

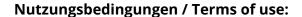


# Stability is not open

Kai Cieliebak, Urs Frauenfelder, Gabriel P. Paternain

# Angaben zur Veröffentlichung / Publication details:

Cieliebak, Kai, Urs Frauenfelder, and Gabriel P. Paternain. 2010. "Stability is not open." *Annales de l'institut Fourier* 60 (7): 2449–59. https://doi.org/10.5802/aif.2614.





# **ANNALES**

# DE

# L'INSTITUT FOURIER

Kai CIELIEBAK, Urs FRAUENFELDER & Gabriel P. PATERNAIN Stability is not open

Tome 60, nº 7 (2010), p. 2449-2459.

<a href="http://aif.cedram.org/item?id=AIF\_2010\_\_60\_7\_2449\_0">http://aif.cedram.org/item?id=AIF\_2010\_\_60\_7\_2449\_0</a>

© Association des Annales de l'institut Fourier, 2010, tous droits réservés.

L'accès aux articles de la revue « Annales de l'institut Fourier » (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

# cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques

http://www.cedram.org/

### STABILITY IS NOT OPEN

## by Kai CIELIEBAK, Urs FRAUENFELDER & Gabriel P. PATERNAIN (\*)

ABSTRACT. — We give an example of a symplectic manifold with a stable hypersurface such that nearby hypersurfaces are typically unstable.

RÉSUMÉ. — Nous donnons un exemple d'une variété symplectique contenant une hypersurface stable telle que les hypersurfaces voisines sont instables.

#### 1. Introduction

A closed hypersurface  $\Sigma$  in a symplectic manifold  $(M,\Omega)$  is called stable if a neighbourhood of  $\Sigma$  can be foliated by hypersurfaces whose characteristic foliations are conjugate. Here the characteristic foliation on a hypersurface  $\Sigma$  is defined by the 1-dimensional distribution  $\ker(\Omega|_{\Sigma})$ . Stability was introduced in [12] as a condition on hypersurfaces for which the Weinstein conjecture can be proved. More recently, it has attained importance as the condition needed for the compactness results underlying Symplectic Field Theory [7, 2, 5] and Rabinowitz Floer homology [3, 4].

Let us consider, in a fixed symplectic manifold  $(M,\Omega)$ , the space  $\mathcal{HS}$  of closed hypersurfaces equipped with the  $C^{\infty}$ -topology and its subset  $\mathcal{SHS}$  of stable hypersurfaces. It is easy to see that  $\mathcal{SHS}$  is not closed: For example, the horocycle flow on a hyperbolic surface defines a hypersurface which is unstable but the smooth limit of stable ones; see [4] for many more examples. On the other hand,  $\mathcal{SHS}$  contains open components, e.g. those corresponding to hypersurfaces of contact type. This prompted the question whether the set  $\mathcal{SHS}$  is actually open in  $\mathcal{HS}$ . The result of this paper shows that this is not the case.

Keywords: Stability, Hamiltonian structure, characteristic foliation. *Math. classification:* 53D40, 53D25.

 $<sup>(\</sup>tt^*)$  The first author was partially supported by DFG grant CI 45/1-3. The second author was partially supported by the Basic research fund 2010-0007669 funded by the Korean government.

THEOREM 1.1. — There exists a stable closed hypersurface  $\Sigma$  in a symplectic 6-manifold such that nearby hypersurfaces are typically unstable in the following sense: There exists a neighbourhood of  $\Sigma$  in  $\mathcal{HS}$  which contains an open dense set consisting of unstable hypersurfaces.

The theorem continues to hold if the  $C^{\infty}$  topology is replaced by the  $C^k$  topology for some  $k \geq 2$  and hypersurfaces are only assumed to be of class  $C^k$ .

The theorem can be rephrased in terms of stable Hamiltonian structures [2, 5, 6]. A two-form  $\omega$  on an odd-dimensional manifold  $\Sigma$  is called a Hamiltonian structure if it is closed and maximally nondegenerate in the sense that its kernel distribution is one-dimensional. It is called  $\operatorname{stable}$  if there exists a one-form  $\lambda$  such that  $\lambda|_{\ker \omega} \neq 0$  and  $\ker \omega \subset \ker d\lambda$ . Then a hypersurface  $\Sigma$  in a symplectic manifold  $(M,\Omega)$  is stable iff  $\Omega|_{\Sigma}$  defines a stable Hamiltonian structure, and every stable Hamiltonian structure arises as a stable hypersurface in some symplectic manifold [5]. Now Theorem 1.1 can be rephrased as follows: There exists a stable Hamiltonian structure  $\omega$  on a closed 5-manifold  $\Sigma$  such that nearby Hamiltonian structures with the same cohomology class as  $\omega$  are typically unstable.

Theorem 1.1 has implications on the foundations of holomorphic curve theories such as Symplectic Field Theory [7, 2, 5] and Rabinowitz Floer homology [3, 4]. For the construction of those theories one needs to perturb a given stable Hamiltonian structure to make all closed characteristics nondegenerate. Theorem 1.1 suggests that such a perturbation may not be possible within the class of stable Hamiltonian structures (see also [6] for a result pointing in the same direction). In Rabinowitz Floer homology this problem can be overcome in the following way [4]: One chooses an additional Hamiltonian perturbation of the Rabinowitz action functional. For a generic small perturbation the Rabinowitz action functional becomes Morse, but for the perturbed action functional one might lose compactness. However, one can still define a boundary operator by taking into account only gradient flow lines close to the original ones. We wonder if a similar strategy can be applied to SFT as well.

#### 2. Preliminaries on Anosov Hamiltonian structures

Anosov Hamiltonian structures. Recall that the flow  $\phi_t$  of a vector field F on a closed manifold  $\Sigma$  is Anosov if there is a splitting  $T\Sigma = \mathbb{R}F \oplus E^s \oplus E^u$  and positive constants  $\lambda$  and C such that for all  $x \in \Sigma$ 

$$|d_x \phi_t(v)| \leqslant C e^{-\lambda t} |v| \text{ for } v \in E^s \text{ and } t \geqslant 0,$$

$$|d_x \phi_{-t}(v)| \leqslant C e^{-\lambda t} |v| \text{ for } v \in E^u \text{ and } t \geqslant 0.$$

If an Anosov vector field F is rescaled by a positive function its flow remains Anosov [1, 15]. It will be useful for us to know how the bundles  $E^s$  and  $E^u$ change when we rescale F by a smooth positive function  $r: \Sigma \to \mathbb{R}_+$ . Let  $\widetilde{\phi}$  be the flow of rF and  $\widetilde{E}^s$  its stable bundle. Then (cf. [15])

(2.1) 
$$\widetilde{E}^{s}(x) = \{ v + z(x, v) F(x) \colon v \in E^{s}(x) \},$$

where z(x, v) is a continuous 1-form (i.e. linear in v and continuous in x). Moreover, if we let l = l(t, x) be (for fixed x) the inverse of the diffeomorphism

$$t \mapsto \int_0^t r(\phi_s(x))^{-1} \, ds$$

then

(2.2) 
$$d\widetilde{\phi}_t(v+z(x,v)F(x)) = d\phi_l(v) + z(\phi_l(x), d\phi_l(v))F(\phi_l(x)).$$

This shows that for closed  $\Sigma$  the flow  $\widetilde{\phi}_t$  is again Anosov. There is a similar expression for  $\widetilde{E}^u$ . It is clear from the discussion above that the weak bundles  $\mathbb{R}F \oplus E^s$  and  $\mathbb{R}F \oplus E^u$  do not change under rescaling of F (the strong bundles  $E^{s,u}$  are indeed affected by rescaling as we have just seen).

Let  $(\Sigma, \omega)$  be a Hamiltonian structure. We say that the structure is *Anosov* if the flow of any vector field F spanning  $\ker \omega$  is Anosov.

We say that an Anosov Hamiltonian structure satisfies the 1/2-pinching condition or that it is 1-bunched [10, 9] if for any vector field F spanning  $\ker \omega$  with flow  $\phi_t$  there are functions  $\mu_f, \mu_s \colon \Sigma \times \mathbb{R}_+ \to \mathbb{R}_+$  such that

- $\lim_{t\to\infty} \sup_{x\in\Sigma} \frac{\mu_s(x,t)^2}{\mu_f(x,t)} = 0;$
- $\mu_f(x,t)|v| \leq |d\phi_t(v)| \leq \mu_s(x,t)|v|$  for all  $x \in \Sigma$ , t > 0 and  $v \in E^s(x)$ , and  $\mu_f(x,t)|v| \leq |d\phi_{-t}(v)| \leq \mu_s(x,t)|v|$  for all  $x \in \Sigma$ , t > 0 and  $v \in E^u(\phi_t x)$ .

We remark that the 1/2-pinching condition is invariant under rescaling. Indeed, consider the flow  $\widetilde{\phi}_t$  of rF. It is clear from (2.1) and (2.2) that there is a positive constant  $\kappa$  such that

$$\frac{1}{\kappa}\mu_f(x,l(t,x))|\tilde{v}| \leqslant |d\widetilde{\phi}_t(\tilde{v})| \leqslant \kappa\mu_s(x,l(t,x))|\tilde{v}|$$

for t > 0 and  $\tilde{v} \in \widetilde{E}^s$  (with a similar expression for  $\widetilde{E}^u$ ). We know that given  $\varepsilon > 0$ , there exists T > 0 such that for all  $x \in \Sigma$  and all t > T we have

$$\frac{\mu_s(x,t)^2}{\mu_f(x,t)} < \varepsilon.$$

On the other hand, there exists a > 0 such that  $l(t, x) \ge at$  for all  $x \in \Sigma$  and t > 0. Hence, if we choose t > T/a we have

$$\frac{\mu_s(x, l(t, x))^2}{\mu_f(x, l(t, x))} < \varepsilon$$

for all  $x \in \Sigma$ . Therefore

$$\lim_{t \to \infty} \sup_{x \in \Sigma} \frac{\mu_s(x, l(t, x))^2}{\mu_f(x, l(t, x))} = 0$$

and thus  $\widetilde{\phi}_t$  is also 1/2-pinched.

Hence the Anosov property as well as the 1/2-pinching condition are invariant under rescaling and thus intrinsic properties of the Hamiltonian structure. One of the main consequences of the 1/2-pinching condition is that the weak bundles  $\mathbb{R}F \oplus E^s$  and  $\mathbb{R}F \oplus E^u$  are of class  $C^1$  [9, Theorem 5] (see also [11]).

Stable Anosov Hamiltonian structures. Suppose now  $(\Sigma, \omega)$  is a stable Anosov Hamiltonian structure satisfying the 1/2-pinching condition. Let  $\lambda$  be a stabilizing 1-form and R the Reeb vector field defined by  $i_R\omega = \lambda_0$  and  $\lambda(R) = 1$ . Invariance under the flow implies that  $\omega$  and  $\lambda$  both vanish on  $E^s$  and  $E^u$ . Since the flow  $\phi_t$  of R is Anosov and  $E^s \oplus E^u = \ker \lambda$  which is  $C^{\infty}$ , it follows that  $E^s = \ker \lambda \cap (\mathbb{R}F \oplus E^s)$  and  $E^u$  must be  $C^1$ . Under these conditions we can introduce the Kanai connection [13] which is defined as follows.

Let I be the (1,1)-tensor on  $\Sigma$  given by I(v)=-v for  $v\in E^s$ , I(v)=v for  $v\in E^u$  and I(R)=0. Consider the symmetric non-degenerate bilinear form given by

$$h(X,Y):=\omega(X,IY)+\lambda\otimes\lambda(X,Y).$$

The pseudo-Riemannian metric h is of class  $C^1$  and thus there exists a unique  $C^0$  affine connection  $\nabla$  such that:

- (1) h is parallel with respect to  $\nabla$ ;
- (2)  $\nabla$  has torsion  $\omega \otimes R$ .

This connection has the following desirable properties [8, 13]: it is invariant under  $\phi_t$  and the Anosov splitting is invariant under  $\nabla$  (i.e. if X is any section of  $E^{s,u}$  then  $\nabla_v X \in E^{s,u}$  for any v).

The other good consequence of the 1/2-pinching condition, besides  $C^1$  smoothness of the bundles, is the following lemma (cf. [13, Lemma 3.2]).

Lemma 2.1. — 
$$\nabla(d\lambda) = 0$$
.

*Proof.* — Suppose  $\tau$  is any invariant (0,3)-tensor annihilated by R. We claim that  $\tau$  must vanish. To see this, consider for example a triple of vectors  $(v_1, v_2, v_3)$  where  $v_1, v_2 \in E^s$  but  $v_3 \in E^u$ . Then there is a constant C > 0 such that for all  $t \ge 0$ 

$$|\tau_x(v_1, v_2, v_3)| = |\tau_{\phi_t x}(d\phi_t(v_1), d\phi_t(v_2), d\phi_t(v_3))|$$
  

$$\leq C\mu_s(x, t)^2 \mu_f(x, t)^{-1} |v_1| |v_2| |v_3|.$$

By the 1/2-pinching condition the last expression tends to zero as  $t \to \infty$  and therefore  $\tau_x(v_1, v_2, v_3) = 0$ . The same will happen for other possible triples  $(v_1, v_2, v_3)$  when we let  $t \to \pm \infty$ .

Since  $d\lambda$  and  $\nabla$  are  $\phi_t$ -invariant, so is  $\nabla(d\lambda)$ . Since  $i_R d\lambda = 0$ ,  $\nabla(d\lambda)$  is also annihilated by R (to see that  $\nabla_R(d\lambda) = 0$  use that  $d\lambda$  is  $\phi_t$ -invariant and that  $\nabla_R = L_R$ ). Hence by the previous argument applied to  $\tau = \nabla(d\lambda)$  we conclude that  $\nabla(d\lambda) = 0$  as desired.

Quasi-conformal Anosov Hamiltonian structures. Let  $\phi_t$  be an Anosov flow on  $\Sigma$  endowed with a  $C^0$ -Riemannian metric. Consider the following functions on  $\Sigma \times \mathbb{R}$ :

$$K^{s}(x,t) = \frac{\max\{|d\phi_{t}(v)| : v \in E^{s}(x), |v| = 1\}}{\min\{|d\phi_{t}(v)| : v \in E^{s}(x), |v| = 1\}},$$

$$K^{u}(x,t) = \frac{\max\{|d\phi_{t}(v)| \colon v \in E^{u}(x), \ |v| = 1\}}{\min\{|d\phi_{t}(v)| \colon v \in E^{u}(x), \ |v| = 1\}}.$$

The flow  $\phi_t$  is said to be *quasi-conformal* if  $K^u$  and  $K^s$  are both bounded on  $\Sigma \times \mathbb{R}$ . This property is clearly independent of the choice of Riemannian metric used to define  $K^s$  and  $K^u$ . Moreover it is shown in [18, Proposition 3.5] that quasi-conformality is independent of times changes, thus it makes sense to talk about quasi-conformal Anosov Hamiltonian structures. The next theorem will be useful for us.

THEOREM 2.2 ([18], Theorems 1.3 and 1.4). — Let  $\phi_t$  be a topologically mixing Anosov flow with dim  $E^s \ge 2$  and dim  $E^u \ge 2$ . If  $\phi_t$  is quasiconformal, then the weak bundles are  $C^{\infty}$ .

Recall that  $\phi_t$  is topologically mixing if for any two nonempty open sets U and V in  $\Sigma$ , there is a compact set  $K \subset \mathbb{R}$  such that for every  $t \in \mathbb{R} \setminus K$  we have  $\phi_t(U) \cap V \neq \emptyset$ . Recall also that  $\phi_t$  is said to be transitive if there is a dense orbit. Our Anosov flows will always be transitive since they preserve a smooth volume form [14, Chapter 18].

#### 3. A theorem

THEOREM 3.1. — Let  $(\Sigma, \omega)$  be a 1/2-pinched Anosov Hamiltonian structure with  $[\omega] \neq 0$ , but  $[\omega^2] = 0$ . Suppose in addition that  $\Sigma$  fibres over a closed 3-manifold with fibres diffeomorphic to  $S^2$  and transversal to the weak subbundles. Then, if  $(\Sigma, \omega)$  is stable, the weak subbundles must be  $C^{\infty}$ .

*Proof.* — The proof of this theorem is very much inspired by the proof of Theorem 2 in [13]. We first make the following observation:

•  $E^s$  ( $E^u$ ) cannot contain a nontrivial proper continuous subbundle. Indeed since  $\mathbb{R}R \oplus E^u$  is transversal to the fibres of the fibration  $\Sigma \to M$  by 2-spheres, we can write  $T\Sigma = V \oplus \mathbb{R}R \oplus E^u$  where V is the vertical subbundle of the fibration. Using this splitting we may define an isomorphism  $E^s \mapsto V$  and since the tangent bundle of  $S^2$  does not admit a nontrivial proper continuous subbundle, the same holds for  $E^s$  (and  $E^u$ ).

Next we observe that the stabilizing 1-form  $\lambda$  cannot be closed. Indeed, write  $\omega^2 = d\tau$  and note that if  $\lambda$  was closed, then the volume form  $\lambda \wedge d\tau$  would be exact, which is absurd.

Since  $\omega$  is non-degenerate, there exists a smooth bundle map  $L \colon E^s \oplus E^u \to E^s \oplus E^u$  such that for sections X, Y of  $E^s \oplus E^u$ 

$$d\lambda(X,Y) = \omega(LX,Y) = \omega(X,LY).$$

The map L is invariant under  $\phi_t$  and preserves the decomposition  $E^s \oplus E^u$ , i.e.  $L = L^s + L^u$ , where  $L^s \colon E^s \to E^s$  and  $L^u \colon E^u \to E^u$ . In particular, L commutes with I. By Lemma 2.1, the 1/2-pinching condition implies that  $\nabla(d\lambda) = 0$  and thus L is parallel with respect to  $\nabla$ . Note that by transitivity of  $\phi_t$ , the characteristic polynomial of  $L^s_x$  is independent of  $x \in \Sigma$ . Let  $\rho \in \mathbb{C}$  be an eigenvalue of  $L^s$ . Consider  $A := L^s - \Re(\rho) \operatorname{Id}$ . Note that A cannot be zero: Otherwise  $d\lambda = c \omega$  for a constant  $c \in \mathbb{R}$ ; since  $\lambda$  is not closed,  $c \neq 0$ , which in turns implies  $[\omega] = 0$ , contradicting the hypotheses of the theorem.

Clearly  $A^2$  has  $\mu:=-\Im(\rho)^2$  as an eigenvalue. Let  $H\subset E^s$  denote the eigenspace of the eigenvalue  $\mu$ . Since  $L^s$  is parallel it has the same dimension at every point  $x\in \Sigma$  and since  $E^s$  cannot contain a nontrivial proper continuous subbundle, we deduce that  $H=E^s$ . Hence  $A^2=\mu$  Id. Moreover  $\mu\neq 0$ , otherwise ker A would be a nontrivial proper continuous subbundle of  $E^s$ . Therefore we have proved that

$$\mathbb{J}^s := \frac{1}{\Im(\rho)} (L^s - \Re(\rho) \operatorname{Id})$$

defines a parallel almost complex structure on  $E^s$  of class  $C^1$  invariant under  $\phi_t$ . Similarly we obtain an almost complex structure  $\mathbb{J}^u$  on  $E^u$ .

Now choose a Riemannian metric on  $E^s$  (resp.  $E^u$ ) which is invariant under  $\mathbb{J}^s$  (resp.  $\mathbb{J}^u$ ). By declaring  $E^s$ ,  $E^u$  and  $\mathbb{R}R$  orthogonal and R with norm 1, we obtain a metric (of class  $C^1$ ) on  $\Sigma$  such that with respect to this metric

$$\frac{\max\{|d\phi_t(v)|\colon v\in E^s(x),\ |v|=1\}}{\min\{|d\phi_t(v)|\colon v\in E^s(x),\ |v|=1\}}=1,$$

for all  $t \in \mathbb{R}$  and  $x \in \Sigma$ . This is because  $\phi_t$  preserves  $\mathbb{J}^s$  and  $E^s$  has rank two. Similarly for  $E^u$ . This shows that  $(\Sigma, \omega)$  is a quasi-conformal Anosov Hamiltonian structure.

Finally we note that if a transitive Anosov flow is not topologically mixing, then by a theorem of J. Plante [17] it must be a suspension with constant return function. In particular, this implies that there is a closed 1-form  $\beta$  such that  $\beta(R) > 0$ . The same argument above that proved that  $\lambda$  cannot be closed shows that such a  $\beta$  cannot exist. Hence  $\phi_t$  is topologically mixing and by Theorem 2.2 the weak bundles must be  $C^{\infty}$ .

Remark 3.2. — Note that the proof above only requires  $\lambda$  to be of class  $C^2$ .

### 4. The example

Let  $\Gamma$  be a discrete group of isometries of  $\mathbb{H}^3$  such that  $M := \Gamma \setminus \mathbb{H}^3$  is a closed orientable hyperbolic 3-manifold. We consider the geodesic flow acting on the unit sphere bundle SM and let  $\alpha$  be the canonical contact 1-form.

The space of invariant 2-forms of the geodesic flow of  $M = \Gamma \setminus \mathbb{H}^3$  has dimension two [13, Claim 3.3]. It is spanned by the 2-form  $d\alpha$  and the additional 2-form  $\psi$  which we now describe. Given a unit vector  $v \in T_x\mathbb{H}^3$ , let  $i(v)\colon T_x\mathbb{H}^3 \to T_x\mathbb{H}^3$  be the linear map defined by i(v)(v) = 0 and i(v) rotates vectors in  $\{v\}^{\perp}$  by  $\pi/2$  according to the orientation of  $\mathbb{H}^3$ . Any vector  $\xi \in T_vS\mathbb{H}^3$  can be written as  $\xi = (\xi_H, \xi_V)$  with the usual identification of horizontal and vertical components (cf. [16]). Define  $J_v\colon T_vS\mathbb{H}^3 \to T_vS\mathbb{H}^3$  as

(4.1) 
$$J_v(\xi_H, \xi_V) = (i(v)\xi_V, i(v)\xi_H).$$

Then

(4.2) 
$$\psi_v(\xi,\eta) := d\alpha_v(J_v\xi,\eta) = \langle i(v)\xi_V,\eta_V \rangle - \langle i(v)\xi_H,\eta_H \rangle.$$

Clearly this construction descends to SM where we use the same notation  $(\psi, \alpha, \text{ etc.})$  In a moment we will check that  $\psi$  is invariant under  $\phi_t$ , but

before we do so, let us describe the stable and unstable bundles of  $\phi_t$  and the action of  $d\phi_t$  on them. Recall that  $d\phi_t(\xi_H, \xi_V) = (Y(t), \dot{Y}(t))$  where Y is the unique Jacobi field (along the geodesic  $\pi\phi_t(v)$ , where  $\pi \colon SM \to M$  is foot-point projection) with initial conditions  $(\xi_H, \xi_V)$ . Solving the Jacobi equation  $\ddot{Y} - Y = 0$  we find:

$$E^{s}(v) = \{(w, -w) \colon w \perp v\},\$$
  
$$E^{u}(v) = \{(w, w) \colon w \perp v\}.$$

Note that J leaves  $E^s$  and  $E^u$  invariant. Moreover

$$d\phi_t(w, -w) = e^{-t}(e_w(t), -e_w(t)),$$
  
$$d\phi_t(w, w) = e^{t}(e_w(t), e_w(t)),$$

where  $e_w(t)$  is the parallel transport of w along the geodesic  $\pi\phi_t(v)$ . Since  $e_{i(v)w}(t) = i(\pi\phi_t v)e_w(t)$  we see that  $d\phi_t$  preserves J. Since  $d\alpha$  is also  $\phi_t$  invariant, it follows that  $\psi$  is invariant. Note that  $i_R\psi = 0$  for the Reeb vector field R of  $\alpha$ .

LEMMA 4.1. — The invariant 2-form  $\psi$  is closed but not exact. The 4-form  $\psi^2$  is exact and  $(SM, \psi)$  is a stable Hamiltonian structure with stabilizing 1-form  $\alpha$  and Reeb vector field R.

Proof. — The 3-form  $d\psi$  is invariant under  $\phi_t$  and is annihilated by R. Then the proof of Lemma 2.1 shows that  $d\psi = 0$  (obviously  $\phi_t$  is 1/2-pinched). In order to show that  $[\psi] \neq 0$ , consider  $S_x$  the 2-sphere of unit vectors in  $T_x\mathbb{H}^3$ . A tangent vector  $\xi \in T_vS_x$  has the form  $\xi = (0, w)$  where  $w \perp v$ . If we take two tangent vectors  $\xi = (0, w)$ ,  $\eta = (0, u) \in T_vS_x$ , from (4.1) and (4.2) we see that

$$\psi_v(\xi,\eta) = \langle i(v)w, u \rangle.$$

This implies that

$$\int_{S_x} \psi \neq 0$$

and thus  $[\psi] \neq 0$ . Consider now the invariant 4-form  $\psi^2$  and the invariant 5-form  $\alpha \wedge \psi^2$ . By transitivity, there is a constant k such that  $\alpha \wedge \psi^2 = k \alpha \wedge (d\alpha)^2$ . Contracting with R we see that  $\psi^2$  must be  $k (d\alpha)^2$  and therefore exact. Finally, it is immediate from the definition (4.2) of  $\psi$  that its restriction to  $E^s \oplus E^u = \ker \alpha$  is non-degenerate. Hence  $(SM, \psi)$  is a Hamiltonian structure with stabilizing 1-form  $\alpha$  and Reeb vector field R.

Now let  $X := SM \times (-\varepsilon, \varepsilon)$  and  $\tau \colon X \to SM$  the obvious projection. Define  $\omega_X := d(r\tau^*\alpha) + \tau^*\psi$ , where  $r \in (-\varepsilon, \varepsilon)$ . For  $\varepsilon$  small enough  $(X, \omega_X)$  is a symplectic manifold and r = 0 is the stable hypersurface  $(SM, \psi)$ . We have now come to our main result which implies Theorem 1.1 in the introduction.

Theorem 4.2. — A typical hypersurface  $\Sigma \subset X$  near SM is not stable.

*Proof.* — Consider a hypersurface  $\Sigma$  near r=0 and let  $\omega$  be  $\omega_X$  restricted to  $\Sigma$ . By Lemma 4.1,  $[\omega] \neq 0$ , but  $[\omega^2] = 0$ . Since SM fibres over M with fibres given by 2-spheres transveral to the weak bundles the same holds true for  $\Sigma$  (recall that under perturbations the stable and unstable bundles vary continuously). Finally we note that  $(\Sigma, \omega)$  is 1/2-pinched. Indeed, recall that for the geodesic flow of M, we have

$$|d\phi_t(\xi)| = e^{-t}|\xi| \text{ for } \xi \in E^s,$$
  
$$|d\phi_t(\xi)| = e^t|\xi| \text{ for } \xi \in E^u.$$

Thus for a flow  $\varphi_t$  which is  $C^1$  close to  $\phi_t$  we get

$$\frac{1}{C}|\xi|e^{-At} \leqslant |d\varphi_t(\xi)| \leqslant C|\xi|e^{-at} \text{ for } \xi \in E^s \text{ and } t \geqslant 0,$$

$$\frac{1}{C}|\xi|e^{-At} \leqslant |d\varphi_{-t}(\xi)| \leqslant C|\xi|e^{-at} \text{ for } \xi \in E^u \text{ and } t \geqslant 0,$$

where all the constants C, A, a are close to 1. Thus  $(\Sigma, \omega)$  is 1/2-pinched.

We can now apply Theorem 3.1 to conclude that if  $\Sigma$  near r=0 is stable, then the weak bundles must be  $C^{\infty}$ . However, a theorem of Hasselblatt [10, Corollary 1.10] asserts that an open and dense set of symplectic Anosov systems does not have weak bundles of class  $C^{2-\varepsilon}$ . Thus a typical hypersurface  $\Sigma$  near r=0 cannot be stable.

Remark 4.3. — It is possible to prove the last theorem without appealing to Theorem 2.2. An inspection of the proof of Theorem 3.1 shows that since  $d\phi_t$  preserves  $\mathbb{J}$ , all the closed orbits are actually 2-bunched in the terminology of [10], and the local perturbation argument in [10, Section 4] implies that an open and dense set of symplectic Anosov systems does not have all closed orbits being 2-bunched (this fact is actually used in the proof of [10, Corollary 1.10] quoted above). Of course, the conclusion of Theorem 3.1 is stronger if we use Theorem 2.2.

#### BIBLIOGRAPHY

- D. V. Anosov & J. G. Sinaĭ, "Certain smooth ergodic systems", Uspehi Mat. Nauk 22 (1967), no. 5 (137), p. 107-172.
- [2] F. BOURGEOIS, Y. ELIASHBERG, H. HOFER, K. WYSOCKI & E. ZEHNDER, "Compactness results in symplectic field theory", Geom. Topol. 7 (2003), p. 799-888.
- [3] K. CIELIEBAK & U. A. FRAUENFELDER, "A Floer homology for exact contact embeddings", Pacific J. Math. 239 (2009), no. 2, p. 251-316.

- [4] K. CIELIEBAK, U. A. FRAUENFELDER & G. P. PATERNAIN, "Symplectic topology of Mañé's critical values", Geometry and Topology 14 (2010), p. 1765-1870.
- K. CIELIEBAK & K. MOHNKE, "Compactness for punctured holomorphic curves", J. Symplectic Geom. 3 (2005), no. 4, p. 589-654, Conference on Symplectic Topology.
- [6] K. CIELIEBAK & E. VOLKOV, "First steps in stable Hamiltonian topology", arXiv:1003.5084, 2010.
- [7] Y. ELIASHBERG, A. GIVENTAL & H. HOFER, "Introduction to symplectic field theory", Geom. Funct. Anal. (2000), no. Special Volume, Part II, p. 560-673, GAFA 2000 (Tel Aviv, 1999).
- [8] R. Feres, "Geodesic flows on manifolds of negative curvature with smooth horospheric foliations", Ergodic Theory Dynam. Systems 11 (1991), no. 4, p. 653-686.
- [9] B. HASSELBLATT, "Horospheric foliations and relative pinching", J. Differential Geom. 39 (1994), no. 1, p. 57-63.
- [10] —, "Regularity of the Anosov splitting and of horospheric foliations", Ergodic Theory Dynam. Systems 14 (1994), no. 4, p. 645-666.
- [11] M. W. Hirsch, C. C. Pugh & M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin, 1977, ii+149 pages.
- [12] H. Hofer & E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994, xiv+341 pages.
- [13] M. Kanai, "Differential-geometric studies on dynamics of geodesic and frame flows", Japan. J. Math. (N.S.) 19 (1993), no. 1, p. 1-30.
- [14] A. Katok & B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995, With a supplementary chapter by Katok and Leonardo Mendoza, xviii+802 pages.
- [15] W. Parry, "Synchronisation of canonical measures for hyperbolic attractors", Comm. Math. Phys. 106 (1986), no. 2, p. 267-275.
- [16] G. P. PATERNAIN, Geodesic flows, Progress in Mathematics, vol. 180, Birkhäuser Boston Inc., Boston, MA, 1999, xiv+149 pages.
- [17] J. F. Plante, "Anosov flows", Amer. J. Math. 94 (1972), p. 729-754.
- [18] V. SADOVSKAYA, "On uniformly quasiconformal Anosov systems", Math. Res. Lett. 12 (2005), no. 2-3, p. 425-441.

Manuscrit reçu le 20 août 2009, accepté le 15 octobre 2010.

Kai CIELIEBAK Ludwig-Maximilians-Universität Mathematisches Institut 80333 München (Germany) kai@math.lmu.de

Urs FRAUENFELDER Seoul National University Department of Mathematics Research Institute of Mathematics 151-747 Seoul (South Korea) frauenf@snu.ac.kr Gabriel P. PATERNAIN University of Cambridge Department of Pure Mathematics and Mathematical Statistics Cambridge CB3 0WB (UK) g.p.paternain@dpmms.cam.ac.uk