v > 1/2; then the asymptotics (1.5)—(1.7) hold.

We next turn to the case of Weibull-type offspring distributions.

Theorem 3. Let F(z) = e @) where R(x) is reqularly varying with index 8 € (0,1). Addi-
tionally assume that F € §*. Then, for every ¢ > 0,

(14+o0(1)F((m+e)z) <P{W, > a2} < (1+0(1))F((m —¢)x)

as x — oo uniformly in n.
If B < (3—+/5)/2 ~ 0.382, then P{W,, > 2} ~ F(mzx) as * — oo uniformly in n and
P{W > z} ~ F(mz) as x — oo.
If B <1/2 and, in addition, for some c¢; < 0,
R(k)
k: )

then P{W,, > z} ~ P{W > 2} ~ F(mz) as x — oo uniformly in n.

R(k) - R(k—1) < e k> 1, (1.8)
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Let us make a remark on Weibull-type offspring distributions which are not \/z-insensitive. If
P{{ > a} ~ e~ with some 3 € (1/2,1), then

B > 2} 2 expf (o) + D a1 ko)), mz2 (19)

and

[32 0,2

P{W >z} > exp{—(mx)ﬁ + (max)?~1(1 + 0(1))}. (1.10)

Here 02 := E(W,, — 1)? and 02 := E(W — 1)2. These bounds imply that, in contrast to the case

B <1/2, P{W,, >z} > F(mz) for all n > 2. At the end of Section 3 we give arguments for (1.10).
In Theorem 3 we have, uniformly in n,

(W, >z}~ {fio) > mz}.

Thus, large values of all W,, are caused by a correspondingly large first generation.

The importance of initial generations for deviation probabilities can be explained by the mul-
tiplicative structure of supercritical Galton—Watson processes. As a consequence of this fact, it is
“cheaper” to have some special type of behaviour at the very beginning of the process. In Theo-
rems 1 and 3 we see a very strong time localization: only a few first generations are important.
There are some examples in the literature where a weaker form of localization occurs. In the case
of lower deviations which were studied in [11, 12|, the optimal strategy looks as follows: In order
for {Z,, = k,} to hold with some k,, = o(m'), every particle in the first a,, generations should have
exactly p := min{k: P{{ = k} > 0} children. (Here we assume for simplicity that & > 1.) In all
later generations we let Zj grow without any restriction, i.e., geometrically with the rate m. Since
we want to get k, particles in the nth generation, a, should satisfy p2m”~ " ~ k,. Recalling that
kn = o(m™), we see that the number of generations with nontypical behaviour tends to infinity.
A similar strategy is behind asymptotics for P{W < ¢} as ¢ — 0 and behind asymptotics for upper
deviations of processes with polynomial generating functions. This localization effect for Galton—
Watson processes with vanishing limit, that is, Z,, conditioned on {W < e} with ¢ — 0, was recently
studied by Berestycki, Gantert, Morters and Sidorova [3]. They showed that the genealogical tree
coincides up to a certain generation with the regular u-ary tree.

It turns out that this type of optimal strategies is not universal for supercritical Galton—Watson
processes. The next result shows that if the offspring distribution has only the first power moment,
then large values of W, and W can be produced by the middle part of the tree.

Theorem 4. Assume that E&logé < 0o and F(x) is regularly varying with index —1. Then,
uniformly in n > 1,

n—1 m
P{W, > a} ~ ; m'F(m™z) ~ mx_l / F(u)du as T — 0. (1.11)
- x
For the limit W we have
o0 1 o0
A -1 [ 7
P{W > x} ~ Zm F(m'™x) ~ mx /F(u) du as T — o0. (1.12)

i=0 o

Relation (1.12) is a refinement of Theorem 1.4 in [5], which states that if E{Zy; Z; > z} ~ L(z)
for some slowly varying function L satisfying [[°(L(x)/x)dz < oo, then

o
1 Ly
E{W; W >z} ~ mlocrm/ ;)dy.
o
T
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Noting that F(z) = o(z~* [>° F(u) du), we conclude from Theorem 4 that, for every N > 1,

T

N

Zmif(m”lx) = o(P(W > z)) as T — 0.

i=0
This means that “big jumps” in any fixed number of generations do not affect large values of W.
Furthermore, the main contribution to Y ;% m'F(m'*1z) (and therefore to P{W > x}) comes from
indices ¢ such that the ratio [>7 F(u)du/ [ F(u)du is bounded away from 0 and 1. For finite
values of n we have three different regimes depending on the relation between n and x. We illustrate
them by the following example.

Example. Assume that F(z) ~ 2~ 'log ! z with some p > 1. Then

Therefore,
1 1

mlogm pmlogm

P{W >z} ~ x 1 log P x. (1.13)

Consider now finite values of n. First, if n and = are such that n/logx — oo, then, according
to (1.11),
1

mlogm

1

mlogm

1
z'L(z) ~ ———az tlog P .
pmlogm

P{W, >z} ~ v~ (L(z) = L(m"z)) ~
Comparing this with (1.13), we see that the asymptotics of P{W,, > z} and P{W > z} are equal
in this case.

Second, if n and x are such that n/logz — t € (0,00), then

1 1
L(m"z) ~ —(logz +nlogm) P ~ =log P x(1 4 tlogm)~P.
p

Consequently,
1

P{W, ~—_—
{Wn > =} pmlogm

' log P2 (1 — (1 + tlogm)~P).

Here we see that P{W,, > x} and P{W > x} are still of the same order, but the constants are
different.
Third, if n/logz — 0, then, noting that logy ~ log 2 uniformly in y € [z, m™x], we have

m"x

miz
1 — d 1 1 d —
P{W, >z} ~ 7 / Y ~ / Yo nE(mz).
x

mlogm ylogPtly  mlogm zlogPt! z y
x

Therefore, P{W,, > x} is much smaller than P{WW > x} for these values of n.

The problem of describing tail asymptotics for supercritical Galton—Watson process is closely
related to the problem of tail behaviour for a randomly stopped sum S where the random number 7
of summands has the same distribution as the summands ¢ themselves. For random sums, the only
well-studied case is when the distribution tail of 7 is much lighter than that of & (see [10]); in
this case the typical answer is P{S; > z} ~ ETP{¢ > z} as * — oo. The present study may be
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considered as a step towards general problem for randomly stopped sums where the tails of the
stopping time 7 and of the summand ¢ are comparable.

The rest of the paper is organized as follows. Section 2 is devoted to related upper bounds for
the distribution tails of sums with zero drift in the large deviation zone. Later on in Section 4 we
use them to derive upper bounds for P{WW,, > z}; more precisely, we reduce the problem of finding
the asymptotic behaviour of P{W,, > x} to that for P{Wy > 2} with some fixed N. Also, upper
bounds of Section 2 help to compute the asymptotics for P{Wy > z} for every fixed N. Lower
bounds for the distribution tail of the number of descendants in the nth generation are given in
Section 3. In Section 6 we provide final proofs of Theorems 1, 2 and 3. Finally, for Theorem 4, in
which only the first moment is finite, our approach based on describing and computing the most
likely events that lead to large deviations of W,, does not work. Here we propose an analytic method
adapted from [17] (see Section 7).

2. PRELIMINARY RESULTS FOR SUMS

We repeatedly make use of the following result which is a version of Theorem 2(i) in [10] with
exactly the same proof. In what follows 71,72, ... are independent random variables with common
distribution G and T}, :=n1 + ... + 1y.

Proposition 5. Let the distribution G have negative mean a :=En; < 0. If G € §*, then
P{Ty > o} < (1+ o(1))nG ()

as x — oo uniformly in n.

This proposition helps to deduce exact asymptotics for P{7,, > =} in the case of zero mean if
x/n > c¢> 0. If z = o0(n), then Proposition 5 is not useful for estimation of P{7,, > =} in the case
of zero mean. So, in the following two propositions we derive rough upper bounds for the large
deviation probabilities for sums with zero mean; these rough bounds will be appropriate for our
purposes. The first proposition is devoted to distributions of regularly varying type, while the second
one is devoted to Weibull-type distributions. Deriving rather rough bounds, we relax conditions on
the distribution of jumps as compared to the asymptotic results of [9, Theorems 8.1, 8.3] and [7,
Theorems 3.1.1, 4.1.2, 5.2.1].

Proposition 6. Let En =0, E{n?; n; <0} < 0o and G be a dominated varying distribution.

If, for some ¢ € (0,1),

E{n““s; n>0} < oo, (2.1)
then, for every § € (0,9), there exists a ¢ < oo such that P{T, > x} < enG(x) for all z > 0

and n < x19.
If, for some & > 0,

E{n2+5; n>0} < oo, (2.2)
then there exists a ¢ < oo such that P{T,, > x} < cnG(z) for all x > 0 and n < x2/(clogz) (or,
equivalently, x > cy/nlogn).

Proof. Let R(z) be the hazard function for G, that is, G(z) = e #®). First we prove that
dominated variation yields, for some C' < oo, the upper bound

R(z) < C+ Clogx, x> 1 (2.3)

Indeed, there exists a ¢ < oo such that G(x/2) < e“G(x) for all . Equivalently, R(z/2) > R(z) — ¢,
which implies R(22™") > R(z) — cn. For n(x) := [logy 2] + 1 we get

R(1) > R(x2_"(x)) > R(z) —en(x) = R(x) — clogy x — ¢,
and the upper bound (2.3) follows.
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For every y < x, we may estimate the tail distribution of the sum as follows:
P{T,, > 2} <P{T, >z, nr >y for some k < n}+P{T, >z, n <y forall k<n}
< nGly) + e (B{M; < y})" (2.4)

for every A > 0 by the exponential Chebyshev inequality. Fix an ¢ € (0,1). Take y := ez and
\:=2R(x)/x. Then e ** = G(z)e F®) and

P{T,, >z} < nG(y) + G(x)e R@ (E{ M ny < y})".
Let us estimate the latter truncated exponential moment:
A A 1 . L
E{e™; m <y} =Eqe™;m < 3o +Eqe™ S <m <y (2.5)
Since e < 14 u +2u? for all u < 1,
A 1 1 2 2 1 2 2 1
Eye™™im = < o STHAB(msm < o 20 Bnim = <0 S 1T+H2XBqn;m < <o (2.6)

owing to the mean zero for ;.
In the case of finite second moment we get

1
E{em; m < X} <1+ A (2.7)
Further,
1 /1
E{ekm; X <m < y} < e/\yg<X) < e)\y E{n2+5; n > 0})\2+6

by condition (2.2) and the Chebyshev inequality. Choose € > 0 so small that eC' < §/4. Then the
upper bound (2.3) yields, for some cg < o0,

M = (ER2R@)/T < 0/
and consequently
E{e’\’“; % <m < y} < 3\t (2.8)
Together with (2.7) it implies that
E{e*”l, m < y} <14 caR?(x) < (oa B2 (@) /2?

for some ¢4 < co. Hence,
P{T;, > o} < nG(y) + Cla)e—"Den @/ < nT(y) 4+ Ta)e~RE+REesnlogs)/ )

for some ¢; < oo, due to (2.3). So, in the case of finite 2 + § moment, the proposition follows for
n < z2/(cslog x) if we take into account (1.2).
In the case where condition (2.1) only holds,

1 E 1+6; >0
E{nf; m < X} <E{n}; m <0} + tm /\12 )
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and we deduce from estimate (2.6) that

1
E{e”“; m< g

Similar to (2.8),
1 C7
E{e)‘m; X <m < y} < pNEw
by condition (2.1). Then

C8 < eCB/$1+5/
PREw ;

E{eM; m <y} <1+
because R(z) < cglogx by (2.3). Hence,
P{T, > 2} < nG(y) + §($)6_R(m)ecsn/xl+5,,

and the case of finite first moment follows. [O

Proposition 7. Let the distribution G have mean zero, En; = 0, and all moments be finite,
Em|F < oo, k=1,2,.... Let R(x) be the hazard function for G, that is, G(x) = e B@) - Suppose,

for every € > 0, there exists an xy such that

R(x) < (14+¢)R(z)

for all x>z > xg.

Then, for every 0 < e < 1, there exists a ¢ = c¢(e) < oo such that

P{T, >z} < (n+ 1)G(y)

for all x>0, y < (1—¢)x and n such that nR(y)/x* < 1/c.

Proof. Take A\ := (1 +¢)R(y)/x. Then e = o~ (1+e)R(y)
By condition (2.9),

Az = (1-1—6)%%,2 < —52)%2 < <1— i)R(z)

for all z < y sufficiently large. Therefore,

o
E{em; % << y} < E{e(l—gZ/Q)R(m);% - m} <_ / L1=E2/DR() g—R(2)
1/

2e—€>R(1/N)/2

oo
— /6—52R(z)/2 dR(Z) — =
/A

1

Taking into account that, for every o > 0, e ®) = o(1/2%) as x — oo, we get
. L 2
Ee"l;X<m§y = o(\?) as Yy — oo.

Substituting (2.7) and (2.10) into (2.5), we obtain the inequality

2
E{e)‘m; m < y} <1+ CRZK# < cCR? (y)/z?

(2.9)

(2.10)
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for some ¢ < oo. Hence,
P{T;, > 2} <nG(y) + e~ (1He)R(y) gern B (y) /2> < nG(y) + e W = (n+ DG (y)

in the range where cinR(y)/2? < ¢, and the proof of the desired upper bound is complete. [

In the proof above the distribution G restricted to (—oo,1/A] comes into the upper bound
through its second moment only. The tail of GG influences the upper bound through its values to the
right of the point 1/A. Having this observation in mind, we formulate the following uniform version
of the previous proposition for a family of distributions whose tails are ultimately dominated by
that of G.

Corollary 8. Let all the conditions of Proposition 7 be fulfilled. Let G be a family of
distributions that depend on some parameter v € V and are such that, for some x1, G®)(z) < G(z)
for all x > x1 and v € V. Let every G have mean zero, and let all the second moments be
bounded. Then, for every 0 < e < 1, there exists a ¢ = c¢(g) < oo such that

(GW) (@) < (n+1)GW (y)

forallveV, x>0,y <(1—e)z and n such that nR(y)/z* < 1/c.

3. LOWER BOUNDS

Lemma 9. Let E€logé < co. Then, for every € > 0,

|
—

P{W, >z} > (1 +0(1)) 3 mif(miﬂ(l +¢)z)

1

Il
=)

as x — oo uniformly in n > 1.

Proof. Consider the following decreasing sequence of events:
Bi(z) == {Z; <mz for all j <k}.
Since Z;/m! — W a.s. as j — o0,

él;fi P{B(x)} — 1 as T — 00. (3.1)

The events
Ap(z) = {Bk(ﬂU), fi(k) > mkﬂ(l + ¢)z for some i < Zk}

are disjoint, which implies the lower bound
n—1
P{Wy >} > > P{Z,>m"z | Ap(z)} P{Ax(x)}. (3.2)
k=0

First we estimate the probability

P{Ax(z)} = Z P{By(x), Z = j}IP’{ffk) > mFt (1 + )z for some i < i}

=0
=N P{Bi(x), Z = j}(1— (1= F(m" (1 +e)2))’).
=0

<
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Since E ¢ log & < oo, by the Chebyshev inequality we have

Eélogé
mkt+lzlog x

1
P{¢ > mFH(1 4+ e)a} < = o< ) as x — oo uniformly in k.

mkz

Hence,
(1= P! (1 +)a)) = 1= jFmh 1 (1 4+ )a) (1 + 0(1))

as x — oo uniformly in k& > 0 and j < mFz. Therefore,
_ mkx
P{Ak(z)} = (1 + o(1)F(m* (1 +e)a) Y jP{Bi(x), Z = j}
j=0

as ¢ — oo uniformly in k£ > 0. The Kesten—Stigum theorem (see, e.g., [1, Theorem 2.1]) states, in
particular, that E&log ¢ < oo if and only if the family of random variables {W,,, n > 0} is uniformly
integrable. Therefore, it follows from (3.1) that

E{Wk; By (x), Wy < ac} —1 as x — oo uniformly in k.

For this reason,

k

3

x

JP{By(z), Z = j} = E{Zk; By(x), Zx < m 2} = mF E{Wj; By(z), W), < 2} ~ mF

<
Il
o

as  — oo uniformly in k£ > 0. Thus, uniformly in k& > 0,
P{Ax(z)} = (1 + o(1))m*F(m* (1 + )x) as T — 00. (3.3)
Second we prove that

. n
nzl,lgén—lﬂm{zn >m"(1+e)x | Ag(z)} — 1 as x — 00. (3.4)

Indeed, by the Markov property,

mAH (1te)e mRH (14e)a
P{Z, > m"x | Ap(z)} > P{ Z Zn—k-1,j > mnl’} = ]P’{ Z Wh—k-1; > mk+1x},
J=1 j=1

where Z,,_j_1 ; are independent copies of Z,_j_; and W,,_j,_; ; are independent copies of Wy,_;_1.
Since the family {W,,} is uniformly integrable and E W,, = 1 for every n, we can apply the law of
large numbers, which ensures that

mE+(14e)z

1
E Wok-1j = (1+ ) EWypoy =1+¢
j=1

mktly

as ¢ — oo uniformly in n > 1 and kK < n — 1. Therefore,

mkt(14e)z
P{ Z Wn—k—l,j > mka} — 1,
j=1

which justifies the convergence (3.4). Substituting (3.3) and (3.4) into (3.2), we deduce the desired
lower bound uniform in n. O
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Lemma 10. Let the distribution F have the second moment finite, 0® := Var &, < oco. Then,
for every A >0,

2

P{Wn>x}2<1—a— )ZmF o+ AVmitls) (3.5)

(m2 —

as x — oo uniformly in n.
In particular, if additionally the distribution F is \/x-insensitive, then

P{W, >z} > (1+o(1 Z ‘F(m' as x — oo uniformly in n. (3.6)
i=0

Proof. Let the events By (z) be defined as above and
Ai(z) := {By(z), fi(k) > mF e + AVmAtiy for some i < Zj},

which are again disjoint, which implies the lower bound (3.2). The same calculations as in the
previous proof lead to the following relation uniform in &£ > 0:

P{Ai(z)} = (1 + 0(1))mk7(mk+1x + AVmktlz) as T — 00. (3.7)

Then it remains to prove that

2
o
. . n -1
llxnlggan?ll]gin_l]P’{Zn >mlz | Ag(z)} > 1 T =) A (3.8)
Indeed,
mE g4 AVmFF g
IP’{Zn >m"x | Ak(:v)} > ]P{ Z Zn—k—1,j > m”x}
j=1
mk+1x+A*/mk+1x
= ]P){ Z Wn—k—l,j > mk+1x}
j=1
mE 4 AVmFF g
= ]P){ Z (Wn—k—l,j — 1) > —AV mk“x},
j=1
since EW,, = 1. Applying the Chebyshev inequality, we deduce
Var W,_j—1 mFHlae + AVmktly Var W, _r_1
P{Zy, >m"x | Ax(z)} > 1— Ag iy :1—A—g(1+0(1))

as  — oo uniformly in n > 1 and k <n — 1. As calculated in [15, Theorem 1.5.1],

o2(1—m™™) o2

Var W, = T m=VarW as n — 0o,

m2 —m

which completes the proof of (3.8). Substituting (3.7) and (3.8) into (3.2), we deduce the lower
bound (3.5).
If F is \/z-insensitive, then letting A — oo we derive the second lower bound of the lemma. [
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As clearly seen from the proof of Lemma 10, in the case of Weibull distribution with parameter
B € (1/2,1) the tail of W, is definitely heavier than F'(mz). Now let us explain why the more
accurate lower bound (1.10) given in the Introduction holds. Recalling that

where W) are independent copies of W that do not depend on &, we derive

£ Na
P{W >z} > ]P’{Z W > ma; € > Nx} > P{¢ > Nx}IP’{Z W) > mx}, (3.9)

i=1 i=1
where N, := [mx — z(ma)P], z > 0. It is easy to see that

BB

_ o~ (ma)P+p2(ma)?P 1 +0(2~2) (3.10)

P{f > Na:} -~ e—(mm—z(mx)

In view of log-scaled asymptotics for P{IV' > z} (see the first assertion of Theorem 3), we have

Ee(1-a)m"W? o5 for every ¢ > 0. Moreover, 228 < N,(2%)5. Consequently, we may apply

Nagaev’s theorem [16, Theorem 3]:
Ny Nz 2
P{; w > mx} > P{;(W(i) -1) > z(m:z:)ﬂ} = exp{—;?(mx)%_l(l + 0(1))}. (3.11)
Combining (3.9)—(3.11), we get
P{W >z} > exp{—(mx)ﬁ + (ﬁz - %) (max)* =11 + 0(1))}.

Maximizing 3z — 22 /202, we obtain (1.10).

4. UPPER BOUNDS: REDUCTION TO A FINITE TIME HORIZON

Lemma 11. Let the distribution F be dominated varying and satisfy condition (1.3). Then,
for every € > 0, there exists an N such that, for all n > N and all sufficiently large z,

P{W, > 2} < (1+)P{Wy > (1 —¢)z}.

Proof. In order to derive this upper bound, we write, for z < y,

Zn—l Zn—l
]P’{ d &> my} <P{Zp_1 >z} + ]P’{ > &> my; Zyog < z}, (4.1)

i=1 =1

where the &; are independent of Z,_;. It follows from Proposition 6 (under condition (2.1)) for
sums with zero mean, n; = & — m, that, for some ¢ < oo,

k k
P{Z& > my} = ]P’{Z(fi —m)>m(y— k)} < ckF(m(y — k)) forall k<z
i=1

i=1
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provided z < (y — z)'*9/2. Therefore,

Zin—1 z k
]P){ Z §&i > my; Zn1 < Z} = Z]P){Zn—l = k}P{Zfz > my}
k=1 =1

i=1
<) P{Zn 1 =k}kF(m(y — k)
k=1
< cEZ, 1F(m(y —2)) = em™ 1F(m(y — 2)). (4.2)

n—l(

Substituting this into (4.1) with y = m™ 1z and 2z = m"~!(z — x,,), we obtain

P{W, >z} <P{W,_1 >z — x,} +cm" ' F(m"x,)

provided x — x, < m(n—1)5/2x711+6/2.

following inequality:

Iterating this upper bound n — N times, we arrive at the

n
P{W, >z} < IP’{WN >T— Ty —...— $N+1} +c Z mk_lﬁ(mkxk) (4.3)
k=N+1

provided z < m(k—19/ 2xi+6/ % for all k. Consider the decreasing sequence xj, = x/k? and choose N
so large that mE=1)8/2 > k246 for all k > N + 1. Then (4.3) holds for all n > N + 1, and we have

P{W, > 2} <P{ Wy > - -1 + Zn: Ly mh
n>a) < N RS x c m 2 )
k=N+1
Choose N so large that additionally Y"2° \, 1/k? < e. Then
- o1 M
P{W,>a} <P{Wy>(1-c)z}+c Y m'F - )
k=N-+1
Owing to condition (1.3),
n k o0 k—1
1= mtx — m
> m F( 2 )gch(mm) > (mF—1/j2)1+e
k=N+1
Now we may increase N so that

n k =l
1= mtx eF(mz)
c E m F< 2 ) < 3 ,

k=N+1

which implies
cF(max)

P{W, > 2} <P{Wy > (1 —e)z} + B)

Applying here Lemma 9, we deduce F(mz) < (1 +0(1))P{Wy > (1 — &)z} as 2 — o0, 50
P{W, > 2} < (1+e)P{Wy > (1—¢)z}

for all sufficiently large z, and the proof is complete. [
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The calculations above imply the following

Corollary 12. Let the distribution F be dominated varying and satisfy condition (1.3). Then
there exists a constant ¢ < oo such that P{W,, > z} < c¢F(x) for all n and x.

For dominated varying distributions it is possible to obtain a more accurate bound which will
be useful for a wider class of distributions than the intermediate regularly varying ones. We do it
in the next lemma, in which the bound provided by the previous corollary serves as the first-step
preliminary bound.

Lemma 13. Let E&% < oo and the distribution F be dominated varying and satisfy condi-
tion (1.3). Then, for every v > 1/2 and £ > 0, there exists an N such that, for all n > N and all
sufficiently large x,

P{Wp, >z} < (1+e)P{Wy >z —2"}.
Proof. Here we need more accurate upper bounds based on (4.2). Take § € (1/v —1,1). First

note that, as follows from Proposition 6 under condition (2.1) (which is fulfilled because E £2 < oo),
the bound (4.2) now holds within a larger time range where z < (y — 2)'*9. For those z,

Zn—1 z/2 z
IP’{ > &> my; Zn < z} < C<Z+ > )P{Zn_l = kYkF(m(y — k) =: ¢(21 + o).
=1

k=1 k=z/2
We have

51 < F(m(y . g)) %]P’{Zn_l = kM < EZ,HF(%> < erm™ L F(my)
k=1

for some ¢; < 0o, by the dominated variation of F. Further,

2?7;_1 )zf(m(y —2)) < CQC]_F(mj_l )zf(m(y —2))

by Corollary 12 and the dominated variation of F. Collecting the bounds for ¥; and X5 with
y=m" "tz and 2 = m" ! (z — z,), we find from (4.1) that

P{W,, > 2} <P{W,_1 >z —x,} + com™ 'F(m™x) + c3F(x — x,)m" ' aF(m"x,)

Yo < ]P’{Zn_l > g}zf(m(y —2)) < (32]7<

provided z — x,, < m("~D9z1+9_ Tterating this upper bound n — N times, we arrive at the inequality

n
P{W,>z} <P{Wy>z—2p,—...—an41} + 1 Z mF I F(mF (v — 2y — . — 2p11))
k=N+1
n
+c3 Z Flx —xz,— ... — zp)mF LaF(mkxy) (4.4)
k=N+1
provided x < 771("3_1)5:13,1?4"S forall k=mn,...,N + 1.

Now take the decreasing sequence x = 27 /k%. Since v > 1/2 and § € (1/y — 1,1), it follows
that 2719 > 2. Then (4.4) holds for every n > N + 1 and we have

P{Wn>x}§P{WN>x—<ﬁ+_”+i>$v}

+c1 Zn: mk—117<mk<x—<%+...+ﬁ)x‘/))

k=N+1

"o 1 1 ~ R mka”
+ c3 Z F|x— ﬁ+”’+ﬁ !’ |m"  xF 2 .

k=N+1
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Choose N so large that > 72 v, 1/k* < 1. Then

P{W, > 2} <P{Wy >z —2"} + 1 F(z — 2") Z
k=N+1

n k 0l
— 1 = mFz
+c3F(x—2a") E m¥ le( 2 )
k=N-+1

e Flnt (e~ a7)
F(z—2x7)

Owing to condition (1.3),

n

F(mk(x — x7))
I D
k=N+1 k=41

and

z”‘: mk_le<m

k=N+1

k—1

kg —= - m
< cyxF(a” e < B
2 ) < k(e )k:%:ﬂ (mk Jk2)1+ = =R k%l mk:/k2 75 — 0

as N — oo. Taking into account that F(z — 27) < ¢sF(mx) and further increasing N, we derive
the following bound:

. F
IP’{Wn>ac}§IP’{WN>ar—ac/}+E (;m).

Applying here Lemma 9, we deduce F(mz) < (1 + o(1))P{Wy > z} as 2 — o0, 50
P{W, >z} <(1+e)P{Wy >z —2"}

for all sufficiently large x, and the proof is complete. [

Note that the assertion of Lemma 11 holds not only for intermediate regularly varying distribu-
tions but for Weibull distributions as well; more precisely, the following result holds.

Lemma 14. Let F(z) = e @) where R(x) satisfies condition (2.9) and R(z)/x — 0. Let
condition (1.3) hold. Then, for every ¢ > 0, there exists an N such that

P{W, >z} < (1+e)P{Wy > (1-¢)z}

for all n > N and all sufficiently large x.

Proof. It is similar to the proof of Lemma 11. We start again with inequality (4.1). It follows
from Proposition 7 for sums with zero mean, n; = & — m, that, for some ¢ < oo,

]P’{Zk:& > my} = ]P’{Zk:(& —m)>m(y — k‘)} < ckl?((m - g)(y — k)) forall k<z
i=1

1=1

provided z < (y — 2)?/(cR(y — 2)). Therefore,

P{Zi_:l & >my; Znq < z} <cE Zn_lf((m — g)(y — z)) = cm"_lf((m — g)(y - z))

i=1
Substituting this into (4.1) with y = m" 1z and 2 = m"~!(x — x,,), we obtain

P{W, > a2} <P{Wh_1>2—an} + cm”_lﬁ((m — %)n:cn>
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provided x — x,, < m" 122 /(cR(m"™ 12,)). Iterating this upper bound n — N times, we arrive at
the following inequality:

n
- k
P{W, >z} < ]P’{WN >T—Tp— ... — $N+1} +c Z mk_lF(<m — %) :ck> (4.5)
k=N+1
provided x — zp < mF 7122 /(cR(m* 'zy)) for all k = n,...,N + 1. Consider the decreasing

sequence zj, = x/k? and choose N so large that m* 1z /k? > R(m*~'z/k?) for all k > N + 1; it is
possible because R(z)/z — 0 as z — co. Then (4.5) holds for every n > N + 1, and we have

P > ) <oy > (1o b - Db e 3w (m- ) ).

k=N+1

Choose £ > 0 so small that m < (m — £/2)'%% where § > 0 is taken from condition (1.3). Then the
rest of the proof is the same as the proof of Lemma 11. [

5. FINITE TIME HORIZON ASYMPTOTICS
As follows from [10, Sect. 6], for intermediate regularly varying distribution F', for every fixed n,
n—1

P{W,, >z} ~ Zmif(miﬂaﬁ) as x — 00. (5.1)
i=0
For the case where the second moment of ¢ is finite, we extend this result to a wider class of
distributions as follows.

Lemma 15. Let E£? < oo and the distribution F be dominated varying. If F is 27 -insensitive
for some v > 1/2, then the equivalence (5.1) holds for every fized n.

Proof. First, Lemma 10 guarantees an appropriate lower bound. The upper bound will be
proved by induction. It is true for n = 1. Assume, for some n,

n—1
P{W, >z} < (1+0(1)) Z miF(miTl) as x — 00. (5.2)
=0

Let us prove that then (5.2) holds for n + 1. We start with the inequality

Zn,
P{Wy41 >z} = P{Zfi > m"“x}

1=1

Zn n
<P{Z,>m"(z—2")} —HP’{Z&- > m" m2:1: < Zn<m"(z— x”)}
i=1
Zn Zn
n+1 n m"x n+1 n
+P Zfi>m xr; m"y? < Z, < 5 +P Z§i>m x; Zyp < m'a?
i=1 i=1

=: P+ P+ P3+ Py,

where the & are independent of Z,,. Due to the induction hypothesis and to the fact that F is
z7-insensitive,

|
—

n—1 n
P =P{W,>z—-2"} <(1+0(1)) Zmiﬁ(mi+1(x —27)) ~ Y mlF(mitlz) as x — o0.
i=0

7

Il
o
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Take § € (1/y — 1,1). All the values of k not greater than m™z are negligible compared to yl+o
where y = m" 127, 4 > 1/2. Therefore, by Proposition 6 there exists a ¢ < oo such that

k
P{Z(éi —m) >m" e - km} < ckF(m™ e — km)
i=1

for sufficiently large « and all k¥ < m"(z — 7).
Therefore, for sufficiently large z,

m"(x—z7) k
P, = Z P{Z, = k‘}]P’{Z(fi —m)>m" e — km}

k=mnrz/2 1=1
mn(z—2x7)
<c Y P{Z,=k}kF(m" 2~ km)
k=mnx/2
n
< cm"at]P’{Zn >07 }F(m"“qﬂ).

Since E¢? < 0o and v > 1/2, it follows that o F(m"*'27) — 0 as x — co. Hence, as  — oo,
o ofe {2 £)) - o(F(2)) = ofFone)

owing to the induction hypothesis (5.2) and the dominated variation of F.
Further, for sufficiently large =,

mtx/2 . —/mnrtly
Py <c Z P{Z, = k}kF(m" 'z — km) < cE{Z,; Z, > m"xV}F( 5 )
k=mnaxY
= o(F(mx)) as x — 00

again because of the dominated variation of F'.
Finally,

m’a k
P, = Z P{Z, = k}]P’{Z(fz —2m) >m" g — 2km}.

k=1 1=1

The distribution F' is dominated varying and long-tailed (constant-insensitive), which implies that
it belongs to the class S* (see, e.g., [13, Theorem 3.29]). Also, the expression m" ™1z — 2km tends
to infinity as x — oo uniformly in k& < ma”. This allows us to apply here Proposition 5 to the
random variables 7; := & — 2m with negative mean; it ensures that, uniformly in & < ma”,

k
P{Z(fi —2m) >m" Ty — 2kzm} < (1 +o(1)EF(m™a — 2km) ~ EF (m™ ) as T — 00,
i=1
because F'is z7-insensitive. Thus,
m"xY
P4 ~ F(mn+1x) Z ]P){Zn — k’}k ~ F(mn-i-lx) EZn _ mnf(mn—i-lw)‘
k=1

Combining the bounds for Py,..., Py, we deduce that
P{Wpi1 >z} < P{W, > ma} +m"F(m"z) + o(F(ma)) as x — 00,

and the induction hypothesis (5.2) completes the proof. [
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If the distribution F' is rapidly varying, then
o0 . .
Z m F(mTz) ~ F(mx) as T — 0. (5.3)
i=0

Indeed, fix € > 0 and choose () such that F(mx) < eF(z) for every > x(¢). Then, for > x(¢),

o0 o

Z m'F(m™z) < Z(me)’ﬁ(mx) =

i=1 i=1

me =

F(mz).

1 —me

The constant multiplier on the right-hand side can be made as small as we please by an appropriate
choice of €, so the equivalence (5.3) follows.

Lemma 16. Let F(z) = e ®) where R(x) is regularly varying with index 8 € (0,1/2). In
the case B € [(3 —+/5)/2,1/2) assume also that condition (1.8) holds. Additionally assume that
F € §*. Then, for every fized n,

P{W,, >z} ~ F(mz) as T — oo.

Proof. Since § < 1/2, the distribution F is y/z-insensitive, which by Lemma 10 implies the
lower bound P{W,, > 2} > (1 + o(1))F(mx) as x — oo.

To prove the upper bound, we apply induction arguments. For n = 1, we have the equality
P{W; > x} = F(mz). Assume now P{W,, > 2} ~ F(max) for some n > 1. Let us prove that then
it holds for n + 1.

If 3 < (3 —+/5)/2, then the interval (1/(2 — 3),1 — ) is not empty; in this case we take
1= € (1/(2—-06),1=08). If 3 € [(3—-+5)/2,1/2), then 1/(2 — 3) > 1 — 3 and we take
m € (1/2,1 — B) and 79 > 1/(2 — ) so that 9 > 1. Since 71 < 1 — 3, the distribution F is
x7-insensitive. We start with the inequality

Zn, Zn
P{Zfi > m”“x} <P{Z,>m"(z—2")} + ]P’{Zfi >m"a; Z, <m(z — gj’n)}
i=1 i=1
=: P+ P,

where the & do not depend on Z,,. By the induction hypothesis and since F' is x7'-insensitive,

Py ~ F(m(z — 2™M)) ~ F(mx) as x — 00.

It remains to prove that P, = o(F(mx)) as © — co. We start with the following decomposition:

m"(zr—x72)—1 m"(r—x71) k
Py = ( oo+ ) )P{Zn=k}]P’{Z(fi—m) >m”+1:c—k:m} =: Py + Pp.
)

k=0 k=mn(x—x"2 i=1

In the first sum Py we have m™ e — mk > m™ 1272 > 21/(2=8) due to the choice 4o > 1/(2 — 3).
The function R(z)/z? is regularly varying with index 3 — 2. Hence, as © — oo, we have
ER(m™ 'z — km)/(m™* 'z — km)? — 0 uniformly in k < m™(z — 272). This observation, together
with the regular variation of R(z), allows us to apply Proposition 7 with y = (1 — &)z, which
ensures that

k
P{Z(fi —m) >m"r — mkz} < kF((m"* 'z — mk)(1 —¢))

i=1



for sufficiently large x and all & < m"(x — 272). Thus, for sufficiently large z,

m"(x—2x72)
Pu< > P{Z,=kkF((m"z - k)m(l —¢)).
k=0

Take € > 0 so small that m(1 —¢) > 1. Then, due to the rapid variation of F', as x — o0,
F((m"z —k)m(l —¢)) = o(F(m"z — k)) uniformly in k& < m"(x — 27?).

In addition, owing to the induction hypothesis,

P{ank}SP{Wn2%}§6F< k )

mn—l

for some ¢ < oo. Thus, as  — o0,

m™(z—x72) m(z—x72)

Py <o(1) / yF(mg_l )F(mnx —y)dy = o(1) / yF(y)F(mn—l(mw —y)) dy.

0 0

Since m™ ' >m > 1 and 8 > 0,

yF(m" ™ (max —y)) = o(F(ma — y))

as  — oo uniformly in y < m(x — 272). Therefore,

mx

Par < ol1) [ Fly)Flma —y)dy.
0

The inclusion F' € 8* means that

/F(y)ﬁ(mx—y)dyNZF(mx)/F(y)dy as T — 00,
0 0

291

which finally implies Py; = o(F(maz)). In the case 8 < (3 — v/5)/2 this completes the proof because

then v, = 9 and Py = 0.
If 3 < 1/2, then it remains to prove that Pas = o(F (mzx)) as well. We have

mna2 mite—k
k=mnz71 i=1

By the induction hypothesis

]P’{Zn=m”ac—k:} SP{anx— in} Nf(mx— k_1>,
m

so that

mntx2 k
P22 < Z F(mx - 1 ) (mnx —k+ 1)F(yk)

k=mmnz71
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for any yj, satisfying the inequalities y, < mk/2 and m"x — k < (mk)?/cR(yx), where ¢ = ¢(1/2) is
defined in Proposition 7. Choose v € (23,1) such that

i—1<v<i—1+ﬁ, (5.4)
gi! 72
which is possible if we choose y2 > 1/(2 — ) sufficiently close to 1/(2 — ). Then we take y
which solves R(yx) = m?> "k Jcx = cok'™7 /2. With this choice, y; < mk/2 for k < m™z7? and
sufficiently large z (by the right inequality in (5.4)) and m"z — k < (mk)?/(cR(yx))-

Further, since F(y;) = e ¥r)

mhz2

m"l‘,B’YZ
Py < c3x Z F( _1)F(y;€) < c3zF(mx) Z efilma) = R(ma—k/m" =)= R(yx)
k=mnz71 k=mmnx71

By condition (1.8) on the increments of R and by the regular variation of R, we have

R(z) - R@y) _ R(fﬂ)’ Syl

T —y z

which implies

i) = R<mx - ) — R(yx) < cskR(mz) k'™ (csR(ma) — cok?)k
< - - - .

mn—l

Since R(mx) is regularly varying with index 8 < 1/2 and k > m™2, the choice 71 € (1/2,1 — f3)
and v € (20,1) ensures R(mz) = o(k). Hence,

k cek
R(mx) — R<ma: — m"‘l) — R(yx) < — pra
which yields
00 -
Py < cyzF(ma) Z ek /e — o(F(max)) as T — 00
k=mnx71

due to 71(1 +v) > 1 and the left inequality in (5.4). Combining all the bounds, we deduce that
o(F(mz)) and consequently P{W, 1 > 2} ~ P ~ F(mz) as * — oo, and the proof is
complete O

6. PROOFS OF THEOREMS 1, 2 AND 3

Proof of Theorem 1. The bounds (1.4) follow from Lemma 9 and Corollary 12. All the other
assertions follow from the equivalence (5.1) and from Lemmas 9 and 11. O

Proof of Theorem 2. It follows from Lemmas 15, 10 and 13. O

Proof of Theorem 3. The lower bound for the general case § < 1 follows from Lemma 9.
The upper bound follows from Lemma 14, which reduces the problem to the finite time horizon N
and further induction arguments like

3 S
P{Wy >z} = P{Z W](\;)_l > mac} < P{f > ma(l — E)} + ]P’{Z WJ(\;)_l > ma; & <ma(l— E)},

i=1 =1
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where W](Vlll,Wﬁ,Qzl,... are independent copies of Wy_;. Assuming that Wy_; has a tail not
heavier than c¢F((1 — €)x), me can estimate here the second probability as follows:

1=1 k=1 =1

3 ma(l—e) k
]P’{Z WJ(\;)—l >max; £ < ma(l— 5)} = Z P{¢ = lc}]P’{z:(WJ(\;)_1 — k) >max — k‘}

By Proposition 7,

k
]P’{Z(W](Vi)_l — k) > mz — k} < (k+1)F((1 = &)(ma — k))

=1

as ¢ — oo uniformly in & < mz(1 — ¢); note that the condition k& < ma(l — ) implies that
mx — k > mxe and hence covers both conditions of Proposition 7. Thus,

mx(l—e) k . max(l—e)
> Ple= k}P{Z(WfG)_l k) > ma - k} <2 Y Ple = BIRF((1— &) (ma — k)

k=1 i=1 k=1

= o(F(m(1 — 2¢)z))

as x — 00, by the standard properties of Weibull-type distributions. This completes the proof of
the upper bound for the case 3 < 1.
In the case 3 < 1/2 the distribution F is y/z-insensitive, which by Lemma 10 implies the lower

bound P{W,, >z} > (1 + o(1))F(mz) as © — oo.
Now let us prove the upper bound in the case f < 1/2. Fix an £ > 0. Owing to Lemma 14 we
find N such that, for all n > N and all sufficiently large «,

P{W, >z} < (1+e)P{Wy > (1 —¢)z}.
As in the proof of Lemma 16, we take v € (1/(2 — ),1 — 3), so F is z”7-insensitive. We make use
of the following decomposition for n > N + 1:
3
P{W, >z} < P{{>m(z—27)} —HP’{Z W,,(ll_)1 >ma; & < m(x — :c"’)} =: P+ P.
i=1
Since F' is z7-insensitive,
P =P{¢{>m(z—a")} ~ F(ma) as x — o0.

Further, we use Lemma 14, which is applicable because n — 1 > N: ultimately in y,

P{W,_1 >y} < (1+e)P{Wy > (1 —2)y} < (14 22)F((1 — £)my)

by virtue of Lemma 16. Choose £ > 0 so small that m, := (1 — ¢)m > 1, which is possible since
m > 1. The family {W,_1 — 1, n > N + 1} satisfies the conditions of Corollary 8, which further

allows us to prove that P, = o(F(mx)) as x — oo uniformly in n > N + 1 in the same way as in
the proof of Lemma 16. O
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7. THE CASE OF REGULARLY VARYING TAIL WITH INDEX —1;
PROOF OF THEOREM 4

As proved in Lemma 9, for every € > 0,
P{W, > 2} > (1 + o(1 Zm (m* (1 +e)a)
as ¢ — oo uniformly in n > 1. Since F' is regularly varying, we deduce from here that
P{W, >z} > ( Z mEF(mk

as x — oo uniformly in n > 1. Then it remains to prove the following upper bound: for every
fixed € > 0,

P{W, >z} < (1+o(1 Zm mEHle(1 - £)). (7.1)

The method for proving upper bounds based on Lemma 11 does not work here because it relies
heavily on condition (1.3). For this reason we proceed in a different way. Define events

Ag(z) == {fi(k) > m* e (1 —¢) for some i < Z }.
Clearly,

P{Ak(2)| Zy = j} < jF(m*a(l—¢)), =1
Therefore, P{Ag(x)} < mFF(mFl2(1 —¢)) and

]P’{ L_J Ak(ac)} < z_:IP’{Ak(ac)} < kaf(mkﬂx(l —g)).
k=0 k=0

Owing to this and the upper bound

n—1 n—1
P{W, >z} < P{Wn >z, ) Ak(x)} +IP’{ U Ak(x)}7

k=0 k=0

we conclude that (7.1) will be implied by the following relation: for every fixed € > 0,

P{Wn > x, ﬁlAk(x)} = 0<Zm mht1 ) (7.2)

k=0
as ¢ — oo uniformly in n > 1. By the Chebyshev inequality, for every A > 0

]P’{Wn > z, Tﬁlm} < E{eM — 1 (i—p Ax(2) }

e)\m"a: -1
k=0

E{e*n; Mg Ar(2)} — 1 N P{Ur= Ax(2)}

e xmmx _ 1 e xmmx _ 1 ’
so that relation (7.2) will follow if we find A = \,,(z) such that
Am"r — 0o (7.3)

E{e)\Z"§ )\mn fkil( ) _O<Zm mkt1 ) (7.4)

and
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In order to find A = A\, (z) satisfying (7.3) and (7.4), we proceed with suitable exponential bounds
for bounded random variables. Take Ay, > 0 and consider the following exponential moment:

{17 S
o0
ZE{@A”" §§" Dy +§(” 1)’ mAk Yy Zn—1 _Z}

=1

Note that the events ﬂz;g A (z) and Z,_; =i do not depend on the £~ Therefore,

{ /\nnZn ﬁAkz } i { Ann g(n 1)+...+§§"—1))7 } {ﬂAk L 1_2}
N
ZE{e)‘""§£<mx1—e {ﬂAk , nl—z}

If we put
>\n,n—1 = IOgE{e)\nné; §< mn:L’(l - E)}’

then we obtain the recursive equality

o o )
k=0

We iterate this recursion n times. Let us estimate A\, ,—1 via Ayy.
For every z > 0 and y < z, it holds that e¥ < 1+ y + y2e?/2. Therefore,

1 n
E{eAnng; f S mnx(l - 5)} S ]. + )\nnm + 5)\727'”E{£2; é’ S m’nl,}e)\nnm fE(l—E)~
Since F' is regularly varying with index —1, for sufficiently large x we have

E{§2; E<mla} < g(m"x)QF(m"x)

Hence,
E{eAnné; E<mz(1—e)} <14 Ay <m + %(/\Tmm"x)m"xﬁ(m"a:)e’\""m%(l_a)). (7.5)
Define
n—1
pn(x) = kaf(mkﬂx)
k=0

and make a special choice of the initial Ay,:

1 1
log @ 2loglog eI

-1 k+1,F(mk+1 :
T ()

(pn (z)z)t—*

Ann = () = (1 +¢)
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For the product, we have the following inequalities:

m" < :E[:(m + mkaF(mka)) =m" ﬁ(l + mtFm* ) (pn(x):v)€2>

(pu(@)) = i Pul@)

n=l pgo okt

F 2

< m"exp (pn(m)x)EZE:w — mlelpn(@a)
= @)

Note that then this product is asymptotically equivalent to m™ because py(z)z — 0. Note also that

1 1
<
Annmz 1 — 1 \1+eto(l) 7 901 1 1
e (pn(x)x) log (1+e+o(1)) b 1
1
~ (pn(:l?)$)1+€+o(1) log2(1+£+o(1)) < C1(pn($)$)1+5/2 (76)

Pn (:13)%
ultimately in « and uniformly in n. In particular, it goes to zero and relation (7.3) follows.
Now we estimate all Ak, k < n — 1. With the choice of \,;, made, it follows from (7.5) that

E{eA’mg; E<mtz(l—¢)}

1 1 — 1 1
<14 M (m + 31+e) log m"xF(m"z) exp{(l —&?) (log ——— —2loglog —)})
4 pn(x)x pn(x)x pn(x)x

— 1
< 1+)\nn<m+m"xF m"x)ex { 1 —¢%)log })
() exp{ (1= ) o — -

provided 1+ ¢ < 4/3 and 2(1 — 2) > 1. Thus,

E{e*s ¢ <mmz(1—¢)} <1+ Ay <m+ %) < eXp{Ann <m+ %) },

which yields
1 1

log T 2loglog NG

—9 mk+1pF(mk+1 :
eI (m + (pn?x)iﬁ—sﬁx))

m"xF(m™x)
(Pn(@)a)=<*

>\n,n—1 < Ann (m + ) = (1 + 5)

Iterating this estimate n times, we finally deduce that

n—1
- 1 1
E{GA""Z"; ﬂ Ak(l’)} < Ee)\no — e)\no — exp{ + € log }
k=0
From here and (7.6),

E{etmnn; Nk Ap(2)} =1 1 1
) = < - +.€/21 o
e)\nnmnx 1 > G (pn(x)w) 0og pn(fﬁ)iﬂ

= ¢3pn (@) (pn(2)2)7* = 0(pn(2)),
and (7.4) is also proved. This completes the proof of Theorem 4.
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