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STABILITY IS NOT OPEN

by Kai CIELIEBAK,
Urs FRAUENFELDER & Gabriel P. PATERNAIN (*)

Abstract. — We give an example of a symplectic manifold with a stable hy-
persurface such that nearby hypersurfaces are typically unstable.
Résumé. — Nous donnons un exemple d’une variété symplectique contenant

une hypersurface stable telle que les hypersurfaces voisines sont instables.

1. Introduction

A closed hypersurface Σ in a symplectic manifold (M,Ω) is called stable if
a neighbourhood of Σ can be foliated by hypersurfaces whose characteristic
foliations are conjugate. Here the characteristic foliation on a hypersurface
Σ is defined by the 1-dimensional distribution ker(Ω|Σ). Stability was in-
troduced in [12] as a condition on hypersurfaces for which the Weinstein
conjecture can be proved. More recently, it has attained importance as the
condition needed for the compactness results underlying Symplectic Field
Theory [7, 2, 5] and Rabinowitz Floer homology [3, 4].
Let us consider, in a fixed symplectic manifold (M,Ω), the space HS of

closed hypersurfaces equipped with the C∞-topology and its subset SHS of
stable hypersurfaces. It is easy to see that SHS is not closed: For example,
the horocycle flow on a hyperbolic surface defines a hypersurface which
is unstable but the smooth limit of stable ones; see [4] for many more
examples. On the other hand, SHS contains open components, e.g. those
corresponding to hypersurfaces of contact type. This prompted the question
whether the set SHS is actually open in HS. The result of this paper shows
that this is not the case.
Keywords: Stability, Hamiltonian structure, characteristic foliation.
Math. classification: 53D40, 53D25.
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Theorem 1.1. — There exists a stable closed hypersurface Σ in a sym-
plectic 6-manifold such that nearby hypersurfaces are typically unstable
in the following sense: There exists a neighbourhood of Σ in HS which
contains an open dense set consisting of unstable hypersurfaces.

The theorem continues to hold if the C∞ topology is replaced by the
Ck topology for some k > 2 and hypersurfaces are only assumed to be of
class Ck.

The theorem can be rephrased in terms of stable Hamiltonian struc-
tures [2, 5, 6]. A two-form ω on an odd-dimensional manifold Σ is called a
Hamiltonian structure if it is closed and maximally nondegenerate in the
sense that its kernel distribution is one-dimensional. It is called stable if
there exists a one-form λ such that λ|kerω 6= 0 and kerω ⊂ ker dλ. Then a
hypersurface Σ in a symplectic manifold (M,Ω) is stable iff Ω|Σ defines a
stable Hamiltonian structure, and every stable Hamiltonian structure arises
as a stable hypersurface in some symplectic manifold [5]. Now Theorem 1.1
can be rephrased as follows: There exists a stable Hamiltonian structure ω
on a closed 5-manifold Σ such that nearby Hamiltonian structures with the
same cohomology class as ω are typically unstable.

Theorem 1.1 has implications on the foundations of holomorphic curve
theories such as Symplectic Field Theory [7, 2, 5] and Rabinowitz Floer
homology [3, 4]. For the construction of those theories one needs to per-
turb a given stable Hamiltonian structure to make all closed characteristics
nondegenerate. Theorem 1.1 suggests that such a perturbation may not be
possible within the class of stable Hamiltonian structures (see also [6] for
a result pointing in the same direction). In Rabinowitz Floer homology
this problem can be overcome in the following way [4]: One chooses an
additional Hamiltonian perturbation of the Rabinowitz action functional.
For a generic small perturbation the Rabinowitz action functional becomes
Morse, but for the perturbed action functional one might lose compactness.
However, one can still define a boundary operator by taking into account
only gradient flow lines close to the original ones. We wonder if a similar
strategy can be applied to SFT as well.

2. Preliminaries on Anosov Hamiltonian structures

Anosov Hamiltonian structures. Recall that the flow φt of a vector
field F on a closed manifold Σ is Anosov if there is a splitting TΣ =
RF ⊕ Es ⊕ Eu and positive constants λ and C such that for all x ∈ Σ

|dxφt(v)| 6 Ce−λt|v| for v ∈ Es and t > 0,

ANNALES DE L’INSTITUT FOURIER
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|dxφ−t(v)| 6 Ce−λt|v| for v ∈ Eu and t > 0.

If an Anosov vector field F is rescaled by a positive function its flow remains
Anosov [1, 15]. It will be useful for us to know how the bundles Es and Eu
change when we rescale F by a smooth positive function r : Σ → R+. Let
φ̃ be the flow of rF and Ẽs its stable bundle. Then (cf. [15])

(2.1) Ẽs(x) =
{
v + z(x, v)F (x) : v ∈ Es(x)

}
,

where z(x, v) is a continuous 1-form (i.e. linear in v and continuous in x).
Moreover, if we let l = l(t, x) be (for fixed x) the inverse of the diffeomor-
phism

t 7→
∫ t

0
r(φs(x))−1 ds

then

(2.2) dφ̃t(v + z(x, v)F (x)) = dφl(v) + z(φl(x), dφl(v))F (φl(x)).

This shows that for closed Σ the flow φ̃t is again Anosov. There is a similar
expression for Ẽu. It is clear from the discussion above that the weak
bundles RF ⊕ Es and RF ⊕ Eu do not change under rescaling of F (the
strong bundles Es,u are indeed affected by rescaling as we have just seen).
Let (Σ, ω) be a Hamiltonian structure. We say that the structure is

Anosov if the flow of any vector field F spanning kerω is Anosov.
We say that an Anosov Hamiltonian structure satisfies the 1/2-pinching

condition or that it is 1-bunched [10, 9] if for any vector field F spanning
kerω with flow φt there are functions µf , µs : Σ× R+ → R+ such that

• limt→∞ supx∈Σ
µs(x,t)2

µf (x,t) = 0;
• µf (x, t)|v| 6 |dφt(v)| 6 µs(x, t)|v| for all x ∈ Σ, t > 0 and v ∈
Es(x), and µf (x, t)|v| 6 |dφ−t(v)| 6 µs(x, t)|v| for all x ∈ Σ, t > 0
and v ∈ Eu(φtx).

We remark that the 1/2-pinching condition is invariant under rescaling.
Indeed, consider the flow φ̃t of rF . It is clear from (2.1) and (2.2) that
there is a positive constant κ such that

1
κ
µf (x, l(t, x))|ṽ| 6 |dφ̃t(ṽ)| 6 κµs(x, l(t, x))|ṽ|

for t > 0 and ṽ ∈ Ẽs (with a similar expression for Ẽu). We know that
given ε > 0, there exists T > 0 such that for all x ∈ Σ and all t > T we
have

µs(x, t)2

µf (x, t) < ε.
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On the other hand, there exists a > 0 such that l(t, x) > at for all x ∈ Σ
and t > 0. Hence, if we choose t > T/a we have

µs(x, l(t, x))2

µf (x, l(t, x)) < ε

for all x ∈ Σ. Therefore

lim
t→∞

sup
x∈Σ

µs(x, l(t, x))2

µf (x, l(t, x)) = 0

and thus φ̃t is also 1/2-pinched.
Hence the Anosov property as well as the 1/2-pinching condition are

invariant under rescaling and thus intrinsic properties of the Hamiltonian
structure. One of the main consequences of the 1/2-pinching condition is
that the weak bundles RF ⊕Es and RF ⊕Eu are of class C1 [9, Theorem
5] (see also [11]).

Stable Anosov Hamiltonian structures. Suppose now (Σ, ω) is a
stable Anosov Hamiltonian structure satisfying the 1/2-pinching condi-
tion. Let λ be a stabilizing 1-form and R the Reeb vector field defined
by iRω = λ0 and λ(R) = 1. Invariance under the flow implies that ω
and λ both vanish on Es and Eu. Since the flow φt of R is Anosov and
Es ⊕ Eu = kerλ which is C∞, it follows that Es = kerλ ∩ (RF ⊕ Es)
and Eu must be C1. Under these conditions we can introduce the Kanai
connection [13] which is defined as follows.
Let I be the (1, 1)-tensor on Σ given by I(v) = −v for v ∈ Es, I(v) = v

for v ∈ Eu and I(R) = 0. Consider the symmetric non-degenerate bilinear
form given by

h(X,Y ) := ω(X, IY ) + λ⊗ λ(X,Y ).

The pseudo-Riemannian metric h is of class C1 and thus there exists a
unique C0 affine connection ∇ such that:

(1) h is parallel with respect to ∇;
(2) ∇ has torsion ω ⊗R.

This connection has the following desirable properties [8, 13]: it is invariant
under φt and the Anosov splitting is invariant under ∇ (i.e. if X is any
section of Es,u then ∇vX ∈ Es,u for any v).
The other good consequence of the 1/2-pinching condition, besides C1

smoothness of the bundles, is the following lemma (cf. [13, Lemma 3.2]).

Lemma 2.1. — ∇(dλ) = 0.

ANNALES DE L’INSTITUT FOURIER
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Proof. — Suppose τ is any invariant (0, 3)-tensor annihilated by R. We
claim that τ must vanish. To see this, consider for example a triple of
vectors (v1, v2, v3) where v1, v2 ∈ Es but v3 ∈ Eu. Then there is a constant
C > 0 such that for all t > 0

|τx(v1, v2, v3)| = |τφtx(dφt(v1), dφt(v2), dφt(v3))|

6 Cµs(x, t)2
µf (x, t)−1|v1||v2||v3|.

By the 1/2-pinching condition the last expression tends to zero as t → ∞
and therefore τx(v1, v2, v3) = 0. The same will happen for other possible
triples (v1, v2, v3) when we let t→ ±∞.

Since dλ and ∇ are φt-invariant, so is ∇(dλ). Since iRdλ = 0, ∇(dλ) is
also annihilated by R (to see that ∇R(dλ) = 0 use that dλ is φt-invariant
and that ∇R = LR). Hence by the previous argument applied to τ = ∇(dλ)
we conclude that ∇(dλ) = 0 as desired. �

Quasi-conformal Anosov Hamiltonian structures. Let φt be an
Anosov flow on Σ endowed with a C0-Riemannian metric. Consider the
following functions on Σ× R:

Ks(x, t) = max{|dφt(v)| : v ∈ Es(x), |v| = 1}
min{|dφt(v)| : v ∈ Es(x), |v| = 1} ,

Ku(x, t) = max{|dφt(v)| : v ∈ Eu(x), |v| = 1}
min{|dφt(v)| : v ∈ Eu(x), |v| = 1} .

The flow φt is said to be quasi-conformal if Ku and Ks are both bounded
on Σ×R. This property is clearly independent of the choice of Riemannian
metric used to define Ks and Ku. Moreover it is shown in [18, Proposition
3.5] that quasi-conformality is independent of times changes, thus it makes
sense to talk about quasi-conformal Anosov Hamiltonian structures. The
next theorem will be useful for us.

Theorem 2.2 ([18], Theorems 1.3 and 1.4). — Let φt be a topologically
mixing Anosov flow with dimEs > 2 and dimEu > 2. If φt is quasi-
conformal, then the weak bundles are C∞.

Recall that φt is topologically mixing if for any two nonempty open sets
U and V in Σ, there is a compact set K ⊂ R such that for every t ∈ RrK
we have φt(U)∩V 6= ∅. Recall also that φt is said to be transitive if there is
a dense orbit. Our Anosov flows will always be transitive since they preserve
a smooth volume form [14, Chapter 18].

TOME 60 (2010), FASCICULE 7
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3. A theorem

Theorem 3.1. — Let (Σ, ω) be a 1/2-pinched Anosov Hamiltonian
structure with [ω] 6= 0, but [ω2] = 0. Suppose in addition that Σ fibres
over a closed 3-manifold with fibres diffeomorphic to S2 and transversal to
the weak subbundles. Then, if (Σ, ω) is stable, the weak subbundles must
be C∞.

Proof. — The proof of this theorem is very much inspired by the proof
of Theorem 2 in [13]. We first make the following observation:

• Es (Eu) cannot contain a nontrivial proper continuous subbundle.
Indeed since RR ⊕ Eu is transversal to the fibres of the fibration Σ → M

by 2-spheres, we can write TΣ = V ⊕RR⊕Eu where V is the vertical sub-
bundle of the fibration. Using this splitting we may define an isomorphism
Es 7→ V and since the tangent bundle of S2 does not admit a nontrivial
proper continuous subbundle, the same holds for Es (and Eu).
Next we observe that the stabilizing 1-form λ cannot be closed. Indeed,

write ω2 = dτ and note that if λ was closed, then the volume form λ ∧ dτ
would be exact, which is absurd.
Since ω is non-degenerate, there exists a smooth bundle map L : Es ⊕

Eu → Es ⊕ Eu such that for sections X,Y of Es ⊕ Eu

dλ(X,Y ) = ω(LX, Y ) = ω(X,LY ).

The map L is invariant under φt and preserves the decomposition Es⊕Eu,
i.e. L = Ls + Lu, where Ls : Es → Es and Lu : Eu → Eu. In particular,
L commutes with I. By Lemma 2.1, the 1/2-pinching condition implies
that ∇(dλ) = 0 and thus L is parallel with respect to ∇. Note that by
transitivity of φt, the characteristic polynomial of Lsx is independent of
x ∈ Σ. Let ρ ∈ C be an eigenvalue of Ls. Consider A := Ls − <(ρ) Id.
Note that A cannot be zero: Otherwise dλ = c ω for a constant c ∈ R; since
λ is not closed, c 6= 0, which in turns implies [ω] = 0, contradicting the
hypotheses of the theorem.
Clearly A2 has µ := −=(ρ)2 as an eigenvalue. Let H ⊂ Es denote the

eigenspace of the eigenvalue µ. Since Ls is parallel it has the same dimension
at every point x ∈ Σ and since Es cannot contain a nontrivial proper
continuous subbundle, we deduce that H = Es. Hence A2 = µ Id. Moreover
µ 6= 0, otherwise kerA would be a nontrivial proper continuous subbundle
of Es. Therefore we have proved that

Js := 1
=(ρ) (Ls −<(ρ) Id)

ANNALES DE L’INSTITUT FOURIER
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defines a parallel almost complex structure on Es of class C1 invariant
under φt. Similarly we obtain an almost complex structure Ju on Eu.

Now choose a Riemannian metric on Es (resp. Eu) which is invariant
under Js (resp. Ju). By declaring Es, Eu and RR orthogonal and R with
norm 1, we obtain a metric (of class C1) on Σ such that with respect to
this metric

max{|dφt(v)| : v ∈ Es(x), |v| = 1}
min{|dφt(v)| : v ∈ Es(x), |v| = 1} = 1,

for all t ∈ R and x ∈ Σ. This is because φt preserves Js and Es has rank
two. Similarly for Eu. This shows that (Σ, ω) is a quasi-conformal Anosov
Hamiltonian structure.
Finally we note that if a transitive Anosov flow is not topologically mix-

ing, then by a theorem of J. Plante [17] it must be a suspension with
constant return function. In particular, this implies that there is a closed
1-form β such that β(R) > 0. The same argument above that proved that λ
cannot be closed shows that such a β cannot exist. Hence φt is topologically
mixing and by Theorem 2.2 the weak bundles must be C∞. �

Remark 3.2. — Note that the proof above only requires λ to be of
class C2.

4. The example

Let Γ be a discrete group of isometries of H3 such that M := Γ r H3

is a closed orientable hyperbolic 3-manifold. We consider the geodesic flow
acting on the unit sphere bundle SM and let α be the canonical contact
1-form.
The space of invariant 2-forms of the geodesic flow of M = Γ r H3

has dimension two [13, Claim 3.3]. It is spanned by the 2-form dα and
the additional 2-form ψ which we now describe. Given a unit vector v ∈
TxH3, let i(v) : TxH3 → TxH3 be the linear map defined by i(v)(v) =
0 and i(v) rotates vectors in {v}⊥ by π/2 according to the orientation
of H3. Any vector ξ ∈ TvSH3 can be written as ξ = (ξH , ξV ) with the
usual identification of horizontal and vertical components (cf. [16]). Define
Jv : TvSH3 → TvSH3 as

(4.1) Jv(ξH , ξV ) = (i(v)ξV , i(v)ξH).

Then

(4.2) ψv(ξ, η) := dαv(Jvξ, η) = 〈i(v)ξV , ηV 〉 − 〈i(v)ξH , ηH〉.

Clearly this construction descends to SM where we use the same notation
(ψ, α, etc.) In a moment we will check that ψ is invariant under φt, but

TOME 60 (2010), FASCICULE 7



2456 Kai CIELIEBAK, Urs FRAUENFELDER & Gabriel P. PATERNAIN

before we do so, let us describe the stable and unstable bundles of φt and
the action of dφt on them. Recall that dφt(ξH , ξV ) = (Y (t), Ẏ (t)) where Y
is the unique Jacobi field (along the geodesic πφt(v), where π : SM →M is
foot-point projection) with initial conditions (ξH , ξV ). Solving the Jacobi
equation Ÿ − Y = 0 we find:

Es(v) = {(w,−w) : w ⊥ v},
Eu(v) = {(w,w) : w ⊥ v}.

Note that J leaves Es and Eu invariant. Moreover

dφt(w,−w) = e−t(ew(t),−ew(t)),
dφt(w,w) = et(ew(t), ew(t)),

where ew(t) is the parallel transport of w along the geodesic πφt(v). Since
ei(v)w(t) = i(πφtv)ew(t) we see that dφt preserves J . Since dα is also φt
invariant, it follows that ψ is invariant. Note that iRψ = 0 for the Reeb
vector field R of α.

Lemma 4.1. — The invariant 2-form ψ is closed but not exact. The
4-form ψ2 is exact and (SM,ψ) is a stable Hamiltonian structure with
stabilizing 1-form α and Reeb vector field R.

Proof. — The 3-form dψ is invariant under φt and is annihilated by R.
Then the proof of Lemma 2.1 shows that dψ = 0 (obviously φt is 1/2-
pinched). In order to show that [ψ] 6= 0, consider Sx the 2-sphere of unit
vectors in TxH3. A tangent vector ξ ∈ TvSx has the form ξ = (0, w) where
w ⊥ v. If we take two tangent vectors ξ = (0, w), η = (0, u) ∈ TvSx, from
(4.1) and (4.2) we see that

ψv(ξ, η) = 〈i(v)w, u〉.

This implies that ∫
Sx

ψ 6= 0

and thus [ψ] 6= 0. Consider now the invariant 4-form ψ2 and the invariant
5-form α ∧ ψ2. By transitivity, there is a constant k such that α ∧ ψ2 =
k α∧ (dα)2. Contracting with R we see that ψ2 must be k (dα)2 and there-
fore exact. Finally, it is immediate from the definition (4.2) of ψ that its
restriction to Es⊕Eu = kerα is non-degenerate. Hence (SM,ψ) is a Hamil-
tonian structure with stabilizing 1-form α and Reeb vector field R. �

Now let X := SM × (−ε, ε) and τ : X → SM the obvious projection.
Define ωX := d(rτ∗α)+τ∗ψ, where r ∈ (−ε, ε). For ε small enough (X,ωX)
is a symplectic manifold and r = 0 is the stable hypersurface (SM,ψ).
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We have now come to our main result which implies Theorem 1.1 in the
introduction.

Theorem 4.2. — A typical hypersurface Σ ⊂ X near SM is not stable.

Proof. — Consider a hypersurface Σ near r = 0 and let ω be ωX re-
stricted to Σ. By Lemma 4.1, [ω] 6= 0, but [ω2] = 0. Since SM fibres over
M with fibres given by 2-spheres transveral to the weak bundles the same
holds true for Σ (recall that under perturbations the stable and unsta-
ble bundles vary continuously). Finally we note that (Σ, ω) is 1/2-pinched.
Indeed, recall that for the geodesic flow of M , we have

|dφt(ξ)| = e−t|ξ| for ξ ∈ Es,
|dφt(ξ)| = et|ξ| for ξ ∈ Eu.

Thus for a flow ϕt which is C1 close to φt we get
1
C
|ξ|e−At 6 |dϕt(ξ)| 6 C|ξ|e−at for ξ ∈ Es and t > 0,

1
C
|ξ|e−At 6 |dϕ−t(ξ)| 6 C|ξ|e−at for ξ ∈ Eu and t > 0,

where all the constants C,A, a are close to 1. Thus (Σ, ω) is 1/2-pinched.
We can now apply Theorem 3.1 to conclude that if Σ near r = 0 is

stable, then the weak bundles must be C∞. However, a theorem of Hassel-
blatt [10, Corollary 1.10] asserts that an open and dense set of symplectic
Anosov systems does not have weak bundles of class C2−ε. Thus a typical
hypersurface Σ near r = 0 cannot be stable. �

Remark 4.3. — It is possible to prove the last theorem without appeal-
ing to Theorem 2.2. An inspection of the proof of Theorem 3.1 shows that
since dφt preserves J, all the closed orbits are actually 2-bunched in the
terminology of [10], and the local perturbation argument in [10, Section 4]
implies that an open and dense set of symplectic Anosov systems does not
have all closed orbits being 2-bunched (this fact is actually used in the
proof of [10, Corollary 1.10] quoted above). Of course, the conclusion of
Theorem 3.1 is stronger if we use Theorem 2.2.
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