Local limit theorem for the maximum of asymptotically
stable random walks

Vitali Wachtel

Abstract Let {S,:n > 0} be an asymptotically stable random walk and let M,
denote it’s maximum in the first n steps. We show that the asymptotic behav-
iour of local probabilities for M, can be approximated by the density of the
maximum of the corresponding stable process if and only if the renewal mass-
function based on ascending ladder heights is regularly varying at infinity. We also
give some conditions on the random walk, which guarantee the desired regularity of
the renewal mass-function. Finally, we give an example of a random walk, for which
the local limit theorem for M,, does not hold.
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1 Introduction and statement of results

Let {S,, n > 0} denote the random walk with increments X;, that is,
n
So:=0, Sy:=> X;, n>1
i=1

We shall assume that X1, X», ... are independent copies of a random variable X.
Moreover, we shall assume that X is taken from the domain of attraction of a stable
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law with characteristic function

ot T
Go,p(t) := exp{—ltl“ (1 —zﬂmtan 7)} (1
with (o, B) € A:= (0, 1) x (=1, ) U{(,1/2)}U (1,2] x [—1, 1]. If EX exists, we
assume that EX = 0. In this case we write X € D («, B).

It is well known, that for every X € D(«, B) there exists a sequence ¢, regularly
varying of index 1/« such that {S},/1/c,, t € [0, 1]} converges weakly to the stable
process {Yy g (1) t € [0, 1]} characterised by (1), i.e., EeitYep(D) — Ga,p(1).

Denote M,, := maxo<k<, Sk. It follows from the invariance principle for asymp-
totically stable random walks that appropriately rescaled M,, converges towards the
maximum of the corresponding stable law:

P(M, <c,x) —> P (max Yo () < x) asn — oQ.
0<r<l1

In the present note we pose a question on whether a local version of this convergence
is valid. More precisely, we investigate the conditions, under which the convergence

cnP(M,, € [cpx,cpx + 1)) — mg g(x) asn — 00

is true for every x > 0. (mq, g stands for the density function of maxo<;<1 Yy g(7).)
Moreover, we study the asymptotic behaviour of P(M,, € [x, x + 1)) forx = o(c,). It
is well known that by investigating local probabilities, one has to distinguish between
lattice and non-lattice distributions. We concentrate here on the case of aperiodic lattice
distributions, thatis, P(X € Z) = 1 and P(X € rZ) < 1 for all r > 2.

To formulate our results we need some additional notation. Define ladder epochs

tT:=min{k > 1: S¢ >0} and 7~ :=min{k > 1: S; <0}
Let x™ and x ~ denote the corresponding ladder heights, that is,

xT =8+ and x = —85,-.

We finally introduce the following renewal functions:

HY ) =D k"), BP0 =Uy=0+D> P +x + - +x =)
y=0 k=1

and

H™(@)=> h~(y), h~():=Uy=0+ > Py +x3 + - +x =)
y=0 k=1

where x 1‘" , X2+ ,...and x", x, , . ..areindependent copies of x " and x ~ respectively.
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Theorem 1 Suppose X € D(«, B). Then, as n — 00,

P(M, =x) ~ht(x)PE" > n) (2)
uniformly in x € (0, §,c;,), where 6, — 0O arbitrary slowly. Furthermore,

cnP(My, = x) —mg g(x/cy) — 0 3)

uniformly in x > ac,, a > 0, if and only if h™ is regularly varying at infinity.

In the case of finite variance the asymptotic behaviour of P(M,, = x) has been
studied by Aleshkyavichene [1] and by Nagaev and Eppel [10]. Moreover, in the case
when Ex ™ < oo, (2) has been obtained by Alili and Doney [2].

The restriction x > ac, in the second statement of the theorem means that we
exclude “small” values of M,,. This seems to be quite natural, because the density
function m_ g is not bounded near zero in general. More exactly, it has been proven by
Doney and Savov [6] that mq g(u) ~ u®?~1 as y — 0, where p is a constant defined
in (4). So, mg, g remains bounded if and only if ap = 1. We expect that in this case
one can get the uniform convergence on the set x > x, for any x, — oo. For random
walks with finite variance it has been shown in [10].

Theorem 1 establishes the direct connection between local probabilities of the max-
imum and the mass-function of the renewal function based on ladder heights. First, to
use (2) one has to know the asymptotic behaviour of 4™ (x) and that of P(z* > n).
The behaviour of the latter probability is well known: If

P(S, > 0) —> p € (0, 1), 4)
which is always true for X € D(«, B), then
Pzt >n)=Iln)n"", 5)

where [(x) 1s a regularly varying function. Second, to approximate local probabilities
for M,, by the density of a stable law, one needs to know that 4™ is regularly varying.
Thus, we need to understand, under which restrictions on the distribution of X we
have the desired property of 4 ™. It is worth mentioning that the regular variation of 2™
appears as a restriction in some further situations. Caravenna and Chaumont [4], for
example, have imposed this restriction in proving an invariance principle for random
walks conditioned to stay positive.

It is well known that P(x * > x) is regularly varying of index —ap, if ap < 1, and
x T is relative stable if ®p = 1. Then, using the result of Garsia and Lamperti [7], we
have that 4™ is regularly varying for any random walk with ap € (1/2, 1). It is also
known, see Williamson [12], that if the tail of a positive random variable is regularly
varying of some index less than 1/2, then the mass-function of the corresponding
renewal function is not regularly varying in general. Doney [5] has shown that the
mass-function of renewal function is regularly varying under certain assumptions on
the local probabilities of underlying random variables. In order to apply his result to
ladder heights, we need an information on P(x ™ = x).
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Theorem 2 Suppose X € D(«, B) witha < 2 and |B| < 1. If

P(X=x)= 0O (x_lP(X > x)) , 6)
then
+
P(xt —x) < LA ZY) ™
X

If, additionally, a(1 — p) > 1/2 or
P(X = —x) = 0 (x™'P(X = —1)), ®)
then, as x — 00,
P(c" =x) ~ Z2P(T = ). ©)

Applying Doney’s result mentioned above, we obtain the following statement.

Corollary 3 If X € D(a, B) witha < 2 and |B| < 1 and (6) holds, then, as x — o0,

+
) ~ ap ). (10)
X

Consequently, in view of Theorem 1,
cnP(My, =x) —mgy g(x/cy) — 0

uniformly in x > ac,, a > 0.

To the best of our knowledge, the behaviour of P(x T = x) for oscillating random
walks has been studied in the case f = 1 only. Namely, Bertoin and Doney [3] have
proven the following result: If Ex~ < oo, which is a particular case of B = 1, and
the right tail of X is long-tailed, then

1
P(X+:x)~EX—_P(X2x) as x — oo. (11)

In this special case the behaviour of P(x+ = x) is resistant against all kinds of irreg-
ularity in the local structure of the distribution of X. But this is not true in the case
when B < 1. We demonstrate it with the following example.

Example 4 Assume that

yn

SnlatD) x e[2", 2" _|_2(1—y)n/n]’ n>1

P(X =x) =
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for some y € (0, 1), and that P(X = x) = Cx~%~! for all other values of x > 0. The
negative part of X is such that P(X < —x) = O(x~%) and B < 1. One can easily see,
that P(X > x) ~ Cx™“. But

P(xT =
lim sup M = (12)
x—oo P(xt >x)
If, furthermore, (1 + p) < 1, then
ht
lim sup 2 ) _ (13)

x—oo HT(x) B
We postpone the proof of these relations to the end of the paper.

The relation (12) shows that (9) and (7) can not be true if one simply removes the
condition (6) from Theorem 2. And (13) shows that (10) can not be valid for all random
variables X € D(«, ). Combining (13) with the second statement of Theorem 1, we
see that the local limit theorem for M,, takes place not for all asymptotically stable
random walks.

There is another interesting observation connected to Example 4. Williamson’s
counterexample to the local renewal theorem can be seen as a special case of (13)
for random walks with positive increments. Since p = 1 for positive increments, the
condition a(1 + p) < 1 changes to @ < 1/2. But we know that the local renewal
theorem holds for all random walks with « > 1/2. Therefore, the following conjecture
seems to be quite plausible: (10) holds for all random walks with a(1 + p) > 1.

In conclusion we mention that we expect that analogous results are true in the non-
lattice case. There one has to replace P(M,, = x) and A (x) by P(M,, € [x,x + 1))
and H"(x + 1) — H™(x) respectively.

2 Proofs
2.1 Some results from fluctuation theory

In this paragraph we collect some known results from the fluctuation theory for random
walks.

We start with a representation for P(M,, = x), which will be used in the proof of
Theorem 1.

Lemma 5 Foralln,x > 0,

PM, =x) = ZP(Sk —x, 7" > kPGt >n—k). (14)
k=0

Proof Denote 6,, := min{k > 0: Sy = M,}. By the Markov property,

P(M, =k, 6, = k) = P(Sy = x, 6 = k)P(6,_ = 0).
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Furthermore, it follows from the duality lemma for random walks that
PSS, =x,0, =k)=P(Skx =x,17 > k).

Noting also that P(6,,_; = 0) = P(z" > n — k), we have

n
P(M, = x) = ZP(M,, —k, 0, = k)
k=0

n
= ZP(Sk =x, 7" > kPG >n—k).
k=0

Thus, the lemma is proved. O

Remark 6 Representation (14) has been derived in [2]. The authors have used it by
proving an analog of (2) for random walks with Ex ™ < oco. It is worth mentioning
that [1] contains another representation for P(M,, = x), which is based on a recursive
formula for the characteristic function of M,,. The latter is due to Nagaev [9].

We next note that 21 can be written as an infinite sum of P(Sy = x, 7~ > k).
Indeed, using the duality lemma once again, we have

0
R =Hx =0+ D P +x ++xf =x)
0
:1{x:0}+ZP(Sj:x;Sj>SQ,Sj>Sl,...,Sj>Sj_1)
0
=1{x =01+ D> P(S;=x:7" > j). (15)

If X € D(«, B), then the norming sequence ¢, can be specified by the relation

u
¢, = inf u>0:u_2/x2P(Xedx)>n , n>1.
—Uu

If, furthermore, @ < 2 and B > —1, then P(X > x) is regularly varying of index —«
and there exists a positive constant C(«, ) such that

Cla, p)

P(X >c,) ~ , asn — oQ0.
n

As it has been mentioned in the introduction, see (4), P(S, > 0) — p for every
asymptotically stable random walk. We have also mentioned, that p determines the
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asymptotic behaviour of T, see (5). Besides this relation one has

lim P(r— > n)P(rt > n) = =P (16)
n—oo T

We next state a result, which establishes a connection between the tail of T+ and
HT(x).

Lemma 7 If X € D(«a, B), then there exists a constant C(«, ) such that

C(a, p)

+ ~__
B (en) Pzt >n)’

(17)

This statement is contained implicitly in Lemma 13 of [11].
In our proofs we shall frequently use the following well-known properties of reg-
ularly varying sequences.

Lemma 8 Let a,, be regularly varying of index y .

(i) Foreverye > 0,

ag
— = (k/n)Y +0(1) asn — oo
dp

uniformly ink € |en, (1 — &)n].
(1) Ify > —1, then, for everyr > 0,

rn
r1+y

na, asn — 0.

(1)) Ify < —1, then, for everyr > 0,

o rlty
Zakfv— na, asn — O0.
I+y

k=rn

2.2 Small deviations for the maximum: Proof of (2)

Fix any ¢ € (0, 1). Itis easy to see that

SRSk =x, 17 > bP(rt > n—k)

<P(rt _ .
Zlin:oP(Skzx,‘c—>k) <P(z" >n-—c¢n)

Pt >n) <

(18)
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Using (15), we have
&n x (0. ]
ZP(Sk —x, T > k) = ZP(Sk —x, T > k) — ZP(Sk —x, 1" > k)
k=0 k=0 &n
o0
—ht(x) — ZP(Sk —x, 7" > k).

en

According to Lemma 20 from [11],

_ HT(x)
P(Sy=x,77 >k)<C , x>0. (19)
kcy
Therefore,

o 00

1 Ht
ZP(Sk =X, T > k) E CH+(.X)Z - E Cg—[/a (-x)’
en on ke Cn

where in the last step we have applied Lemma 8(iii) to the sequence (rc,)~!. Conse-
quently,

+ en
ht(x) — ce1/e ") <D PS=x.1" >k <ht(x). (20)
Cn k=0

Applying Theorem 1.1 from [7] to ™, we have

i th+(X)
1m 1n = up.
X—00 H+(x) P
This implies that
HY(x) < Cxht(x), x>0. 21)

From this bound and (20) we conclude that

en
h+1(x) gp(sk =x, 1" >k —1|< Ce—l/“:—n.
Therefore,
1 en
- gp(sk —x, 17 >k —> 1
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uniformly in x < §,¢,. Applying this to the inequalities in (18), we obtain

&n _ — + _
Bminf min 2= P(Sy=x,t77 > kP >n—k) .

1 22
n—o00 x<8,cn ht(x)P(zt > n) 22)

and

<(l-g7" (23

, o PSk=x,77 > Pt >n—k)
lim sup max
n—00 X<8nCn ht(x)P(zt > n)

Using (19) once again, we get

P(tt —k
> PSi=xt > PET >n—k) < CH ) > (" >n-H
kcy
en<k<n en<k<n
C —1-1/a g+ n
<= DS Pt > )
ncy ;
j=0
Co-1-1/a HT(x)P(tT > n)
R Cn b

where in the last two steps we have used Lemma 8 (i) and (ii) respectively. It follows
now from (21) that

S encken PSc=x,1" > Pt >n—k)
ht(x)P(tT > n)

—- 0 (24)
uniformly in x < §,,¢,. Combining (14) and (22)—(24), we obtain the desired relation.

2.3 Local limit theorem for the maximum: Proof of (3)

Let ¢ be any fixed number from the interval (0, 1/2). Then, using the bound (see
Lemma 19 in [11])

C
PSSy =x,77 >k)<—P(t” >k), x >0,
Ck

and applying Lemma 8(ii) to the sequence P(t* > n), we get

n £n
C
Z PSSy =x,7° >kPEt>n—k) < —=P(x~ >n) ZP(‘L’+ > k)
Cn
k=(1—¢)n k=1
1, P > Pt > n)

Cn

Ce
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In view of (16), the sequence nP(t~ > n)P(r™ > n) remains bounded. Therefore,

n
Z PSSy =x.7° > kPt >n—k)<Cel=" (25)
k=(1—¢&)n

for all x > 0.
Applying Theorem 5 of [11], we have, uniformly in x > 0,

(I—&)n
Z PSSy =x,7° > kPt >n—k)

k=¢en
(1—&)n
= p“’g(x/c") = > OP(rt = n—k)
k=en
A p= = PGt > n—k)
o 3 , (26)

C
k=¢en k

where py g denotes the density of the corresponding Levy meander.
Then, using Lemma 8(i), and taking into account the fact that p, g is uniformly
continuous, we get

(1—e)n

Cn Z MP@_ > kPGt >n—k)

k=¢en Ck
(I—&)n x [k —1/a k p—1-1/a K\ P
~P(” > n)PGET > n) Z Da., ,3( (;) )(;) (1 — ;)
k=en
. 1—e
N Sll'lnﬂ:p / Pa.p (invl/o{) U,O—l—l/ol(l _ U)_'Odv (27)

&

uniformly in x > 0. Using the same arguments, one can easily get

) p= > P(tT >n—k) sinx e
> ~ SBrp / W11 (L )P dy, (28)
Cik T

k=¢en &
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Combining (26)—(28), we have

(1—&)n
Cn z PSSy =x,7° > kPt >n—k) =
k=e¢en

1—¢

(1 + o(1)) 2 / Pa.g (iv-l/“) VP =1V (] = )Py + o(1),
&

T n

and the o(1)-terms are uniform in x > 0. Consequently, uniformly in x > ac,,

(I—e)n
lim lim [ ¢, Z PSSy =x, 7" > kPt >n—k)
g—0n—0o0
k=en
1

- /pa,,s (Cﬁv—l/“) v EVe (g — )y TPav | =0, (29)
0

n

The finiteness of the integral for x > ac, follows from the boundedness of p, g and
from the relation py g(y) ~ C y‘“‘l, y — o0. The latter has been proven in [6].
Define

Ny =max{n : ¢, < x}.

Lemma 9 Assume that X € D(«, B). Then

. . X
Iim lim ———

jm i T z PSSy =x,t7 > k) =ap.

k>bNy

Proof Using (19) and Lemma 8(ii), we have

1
z PSSy =x,7° > k) < CH'(x) Z —
kcy,
k>N, /b k>N,/b
+ +
< Cbl/aH_(x) < Cbl/aH_(x)_ (30)
CN, X

Applying Theorem 5 of [11] once again, we have

Pt >k
> PG=xt>k=0+ol) D %pa,m/ck).

bN <k<N,/b DNy <k=<N,/b
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Repeating the arguments, which have been used in deriving (27), and noting that
cN, ~ X, one can easily see that, as x — oo,

e ) NP = Ny T
T > T > _1— —
D, ————paple/er) ~ = . / e T
k=N, K N .,
1/b
sin wp

~

1
U,o—l—l/a U—l/a dv.
7 xP(xt > Ny) / Pa.p )
b

Taking into account (17), we get

Ny /b HH o) 1/b
D> PSi=x.7" >k ~Cap) / vP Ve sV dy. (31)

From (30) and (31) we conclude that

_r Z P(Sy =x.t~ > k) = C(a, B). (32)

k>bNy

lim lim
b—0x—00 HT(x)

The constant on the right hand side is finite, since
oo o0
/vp_l_l/“pa,ﬁ(v_l/“)dv = oz/z_“ppa,ﬁ(z)dz < 00.
0 0

To finish the proof it is sufficient to show that C(«, B) = ap for some special
random walk. We consider any X € D(«, B) with the following property: P(X = x)
is regularly varying of index —a — 1. From Lemma 7 of Jones [8] we have

P(Sy =x,t7 > k) < CkP(X =x)P(r™ > k).

Thus, using Lemma 8(i1), we get

bN, DNy

ZP(Sk —x,7° > k) < CP(X = x)ZkP(t_ > k)
k=1 =1

< Ch'"™PN?P(r~ > N)P(X = x)

< CH'"PN,P(z™ > Ny )NP(X > x)/x
H™(x)

—

< Cbl+p
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Combining this bound with (32), we get

H+(X)

W) =D P(Sk=x.1" > k) ~ Cla. B)

k=1

Recalling that H (x) = Z;C:O h*(y) is regularly varying of index ap, h™(x) ~
apH™ (x)/x. Thus, the proof of the lemma is finished. O

We now continue the proof of the local limit theorem. Assume first that 2™ (x) is
regularly varying. Then 2+ (x) ~ apH ™ (x)/x. From this relation and Lemma 9 we
infer that

bN,
=x,7 >k)=0.

b—0x—00 H(x)

The latter yields

lim lim ZP(Sk_x T >k) =0

e—>0n—00 +(Cn)

uniformly in x > ac,. Using (17) once again, we have

en

lim lim ¢, ZP(Sk —x, 7" >kP@T>n—k)=0. (33)

e—>0n—00 -

Combining (25), (28), (29) and (33), we obtain

n

1
cnP(My = x) — / Pap (cﬁv—l/a) P11 (] )Py = o(1)
0

uniformly in x > acj,. It was shown in [6] that the integral in the latter formula is equal
to my,g(x/cp). Thus, we have proven that the regular variation of h™ is sufficient for
the local limit theorem.

To get the reversed statement, we note that the convergence

cnlP(My, = [cn]) — mq p(1)

implies, in view of (25), (28) and (29), that

en

lim lim ¢, ZP(Sk = [cal, T~ > Pt >n—k) =0.

g—>0n—00 =
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(Here [x] denotes the integer part of x.) The latter is equivalent to

lim lim
e—0n—00 '+(cn)

ZP(Sk = [enl, T~ > k) = 0.

Substituting x = [c, ], we get

eNy
lim lim ZP(Sk_x ™ > k) =0.

e—>0x—00 +(_x)

This, together with Lemma 9, implies that

+
ht(x) ~ apH (x).

Thus, the proof of the second part of Theorem 1 is completed.

2.4 Proof of Theorem 2
Using Wiener—Hopf factorisation one can get, see formula (5) in [3],
0.9
P(xT=x)=D PX=x+yh (. (34)
y=0
It follows from (6) that

P(X > P(X >
max P(X = jx +y) < CM < Cj—a—lg’

Jjz1. 395
O<y=x JX X

Applying this bound to the summands on the right hand side of (34), we get
oo x—1
P(xT=x) =D D> PX=jx+»h ((j—Dx+y)

j=1y=0

P(X -
< T ED S e (G = ) = H(( — D - D).
=1

Since H ™ is regularly varying of index (1 — p),

Iim

H Gx=D=H (G -=Dx=1 [ ap .
x>00 H=(x) - (J (

j= 1) . 36)
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As a result we have

P(X > x)

P(xT=x) <CH (x)—/———. (37)
X
We next note that (34) yields
e’} oo x—1
P(xT=0)=D) PX =x+nh~ (=D > PX > jx+yh ((j—Dx+y)
y=0 j=1y=0

Using (36) and the fact that P(X > x) is regularly varying, one can easily obtain
CIP(X = x)H™ (x) <P(x" =2 x) < CP(X = x)H™ (x).
Combining the lower bound with (37), we have

P(x" >x)
x 9

P(xT=x)=C

i.e., the first statement is proven.

We now turn to the proof of (9). First we note that 2™ (x) is regularly varying of
index —1 —a (1 — p). Indeed, if «(1 — p) > 1/2, then it follows from the renewal the-
orem of Garsia and Lamperti. And if (8) holds, then, in view of (7), it is a consequence
of Theorem 3 in [5].

Fix any € € (0, 1). In view of (6),

Z PX=x+yh (y) < C@H‘(sx)

O<y<ex

< Cg¥=r

)@H_(x). (38)

(In the last step we used the fact that H is regularly varying of index a(1 — p).)

It is easy to see that P(X > ux|X > x) — u~ %, i.e. given X > x, X/x converges
weakly to the Pareto distribution. Moreover, as we have already proven, 2™ is regu-
larly varying. This implies that 2~ (ux — x)/h™ (x) is bounded on (1 + ¢, o0) and,
moreover, converges to (u — 1)~!7*U=P) pointwise. Therefore,

D P(X =x+)h(y)

y>ex
h=(X —x)

=h" (x)P(X > x)E [ =

X > (1 +e)x}|X > x]

= (1 4+ o0(1)h~ (x)P(X > x) /(u — D lmeld=pgy—e=lgy. (39)

I+e¢
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Applying (38) and (39) to the right hand side of (34), and letting ¢ — 0, we obtain

x0
P(xT =x)~h (x)P(X > x)/(u — =P y—e=lqy,
1

In particular, P(x * = x) is regularly varying, as a product of two regularly varying

functions. Since P(x ™ > x) is also regularly varying, we conclude that
P(x" =x) ~apP(x" > x)/x.

Thus, the proof of the theorem is completed.

2.5 Calculations related to Example 4

It follows from (34) that

n—2
P(x" =2"+7)> Z P(X =2"+z+y)h™ (),
y=0

where r, = 2(=v)n /n. And according to our choice of the law of X,

v

o
P(x"=2"+2) = s H (=2, 2 <ra.

Recalling that H ™ is regularly varying of index a(1 — p), we conclude that

(1-p)
corn 0=\
P(x*=2"+2) > ( ) L™ (rn)

2 (a+1n n

oyn(l—a(1-p))

> coniter) L™(rp), z<rn/2.

ne(=p)
Using that P(x ™ > x) is also regularly varying, we get finally the bound
P(xt>
P(X+ —x)> co M’
X

This implies (12).

x €2, 2" 41, /2], y' <y(—a(l—p)). (40)

We obtain (13) as a particular case of a more general observation, which can be

seen as a generalisation of the well-known example of Williamson, see [12].

Assume that X is positive and that there exists a sequence R, < 2" such that

yn

P(X =x) > 5o
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and

£x) +1
P(XZX):W’ X€(2n+Rn,2n )

for some y, o € (0, 1) and for some slowly varying function £. One can easily verify
that the additional restriction R, < 277" yields that we can choose X in a such
way that

P(sz)fvﬂ as x — 0o,
xO[

ie, X € D(a, 1).
We next derive a lower bound for P(S; = 2" + R,,). It is clear that

P(Sy =2"+ R,) > kP(X; > 2", S, =2"+ R))
> k min P(X = 2"+ y)P(S—1 < Ry)

Y=Ry
yn

2
= kP(Sk_l < Rn)z(aT)nZ(zn)

Since hT(x) = Z,C(’O:l P(S; = x) in the case of positive random variables, we have
the inequality
+/An - 2v" n
Q"+ Ry = | KPSkt < Ry ) S 62,
k=1

It follows from the convergence to a stable law, that P(S;—1 < R;) > C > Oforall k
such that ¢, < R, say k < T,. Then

s C
kP(Si_| < R,) > CT? > ,
Z‘ Bl = B = C00 = (x> Ry)2?

in the last step we have used the relation 7,, ~ 1/P(X > R,,), which follows from the
properties of the norming sequence c;,.
As a result we have

oyn » @(2") B 2(0[—1)11 zynR’%a (ﬁ(zn))Z

+ /A1
PR = Coan B G m? T Ty 22 @Ry

from this bound we conclude that

lim sup £(x)x' At (x) = 00 41)

X—> 00
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provided that R,, satisfies the condition

2(V/2)nR’(;t 22"
— 00
2o0m £(Ry)

(42)

If « > 1/2 it is not possible. But if &« < 1/2, then we can choose R, = 2(1=¥)n—dn
with some 0 < § < y (1 — 2a).

We now come back to random variables which take values of both signs. It follows
from (40) that (42) holds with «p instead of « and R, = r,,/2 if 1 —a —ap > 0.
Then, (41) yields (13).

We finish the paper with the following remark. The additional restriction o« (14 p) <
1 in (13) reflects the fact that the local behaviour of x ™ is much smoother in the case
when P(X < 0) > 0O than in the case of positive summands [note that (41) holds with-
out any additional assumption]. This effect appears due to convolution of P(X = x)
with 4™, see formula (34). This gives rise to the following question: Is it possible, at
least for some « and B8 with ap < 1/2, to infer the regular behaviour of 4™ from that
of h™?
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