Wall crossing for symplectic vortices and quantum
cohomology

Kai Cieliebak™ - Dietmar Salamon

Abstract. We derive a wall crossing formula for the symplectic vortex invariants of toric man-
ifolds. As an application, we give a proof of Batyrev’s formula for the quantum cohomology of
a monotone toric manifold with minimal Chern number at least two.

1. Introduction

Let T be a torus of dimension k, denote by t its Lie algebra, by
A={§ et]exp) =1}
the integer lattice, and by
A ={wet'|(w & eZ for&e A}

the dual lattice. Suppose T acts diagonally on C". The action is determined by n
homomorphisms p, : T — S ''v=1,...,n. We write each homomorphism p,,
in the form

ov(exp(£)) = e MWl - w e A*

The moment map of this action, with respect to the standard symplectic form on
C", is given by

p) =7y |xlw, (1)
v=1
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forx = (x1,...,x,) € C". We assume throughout that  is proper and that the
vectors w, span the space t*. In [7] we have defined, together with Gaio and
Mundet, invariants

n
Q)T St >R, mi=n—dim T+ d, >0 2)
v=1

by counting solutions of the genus zero symplectic vortex equations (see
Section 2). Here A € A, d, := (w,, A), T is a regular value of the moment
map, and S” (t*) denotes the space of real valued polynomials of degree m on t.
Note that $*(t*) is canonically isomorphic to the cohomology H*(BT; R) of the
classifying space BT = ET/T.The isomorphism takes w, € t* to the first Chern
class of the bundle ET x,, C — BT. The invariant ®}"" takes rational values
on integral cohomology classes. These correspond to polynomials that map the
lattice A to the integers.

An element T € t* is a singular value of u if and only if it can be expressed
as a positive linear combination of at most k — 1 of the vectors w,. The set of
singular values is a disjoint union of open cones of codimensions 1 to k. A cone
of codimension j is called a wall of codimension ;.

Let 7y € t* be an element of a wall of codimension one, 7; € t* be transverse
to the wall at 79, and e; € A be the unique primitive lattice vector that is orthog-
onal to the wall at 7y and satisfies (71, ¢;) > 0. Denote by T} C T the subtorus
generated by e; and by t; its Lie algebra. Let

I ={v|(w,, e) =0}
The action p induces an action pg of the quotient torus
T :=T/T
on the space
Cl:={xeC"|x,=0 forv¢I).

The moment map of this action is the restriction o := u|cr : C!' — ¢ := 4.
The following wall crossing formula expresses the difference of the invariants on
the two sides of the wall as the invariant of the reduced problem at 7.

Theorem 1.1 (Genus Zero Wall Crossing). Let o € S*(t*), A € A, and d,, :=
(Wy, A). Then for every sufficiently small positive number € we have

©7 T @) — @F T (@) = O ().
where Lq is the projection of A to ty := t/t; and
1 o(§ +zey)
o = dZ.
o) 2mi % [Togr Wy, & + zep) !

Here for each & the integral is understood over a circle in the complex plane
enclosing all the poles of the integrand.




135

There is an analogous wall crossing formula for higher genus which is formu-
lated in Theorem 3.1 below.

Theorem 1.1 gives rise to an explicit formula for the genus zero invariants. To
formulate the result we introduce the following notation. For a tuple of nonnega-
tive integers £ = (¢1, ..., ¢,) denote

whmwitwe e S, =04 b

Given such a tuple ¢ and a lattice vector A we introduce the set Z; (£) of partitions
{1,...,n} =1 U---U I that satisfy the following two conditions.

(Dimension) For every j € {1, ..., k}, the subspace
Ej = span{w],lv S IIU-'-UI]'} Ct

has dimension j and w, ¢ E; foreveryv € ;1 U---U ;.
(Degree) Forevery j € {1,...,k},

Dy —dy =) =—1. d,:=(wy, 7).

vel;

Theorem 1.2 (Genus Zero Invariants). Let A € A, d, := (w,, A), and £ be an
n-tuple of nonnegative integers.

(i) If T,(£) = @ then @7 (w*) = 0 for all T.
(ii) Let J C {1, ...,n} be a subset with k elements such that {w, |v € J}is a
basis of t* and assume

0 — d, ifveld,
U ldy+1 ifvé .

If T belongs to the cone C(J) spanned by {w, |v € J} then

1
o) (w) = :
| det((wWy, €j)vey, j=1,...0)]
where ey, . .., e is any basis of the lattice A. Otherwise @f’f(we) = 0.

(iii) Let A" € A and define d|, := (w,, A"). If £, + d|, > O for every v then

YT (W =PI (w),
(iv) Assume d,, > —1 for every v. Then every element of S*(t*) is a linear com-
bination of monomials w*° that satisfy either (i) or (ii).
(v) Let Jg := {v| £, < d,}. If T ¢ C(Jy) then @7 (w") = 0.
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Remark. Assertions (1), (i1) and (iv) can be used to compute the genus zero invar-
iants whenever d, > —1. This restriction can be removed by using (iii).
Now assume that T acts freely on ! (1), where

n
T = E W,,
v=1

and that the symplectic quotient
M:=C")T(x):=p ()T

has minimal Chern number N := max{m € Z|t/m € A*} > 2. These con-
ditions guarantee that the symplectic quotient M is a monotone toric manifold.
Combining Theorem 1.2 with the results of [10] one can compute the genus zero
Gromov—Witten invariants of the symplectic quotient. More precisely, denote by
S*(t*) > H*(M;R) : « — & the Kirwan homomorphism. Consider the dual
homomorphism H,(M; Z) — A in degree two. This homomorphism is injective.
We denote its image by A (7) and the inverse map by A () — Hy(M:7) : ) — .
Given A € A(t) we denote by GW§4 the genus zero Gromov—Witten invariant

of M with fixed marked points in the homology class A. In [10, Theorem A] it is
proved that, forevery A € A(t) and every n-tuple £ = (£, ..., £,) of nonnegative
integers,

PLTW) = GWY (Wi, .o, Wi, oo, Wy e, Wy, (3)

where each argument w,, occurs ¢, times. Thus Theorem 1.2 allows us to com-
pute the genus zero Gromov—Witten invariants of tuples of cohomology classes
of degree two. This can be used to compute the quantum cohomology ring of the
symplectic quotient. The statement of the theorem requires some preparation.

The chamber C(7) is defined as the component of the set of regular values
of 1 that contains 7. The effective cone A ¢ (7) C A(7) is defined as the set of
lattice vectors A € A(t) that satisfy (t/, A) > 0 for every t’ € C(7).

Let R be any graded commutative algebra (over the reals) with unit which is
equipped with a homomorphism

At () > R: A g*
from the additive semigroup A (7) to the multiplicative semigroup R such that
deg(q”) = 2(t, A). Given such a graded algebra define the quantum cohomology
ring QH*(M; R) as the tensor product

QH*(M; R) := H*(M;R) ® R
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(of vector spaces over the reals). :Fhus an element of QH*(M; R) is a finite sum
& =) ..par wherea, € H*(M;R). The ring structure is defined by

-/ = U =1 =1 = ~N=k./ ]/
a xa’ = E E E ng(a;,,a;,,,ei)e;"rr/qx,

I A€Aesr(T) 1"

where the ¢; form a basis of H*(M:; R) and the e’ denote the dual basis with
respect to the cup product pairing.

Theorem 1.3 (Quantum Cohomology). Let M = C" T (1) be a (nonempty)
monotone toric manifold with minimal Chern number N > 2. Then the ring
homomorphism

Rlui, ..., u,] = QH*(M; R) : ru’ — rw** 4)

induces an isomorphism QH*(M; R) = Rluy, ...,u,l/ T, where the ideal ;] C
Rluy, ..., uy,] is generated by the relations

n n
vawv =0= vauv =0,
v=1 v=1

t¢ C{l,....n}\ {v) = u, =0,
A€ A (T), df := max{£x(w,, 1), 0} —= l_lu,cf‘jr = qkl_[uff"_.

The ring Rluy, ..., u,]/J was introduced by Batyrev [4]. It also appeared
in Givental’s work on mirror symmetry [11] for the monotone case. Examples of
Spielberg [16,17] show that, in the nonmonotone case, the kernel of the homo-
morphism (4) is not necessarily equal to 7. For special cases the isomorphism
Rluy,...,u,l/J — QH* (M; R) was established in [15, 16]. The reason for our
hypothesis N > 2 lies in the identity (3) which, in general, does not continue to
hold in the case N = 1 (the degrees of all the classes must be less than twice the
minimal Chern number).

In Section 2 we explain some background from [7] about the symplectic vortex
equations. The wall crossing formula (for arbitrary genus) is restated in Section 3
and proved in Section 4. We prove Theorem 1.2 in Section 5 and Theorem 1.3 in
Section 6.

2. The symplectic vortex equations

Fix a compact Riemann surface (¥, jx, dvoly), a principal 7-bundle P — %,
and an inner product on t. The characteristic vector of P will be denoted by

A(P) ::f Fa € A.
%
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Here A € A = A(P) is aconnection on P and A(P) is independent of the choice
of the connection. For each v € {1, ..., n} the representation p, : T — § !
determines a complex line bundle

L,:=Px, C—x, (5)

where the equivalence relation on P x Cis [p, ¢] = [pg, po(g)"'¢]forg e T.
This bundle has degree

i
d, = 2—pv(>»(P)) = (Wy, A(P)).
g
A section of L, can be thought of as a smooth map u, : P — C satisfying
u,(pg) = py(g)~'u,(p). The symplectic vortex equations (at a parameter 7 € t*)
have the form

- - *¢A(P
dau, =0, *FA+7TZ|MV|2WV_ )

= Voo 7T ©)

v=1

where u, is a section of L,, * : Q*(X,t) — QO(Z, t*) denotes the Hodge
x-operator determined by the volume form on ¥ and the inner product on t, and
*¢ : t — t* denotes the isomorphism induced by the inner product. The gauge
group G := C*(XZ, T) acts on the space of solutions of (6) by

g (A, u) = (A+ g 'dg, p(9) 'u).

This action has finite isotropy if and only if 7 is a regular value of ;. Moreover,
the moduli space

M(7) :={(A, u) |u and A satisfy (6)} /Gy

of based gauge equivalence classes of solutions of (6) is compact (see [7]). Here
we fix a point g € ¥ and denote the based gauge group by

Go:=1{g€G|gzo) =1}.

Think of this moduli space as a subset of the space

AP x @, QUE, L))
— G .

The group T (of constant gauge transformations) acts contravariantly on B.
Heuristically, the invariants introduced in [7] are obtained by integrating equi-
variant cohomology classes of B over M(t)/T. The precise definition involves
evaluating the equivariant Euler class of an associated T-moduli problem which
we explain next. (See Appendix A for the relevant results from [8].)

B:
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Denote

C:= A(P) x @ Q%x, L), Z:=0)=.tHe® EB Q%(x, L)

\):1 UZI

and consider the map S : C — Z defined by

. A(P .
S(A.u) = (*FA T T e L aAuv) o
(¢

v=1

This map is equivariant under the (contravariant) action of the gauge group G
on both C and Z and its zero set is the space of solutions of (6). Note that the
configuration space C is an affine space over the vector space

X =Q' (T, ve® @90(2, L,).

v=1
Every solution (A, u) of (6) determines an elliptic complex

0— LieG = x5 z_0, (8)

where L is the infinitesimal action of G on C and d S denotes the differential of S
at (A, u). Associated to this complex is the augmented operator

D:=dSeK: X —> Z]YV.

Here V := Q°(Z, t*) is understood as the dual space of the Lie algebra Lie G and
JC: X — Vis defined as the L? adjoint of £. Moreover, we identify the direct
sum Z @ V with

y=o"=.treC P (=. L)

v=1

by interpreting the first component of Z as the real part and the element of ) as
the imaginary part of Q°(Z, t* ® C). Then the operator D is given by

sdo + 27 Y 0 (Uy, U)Wy,
D(a, it) == | d*a + 27 Yo _iuy, ay)wy, | . (9)
8Aﬁv + pv(a)o’luv

Here the first and third component correspond to the operator dS and the second

component is the operator K. This is a Fredholm operator of (real) Fredholm index

index(D) = (n —dim T)(2—2g) +2 Y _d, =: 2m, (10)

v=1
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The operator D is complex linear, where the complex structure on Q!(Z, t) is
given by the Hodge *-operator « +— xa = —« o Jx. Thus the determinant line
of D inherits a natural orientation from the complex structures.

The associated 7-moduli problem is the triple (B, £, S), where the vector
bundle £ — B is given by

E:=Cxg, Z2— B:=C/G.

The equivariant map S : C — Z defined by (7) descends to a section of & that
will be denoted by the same letter. Its zero set is the above moduli space M (7).
The linearized complex at a solution (A, u) of (6) has the form
(NN SN SN (11)
ﬁ(Lle go)

Here we identify t with the space of constant maps ¥ — t. By Lemma B.4,
the elliptic complexes (8) and (11) both have the same index as the operator
D. Moreover, Lemma B.4 provides isomorphisms from their determinant lines
to det(D). Hence the complex orientation of det(D) induces orientations of
the determinant lines of (8) and (11). This is the orientation of the 7-moduli
problem (B, £, S) used in [7] for the definition of the vortex invariants. (To fit
this into the definitions of [8] and Appendix A, one has to replace B and £ by
suitable Sobolev completions.)

Evaluating the Euler class of the 7-moduli problem (B, £, §) on equivariant
cohomology classes on B yields a homomorphism

xBES H7(B) — R.
Now the projection 7 : B — A/Gy induces a homomorphism
7" SH() ® HY(A/Go) = Hy (A/Go) — Hr(B)
on equivariant cohomology. Its composition with the Euler class will be denoted
by
YT SN () ® H*(A/Go) — R,
Thus
7% (@) := xPES () =: f T (12)
M(@)/T

fora € $*(t*) ® H*(A/Gy) = H;(A/Gop). The notation fM(T)/T 7*o indicates
the heuristic interpretation of the Euler class as an integral over the zero set of
the section S. This can be understood literally whenever S is transverse to the
zero section, or equivalently, the operator D defined by (9) is surjective for every
solution (A, u) of (6). The invariant CDf:; (a¢) can only be nonzero when « has
degree 2m, where m is as in (10).
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3. Wall crossing

In this section we formulate the wall crossing formula for arbitrary genus at an
element 7y € t* of a wall of codimension one. This means that there exists an
index set I C {1, ..., n} satisfying the following conditions.

(i) The subspace W; := span{w, |v € I} C t*hasdimensionk—1andw, ¢ W,
for every v ¢ I.
(ii) 1o € u(C"), where C! :={x e C"|x, =0 forv ¢ I}.
(iii) If J C {1,..., n} is another index set satisfying (i) then 7o ¢ u(C’).

Note that under these conditions 7 is a positive linear combination of precisely
k — 1 linearly independent vectors from the set {w, |v € [I}. Choose a vector
T € t* that is transverse to 1 (C’?) and let e; € A be the unique primitive lattice
vector that satisfies (71, e¢;) > 0 and is orthogonal to the wall at ty:

(wy,e1) =0 forvel.

Denote by Ty C T the subtorus generated by e; and by t; its Lie algebra. Let
Ty := T/T) be the quotient torus and ty := t/t; be its Lie algebra. Then the
action p induces an action pg of Ty on C’.

The wall crossing number will be expressed as an integral over the moduli
space M of based gauge equivalence classes of solutions (A, {u,},c;) of the
equations

*¢A(P)
Vol(%)

dau, =0 (el), *FA—FJTZlulewU:

vel

+ 79. (13)

We shall view this as a Tp-moduli problem. Indeed, the subgroup 77 C T acts
trivially on M. However, since 1 is a regular value of u|¢:, the quotient group
To = T /T acts on M with finite isotropy.

It is interesting to compare M with the moduli space M(C!, Py, 7o) of based
gauge equivalence classes of solutions of (6) with C*, T, and P replaced C/,
Ty :=T/T), and Py := P/T;. There is a natural projection

Mo —> M(C’, Py, 1) : [A, {uy}ver] = [Ao, {un}verl, (14)

where Ag := ITpA € Q' (P, ty) can be thought of as a connection on P,. Here
[Ty : t — ty denotes the canonical projection. If (A, {u,},c;) satisfies (13) then
the tuple (Ao, {u,},es) satisfies the equations

a _ 2 _ *fo)\'(PO)

aAOMV_O (VEI)a *OFAO+7T§|MV| WV_W(X])+TO'
and hence belongs to the moduli space M(C/, Py, 7). Here *g, - t/t — tf 18
givenby [£] > & —|e1|73(&, e1)e and *¢ : Q2(Z, t/t) — QU(Z, t{°) is induced
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by the Hodge *-operator on X and *¢,. The map (14) defines a fibration whose
fiber can be described as follows.

Choose a complement of t; in t and denote the resulting projection by I1; :
t — t;. Define Pic; as the space of based gauge equivalence classes of real valued
T-invariant 1-forms A; € Q' (P) that satisfy A;(pe;) = 1 for every p € P and

_ IA(P)
 Vol(D)

(15)

*Al

Here the based gauge group is G; := {g; : ¥ — T1 | g1(z0) = 1} and it acts by
(g1*Ae; := Ajeg + gl_ldgl. Note that Pic, is a 2g-torus. It is the fibre in (14)
because the subgroup G; C Gy acts trivially on Ay = TlpA and u, for every
v € I. We emphasize that the fibration (14) need not be a product. The reason is
that the map A — A := I1; A will not, in general, be gauge invariant. A situation
analogous to the one described by (13) and (14) was considered in [14].

We are now in a position to state the wall crossing formula for arbitrary genus.
Think of M as a subset of the space By := A(P) x C°(P, C")/Gy and denote
by

my 2 §*(ty) ® H*(A/Go) — Hy, (Bo)

the homomorphism on equivariant cohomology induced by the Ty-invariant pro-
jection my : By — A/Gp. The wall crossing formula involves integration of
Ty-equivariant cohomology classes on By over M/ Ty. This is to be understood
as the evaluation of the Euler class of the associated 7p-moduli problem.

Theorem 3.1 (Wall Crossing). Let € S*t*) @ H*(A/Gp), » € A, and d,, =
(Wy, A).
Then, for every sufficiently small positive number &, we have

ch:éO‘i‘ETl (O{) _ CDQ:;O_STI (O[) e f j'[ékao’ (16)

where ag € S*(t5) ® H*(A/Go) is the polynomial map defined by

1 a(& + zey) 2
%) = 2mi jg [Togr (W, & + zey)vtl=s =P <Z (wy, & +Z€1>) e

vel

Here €2, is the closed 2-form on A/G defined by

k
Qv = E ij/ijij’.

JJ'=
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Here ey, ..., erisabasis of tand «y, ..., ay, is a symplectic basis of HY(X: Z).
These bases induce a basis 7;; of H'(A/Gy; Z) and 2, and w,; are defined by

8
i=1

Note that €2;;- is independent of the choice of the «; and €2, is independent of the
choice of both bases. For each &, the integral in the definition of «(§) is over a
circle in the complex plane enclosing all the poles of the integrand.

Remark 3.2 (Residues). Consider a rational function f : C — C with poles
D1, - - -, Pn. It induces a meromorphic 1-form f dz. Let gf f dz be the integral of
f dz over a closed curve in C around all the poles of f. By the residue theorem,

1
2mi

55 fdz =—Res(fdz) = ) Res, (f dz).

j=1

Note that the 1-form f dz and hence the residue at infinity do not change if the
complex coordinate is shifted by z — z + c. If we expand f as a Laurent series

in z~! that converges near infinity, then the residue at infinity is minus the coeffi-
cient of 7!, i.e. Resso(f) = —a_.

Example 3.3. Consider the action of the 1-torus 7 = R/Z on C" with positive
integer weights w, = £, € A*™ = Z. Thus the symplectic quotient in the nontriv-
ial chamber is a weighted projective space. Let ¢ € A* be the standard generator
c(&§) = & and pick a homology class A = d € A = 7. Assume

mi=Y (df,+1—g)+g—1>0.

v=1

We compute the invariant CDZ:; (¢™) in the nonempty chamber by wall crossing
from the empty chamber. Here I = 0, T\ = T = R/Z, e; = 1, and Ty = {1}.
Then M, = Picisa2g-torus and Q, = ¢£,2Q, where € is the standard symplectic
form on Pic. It satisfies

i / Q8 =1.

8 ! Pic
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The integrand in Theorem 3.1 is given by

o — 1 % 7" x Cr+---+4£,)R
07 2xi [1,(€,2)db+1=¢ P Z
(O )8 Q8

T e gt
Integrating this class over Pic yields the formula from [7]:
b+ +)f

n dly+1—g °
]_[vzl EV

bejg (™) =

4. Proof of the wall crossing formula
4.1. A cobordism argument

The idea of the proof of Theorem 3.1 is to study the cobordism Y from
M(ty—e11) to M (19 + €11) constructed from the solutions of (6) with T varying
from 19 — ety to 79 + e71;. If this cobordism were a manifold the wall crossing
number would be zero. However, in general, the cobordism VV will have a singular
set M associated to the value T = 1. We shall prove the wall crossing formula
by cutting out a neighbourhood of the singular set and evaluating the Euler class
asssociated to the resulting third boundary component M. It turns out that for
the computation it is easier to deform M first into another 7-moduli problem
which we explain next.
We introduce the gauge invariant differential equations

(’_9AuV:O v=1,...,n),

kA (P) 17
Eatn PP = st n D=1 00
vel

vel

where ||u, || denotes the L2-norm. Denote the moduli space of based gauge equiv-
alence classes of solutions of (17) by

Po :={(A, u)| A and u satisfy (17)} /Go.

Note that there is a T-equivariant projection Py — M whose preimage at each
point (A, {u,},c;) € My is the unit sphere in the kernel of the Cauchy—Riemann
operator in the variables u, for v ¢ I. We emphasize that the dimensions of these
preimages can vary even if P is a manifold.

The T-moduli problem associated to (17) is the triple (B, &, Sp) defined as
follows. The base B is defined by B := C /G as in Section 2. Denote by Vy, C V
the codimension-1 subspace

Vo = {S e Q. t) | / (€, e1)dvoly = 0}, (18)
p)
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and by Zy C Z the codimension-1 subspace

Zy=V o P (Z L) (19)

v=1

Then the vector bundle & — B is given by
& :=C X G (20 ®R).

As above we do not distinguish in notation between a T-equivariant section
B — & and its lift to a G-equivariant function C — Z; @ R. The section
So: C — 2y @ R is defined by

A(P -
SolA, ) = (*FA b Y P w, = T = o B, Y P - 1) .

vel vl

In the following proposition the integral is understood as x 2050 (r*w), where

the orientation of the 7-moduli problem (B, &, Sp) is as in Remark 4.2 below.

Proposition 4.1. The wall crossing number can be expressed in the form

LI (@) — @I () = f . (20)
Po/T
Remark 4.2 (Orientation). The moduli problem (B, &, Sp) is oriented as follows.
The elliptic complex associated to a solution (A, u) of (17) has the form
c X dSg
0 t - ZodR — 0. 21
LWieGy - b
Since L is injective, the derminant line of this complex is equal to the deter-
minant line of the Fredholm operator

' L(LieG)
Define the operator Ky : X — Vy & R by

Ko, i) = (d*a +27 Y iuy, i)Wy, Im\p(a)> :

vel

where the complex linear map W : @7_, QY%x, L,) — Cis defined by

o 2 LA
W(u):= T e Vol(S) %I:(Wu,el)/z ((wy, ity) +i(iuy, i,)) dvols. (22)

The imaginary part of W corresponds to the local slice for the 7}-action. It
follows that ICy is surjective and its kernel is a complement of the image of the
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infinitesimal action £ : Lie(G) — X. Hence Lemma B.4 provides an isomor-
phism from the determinant line of the augmented operator dSy @ Ky to the
determinant line of the complex (21). Thus it remains to orient the operators
dSy ® Ky : X - Zy & Rd V) @ R in a consistent way.

For this it is convenient to introduce the operator Dy : X — ) by

A

sdo +2m Y iy, Wy)Wy
DO(Ol» I/At) = | d*« __‘_ 2n Zvel (tuy, I:lv>wv
dally + pv(a)o’luv
As in Section 2, the first two components denote the real and imaginary parts in

QYZ, t* ® C) and Dy is complex linear. Note that the image of Dy is always
contained in the complex codimension-1 subspace

yo::{é e QY= ®0) |f($,el)dV012=0}EB@QO’I(Z,LV)- (23)
b))

v=1

Define the linear map ® : X — R? by

O (a, i) = (Z/ (u,, ii,)dvoly, Im \p(ﬁ)). (24)
%

vél

Then the operator Dy & ® : X — Yy @ R? is equal to dSy & Ko
X = Zy® R V) @ R under the obvious identifications. Since Dy is complex
linear the resulting orientation of det(Dy) induces, by Lemma B.1, an orientation
of det(Dy @ @) and hence of the complex (21). Note that the orientation depends
on ep: if e; changes sign, then so does the imaginary part of W and hence, by
Lemma B.3, the orientation of our 7-moduli problem.

Remark 4.3. If the operator Dy @ ® : X — ), @ R? in Remark 4.2 is onto then
Py is a smooth T-invariant submanifold of B near (A, u) and the tangent space
of the quotient Py/T at (A, u) is

TiaPo/T = {(a, ) | Do(a, i) = 0, P (at, 1) = 0}.

In this case a basis vy, ..., vy, of the tangent space is positively oriented if the
vectors vy, ..., Vo, wo = (0, {uy}vgr), wi = (0, {2wi({w,, er)u,},¢;) form a
positive basis of the complex vector space ker D.

Proof of Proposition 4.1. Denote t; := 19 + t7; and consider the moduli space
W:={(,A,u)| —e <t <eg, (6)holds with T = 7} /Gy.
This space has boundary
IW = ({—e} x M(1-0)) U ({e} x M(z.)).
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Note that WV is the zero set of the T-moduli problem with boundary ([—¢, €] x
B, [—¢, ] x £,{S5;}—e<i<e), where S; is defined by (7) with t = 7,. This moduli
problem will in general not be regular.

The isotropy subgroup of an element [¢, A, u] € W is not finite if and only if
t =0and u, = 0 for v ¢ I. This singular set is the moduli space M introduced
in Section 3. To obtain a regular cobordism we cut out a neighbourhood of the
singular set. Thus we consider the configuration space

Q=10 A u)el—eelxCl Y llul* = 8},

vel
where ||-|| denotes the L?-norm. Define the 7-moduli problem (R, F, 7) by
R:=Q/Gy, F:=Qxg 2, Tt A u):=385(A,u).

The boundary of this moduli problem has three parts: (B, £, S_,) for t = —e,
(B, &, 8,)fort = g,and (B, £, §%) associated to the condition ), luyll? = 8.
These three boundary strata intersect and so (R, F,7) is a T-moduli problem
with corners. However, we shall see that, if § > 0 is sufficiently small, the zero
set YW of T does not intersect the corners and hence we obtain a 7-moduli prob-
lem with boundary by restricting to a sufficiently small neighbourhood of W?.
Namely, the intersection of W with the boundary of R is the set

W’ = ({—e) x M(1-)) U ({e} x M(1)) UM’,
where M? is the moduli space of based gauge equivalence classes of solutions of

dau, =0 (w=1,...,n),

- *¢A(P) ) (25)
F v 2 v — s v =J.
* A+n§|u|w oz T ™ §uu ||
Every solution of these equations satisfies
ul 2
t = v by €1)- 26
ool ) ; s 17 (W, e1) (26)

To see this take the inner product of the second equation in (25) with e¢; and
integrate over X. This shows that the parameter ¢ is determined by u and can
therefore be removed in the definition of M?. Moreover, the formula (26) shows
that || < & whenever § is sufficiently small.

We define the moduli problem (8%, £2, S%) by

B :=C/Gy & :=Cxg 2. C=1AweClY lwl>=5}.
vél
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where Z is defined by (19). The section S? : C® — Z; is defined by S?(A, u)
=T (t, A, u), wheret is given by (26). There is an obvious morphism of this mod-
uli problem to the restriction of (R, F, 7)) to the boundary component ng_f 7yl 2
= 4§, given by (u, A) — (¢, u, A) with ¢ given by (26).

Throughout we shall work with the opposite boundary orientation of the
moduli problem (B?, £, S%). We begin by explaining how it is defined. The ellip-
tic complex at a point (A, u) € M? has the form

c X0 gs

0 t L Lie o) Zy 0, (27)

where X° := T(4.,)C® C X is the real codimension-1 subspace

X0 = {(a, i) e X| Z/ (uy, ,)dvoly :0}.
>

vel

We show how to identify the determinant of the complex (27) with the determinant
of the operator

Didd: X — ), d R,

where ® : X — R? is defined by (24), ), is defined by (23), and the operator
D, : X — ) is defined by

xda + 27 Y " (uy, u,)w, — Re W (1))

v=1

Di(a, i) = | d*a + 27 X" {iuy, ily)wy — Im W (D)7 | . (28)

dally + /Ov(a)o’luv

Since L is injective the determinant line of the complex (27) is that of the
Fredholm operator dS° : X%/L(LieG) — Z,. Define K; : X — V), @ R?

= > gl [5 (uy, id,)dvoly

d*a + 21 ) " (iuy, ty)w, —Im W (@)1
o
(3
Im V(&)

This map is surjective and there is an obvious isomorphism from the kernel of
Ky to the quotient X°/L(Lie G). Hence Lemma B.4 provides an isomorphism
from the determinant of the operator dS° : X°/L(Lie G) — Z to that of the
augmented operator dS° @ K : X — Yy ® R?> = Z; @ Vy @ R2. Since the
real part of the complex linear map W defined by (22) is the differential of the
map u +— t given by (26), this augmented operator agrees with D; @ . Now
D 1s complex linear and so, via Lemma B.1, the complex orientation of det(D)
determines an orientation of the T-moduli problem (B?, £%, S?).

That this orientation of (B?, £%, 8%) is indeed the opposite of the boundary
orientation is verified in Remark 4.4 below. With the orientations understood, the
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(Cobordism) axiom in Theorem A.4 implies that the wall crossing number is given
by

@ — el @ = [t (29)
MO/T

It remains to prove that the integrals over M?%/T and P,/ T agree. We prove this
by a homotopy argument. Fix a real parameter s € [0, 1] and replace the second
equation in (25) by

k(A (P)
*Fy + 1 Z |ty |* W, — Vol() To == (tl’l -7 Z |uy|? wv> . (30)
vel

vel

This defines a homotopy of sections S¢ : B® — £°,0 <s < 1, with §? = & and

*t)"(P) =
SN A, u) = |*F4+ 7 JPwy, — — Tp, 0auU, | .
()( u) ( A Z|u| x 0, 0AlU

vel

The zero sets of these sections form a compact subset of [0, 1] x B°. Following
the above discussion we obtain an isomorphism from the determinant line of the
moduli problem (B?, £°, Sf) at a tuple (s, A, u) to the determinant line of the
Fredholm operator

D,dd: X — VydR?,

where the operator Dy : X — ) is defined by
o o 27 ) ap Uy, U)W, — Re W ()T
D, (ﬁ) =Dy <ﬁ> +s| 27 Zy¢1<i”v» un,)w, —Im ¥ @)t
0

Since D; is complex linear the resulting orientation of the moduli problem (3%, £9,
S?) varies continuously in this homotopy. Moreover, there is an obvious orienta-
tion preserving morphism from (B°, £°, 88) to the 7-moduli problem (B, &, Sp)
discussed before Proposition 4.1. Hence it follows from the (Cobordism) and
(Functoriality) axioms in Theorem A .4 that the integrals over M?®/T and Py/ T
agree, and so equation (20) follows from (29). This proves the proposition. O

Remark 4.4 (Boundary orientation). We prove that the above orientation of (3,
&%, 8% is the opposite of the boundary orientation. To see this, fix a boundary
point [A, u] € M letD: X — ) be the operator (9), and define &, : X - R
to be the first component of the linear map (24), i.e.,

®,(a, fi) = Z/ (u,, ii,)dvoly.
>

vel
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Assume first that the restriction of D to the kernel of @ is surjective. Then WW? is a
manifold near [7, A, u] (with z given by (26)) that is transverse to the boundary of
R. Moreover, the tangent space of /° is the kernel of the operator D : RX — )
given by

D(, a, ii) := D(a, ii) — (i, 0, 0).

Each element in the kernel of this operator satisfies f = Re W (i1) (take the inner
product of the first component with e; and integrate over ). A positively oriented
basis of the tangent space then has the form vy, vy, ..., v,, where vy = (f,o, 1)
with 7 = Re ¥ (i) > 0, and the vectors vy, ..., v, form a positively oriented
basis of ker D C ker D. Throughout we shall fix three vectors wg, v, w; € X
such that

CD](U)()) = 1, Dw() = (O, 0, 0), \I’(w()) = 0,
®i(v)) =0, Dv;=(1,0,0), W(v) =1,
q)l(wl) = 07 le = (Oa 71, 0)7 \IJ(U)I) =1

Note that wy is an inward pointing vector tangent to WW?, that v; is a tangent
vector to the boundary, and that w; does not belong to the kernel of D. The tan-
gent space of M? is isomorphic to the subspace ker D; Nker ® C ker D. The
vector vy belongs to this subspace and a complement of Rv; is the intersection
ker D N ker ®;. Choose a basis v, ..., vy, of ker D N ker ®; such that the
vectors vy, ..., Uy, form a positive basis of ker D; N ker & (with respect to the
opposite boundary orientation). Then the vectors wo, vy, ..., V2, form a positive
basis of ker D. We claim that the vectors wg, wi, vy, ..., vz, forma positive basis
of the kernel of D; (and hence vy, ..., vy, form a positive basis of the tangent
space of M? with respect to the orientation introduced in the proof of Proposi-
tion 4.1). To prove the claim note that the vectors wy, va, ..., vy, form afpasis of
ker D and the vectors vy, wg, v2, ..., Uy, form a negative basis of ker D. Since
Re ¥ (v;) > 0 it follows that the vectors wy, v,, ..., Uy, form a negative basis
of ker D. Since vy, w; € ker D; satisfy W(v;) = 1 and W (w;) = i it follows
that the vectors vy, wy, wo, vy, ..., Uy, form a negative basis of ker D; and thus
wy, Wi, V1, V2, ..., Uy, form a positive basis as claimed.

If the restriction of D to the kernel of @, is not onto one can homotop to a
situation where this condition is satisfied and use the compatibility of all our iso-
morphisms with the local trivializations of the determinant line bundle, or one can
argue as follows. We only sketch the main points. The elliptic complex associated
to the 7-moduli problem (R, F, 7) has the form

0t LRe—T Tz, (31)

L(Lie Go)
Lemma B.4 provides an isomorphism from the determinant of (31) to the deter-
minant of the augmented operator D : R @ X — )/, defined above. The latter
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is canonically oriented by Lemma B.1 and the complex orientation of det(D).
Next it is convenient to identify the kernel and cokernel of D with the kernel and
cokernel of the operator

DiedImV : X —> )VydR,

where D is defined by (28). These identifications are obtained by the inclu-
sion X > R®d X : (o,u) — (ReV¥(u),a, i) and the decomposition )
= Yo @ R(11,0,0) & R0, 71,0) with )y & R corresponding to the first and
last summands. If one uses Lemma B.1 and the complex orientation of det(D;)
to orient det(D; @ Im W), then the isomorphism det(D; & Im V) — det(D)
just described is orientation reversing. Now restrict the operator D; @ Im W
to the kernel of ®; to obtain the augmented operator for (B?, £%, S%). Then
the opposite boundary orientation translates, via Lemma B.4, to the orienta-
tion of det(D; & ImW¥ & @;). By Lemma B.3 going over to det(D; & ®) =
det(D; & ®; & Im W) involves another sign change which compensates the mi-
nus sign in the isomorphism det(lzl S ImW¥ @ &) — det(D @ P;). Thus the
composition det(D; & &) — det(D & P,) is orientation preserving. This means
precisely that the above orientation of (B°, £%, §?) is the opposite boundary ori-
entation as claimed.

The moduli space Sy is the sphere bundle in the kernel bundle of a family
of Cauchy—Riemann operators over M. In Section 4.3 we explain a general
equivariant localization formula for such kernel bundles. The relevant index com-
putation uses the Atiyah—Singer index theorem for families and will be carried
out in Section 4.4. The next section explains the necessary background about the
equivariant Euler class.

4.2. The equivariant Euler class

We begin with some recollections about the equivariant Euler class (see [8] for
details). Let X be a compact oriented smooth manifold, £ — X be an oriented
real vector bundle of rank k, and G be a compact Lie group which acts on X and E
by orientation preserving diffeomorphisms such that the projection is equivariant
and the action is linear on the fibres. We shall think of the action of G on X and E as
aright action and denote it by (x, €) — (g*x, g*e) fore € E,. The corresponding
covariant action will be denoted by g,.x := (g~!)*x and the infinitesimal (contra-
variant) action of & € g := Lie(G) by £*x € T, X. An equivariant Thom form is
a dg-closed equivariant differential form tg(E) € Q]é(E ) with compact support
and fibre integral one. The equivariant Euler class eg(F) € Hé(X ) 1s the coho-
mology class of the pullback of an equivariant Thom form under the zero section.
We will sometimes use the same notation for the Euler class and a form represent-
ing it. The Thom class and the Euler class are multiplicative under direct sum.



152

Now suppose that E is a rank n complex vector bundle and the action of G
is complex linear on the fibres. Then an explicit representative of the equivariant
Euler class can be constructed as follows. Fix a G-invariant Hermitian metric on
E and let P — X denote the unitary frame bundle of E. This bundle carries a
right action of U(n) and a left action of G, and these two action commute. Let
X¢ € Vect(P) denote the infinitesimal (covariant) action of & € g. More precisely
a point p € P, of the fibre over x € X is a unitary vector space isomorphism
p : C" — E, and the left action of ¢ € G is given by g.p : C* — E, .. The
vector field X € Vect(P) is defined by

Xe(p) = di exp(t§)«p € T, P.
! t=0
The following formula was established in Berline—Vergne [5] and, in a more gen-
eral setting, in Berline—Getzler—Vergne [6]. In particular, the term A(X¢) coin-
cides with the generalized moment map in [5,6]. We include a proof for the sake
of completeness.

Lemma 4.5. Let A € A(P) C QY(P,u(n)) be a G-invariant U(n)-connection
form on P. Then the G-equivariant Euler class of a complex vector bundle E is
represented by the dg-closed form

ec(E. £) = det (éFA + éA(XE)) , (32)

where Fy € Q*(P,u(n)) denotes the curvature of A.

Proof. The right hand side in (32) is invariant and horizontal for the U(n)-action
and thus descends to a G-equivariant form on X. It is easy to check that this form
is dg-closed and hence represents an equivariant cohomology class.

To prove (32) we assume first that E = X x C” is a trivial bundle and p :
G — U(n) is a unitary representation of G. The homomorphism p defines the
covariant action of G on E and so

g (x,2) = (g"x, p(g) " '2)

forx € X,z € C", and g € G. The frame bundle of E is the product bundle
P := X x U(n) and the formula

Ay u(v,un) :=n

forv e T, X, u € U() and n € u(n) defines a U(n)-connection form A €
Q'(P, u(n)). This connection is G-invariant and flat. For £ € g the vector field
X € Vect(P) is given by

Xe(x,u) = (0, p(§)u)
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and so
AXe(x,u)) = u™' p(E)u,  det <§A(X§)> — det <ép(g)) .

Now a Thom form on E can be constructed as follows. For k = 0O, ..., n let
or + u(n) — Q2"=25(C") be a polynomial map of degree k. It is shown in [8,
Lemma 5.5] that these polynomials can be chosen such that oy € Q2*(C") is the
standard volume form,

o, (1) = det(in),

and

t(vp)or(n) = A A 0g1(n)

for each k, where & € Q' (C") is the differential of the function z > |z|?/2 and the
vector field v,, € Vect(C") is defined by v, (z) := nz for n € u(n). Now choose
functions f; : [0, 00) — [0, oo) with compact support such that fy(s) = 0 for
s <dands > 1 and

fi(s) + fimi(s) =0, fi(1) =0,
and

1
27=1Vol(521=1)

/Ooskfg(s)ds =0, /oos”_lfg(s)ds =
0 0

for0 <k <n — 2. Then

1
_ k=1
Ji(s) = (k—l)!,[ (t—s8)" fo(r)dt
and hence f;(s) =0 fors < § and k < n and
1 1
Jn(0) =

2—T(n — 1)IVol(S2"—1) _ 2m)"

Now a Thom form on E = X x C" is given by

1) =Y fillz2* /200 (p(E)).

k=1

Its pullback under the zero section is given by

eG(E) = fn(0)0,(p(§)) = det <2L/5(§)> -
4

This proves the lemma in the case £ = X x C". For general G-equivariant bundles
E — X the result follows from the (Naturality) axiom for the Euler class and
the fact that the pullback of E under the projection P — E is isomorphic to the
trivial bundle P x C". O
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Remark 4.6. The formula of Lemma 4.5 can also be expressed as follows. Let
V be a G-equivariant Hermitian connection on E and, for & € g, denote by
£V e Q°(X, End(E)) the covariant infinitesimal action defined by

£Ve := V, exp(t&)eli=o

Then the Euler class is given by

2

Example 4.7. Let E — X be arank n complex vector bundle. Suppose G acts triv-
ially on X and that the covariant action on the fibres is given by a homomorphism
p: G — S!, given by

e(E, ) = det (LFV + iﬁ) .
2

p(exp(&)) = e 2mWE)

where w € g*. Then, for every G-invariant Hermitian connection V on E, the
endomorphism £V € Q°(X, End(E)) is given by multiplication with the imagi-
nary number p(&). Hence

. . n
i I .
E. &) =det| —FY + —¢ = EY' I ei(E).
eG(E, £) <2n + an@) ]Z:;w £)"c;(E)
We wish to invert the equivariant Euler class. This requires an extension of the
equivariant cohomology ring of X.

Standing assumption. [In the following X is a smooth manifold, G is a compact
Lie group acting on X, and Ty C G is an oriented circle which is contained in
the center of G and acts trivially on X.

Denote the quotient group by Gy := G/ T). Denote by e, the positive integral
generator of the Lie algebra t; := Lie(7}). Let n be an integer. A T;-rational
G-equivariant differential form of degree n on X is a Laurent series in z~! of
the form

aE,2)= ) aj(E),
j=n/2
with coefficients «; € QZ_ZJ (X), that satisfies the following conditions.

(i) For every & € g and every x € X the Laurent series ) _,_, »o;(§ )x2/ is a
rational function on C with values in the complex vector space A*T*X ® C.
(ii) Foreveryt € R we have a(&, 1 + z) = a(§ + tey, z). Equivalently,

e +te) = ) (i)aj(g)ﬂ—k, k>0, (33)

k<j<n/2

—k—1 ,
(& + tey) = Z( ._l)a,-@)(—r)-'—", k<0 (34)

k<j<0
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Denote by €2¢; 7, (X) the space of T)-rational G-equivariant differential forms
on X. This is a chain complex with respect to the usual equivariant differential
doa(§) = da(§) + 1(Xg)a(§). The cohomology of this chain complex will be
denoted by Hg 7, (X).

Leta = Zj ocjzj € QG 7, (X). Then a_; (§ +te1) = a—1(§). In other words,
the coefficient of z~! descends to a Gy-equivariant cohomology class on X. Minus
this coefficient is called the residue at infinity of o and will be denoted by

1
RCSOO(O{) = —Ot_l(é) = —Eﬁa(é, Z) dZ € QnG-(i)_z(X)

The residue at infinity descends to a homomorphism
Reso : HE 7,(X) — HET(X).

Remark 4.8. There is an obvious inclusion Q§(X) — QE,Tl (X) whose image is
the subspace of polynomials ¢ = ZOE j<np @ jz-i € Qg 7, (X). Condition (33)
shows that any such form is uniquely determined by oy € ©2(;(X) and vice versa.
The inclusion Q¢ (X) — Qé’n (X) induces an inclusion in cohomology

H5(X) = Hg 1, (X)
whose left inverse is induced by the projection @ = ) o izl > a.

Let E — X be a G-equivariant complex vector bundle of rank ng. The sub-
group T acts on E with weight

wg = det <l—,(')x(e1)> € 7.
2

Here the homomorphism p, : T} — Aut(E,) denotes the action on the fiber
over x and p, : t; — End(E,) denotes the corresponding Lie algebra homomor-
phism. The weight w is independent of x. Think of the equivariant Euler class as
a polynomial map g — Q*(X). By Lemma 4.5, the G-equivariant Chern classes
c;(E) € Hé’ (X) are the coefficients of £~/ in the polynomial

ng

eG(E. € +2ze)) = Y _¢;(E, §)7"" 7/,

j=0

In particular, c¢o(E, &) = wg. If wg # 0O then the equivariant Euler class eg

€ H%"E (X) has a well defined inverse 1/eg in the T;-rational G-equivariant coho-

mology group Hg 2£E (X). To see this, expand the rational function z — 1/eg
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1

(§ 4 zey) into a Laurent series in z~* which converges near infinity:

k

e(E,§ +ze))  Wgz't —

k=0 i1 VE
o0
=) si(E.£)z7"
i=0

The coefficients s;(E) € Héi (X) of this Laurent series are called the equivariant
Segre classes of E. They are uniquely determined by the equation

Y si(E &)c;(E, &) = (35)

{ 1,if k=0,
i+j=k

0, if k > 0.

In particular, the degree zero Segre class is so(E, &) = 1/wg. If F — X is
another G-equivariant complex vector bundle of rank nr with weight wg, then
the quotient

ec(F) np—2n
ec(F O E) = eg(E) € H3't™" (X)

depends only on the equivariant K -theory class FO E € Kg(X). Itis only defined
for equivariant K -theory classes F'© E whose denominator E has nonzero weight.

4.3. Localization

Let X be an orientable smooth manifold, G = T be a torus acting on X, and
Ty C T be an oriented circle that acts trivially on X. We assume that the quo-
tient group Ty := T /T, acts on X with finite isotropy. Denote the Lie algebras
by t := Lie(T), t; := Lie(T}), and ty := t/t; := Lie(Tp), let A C t be the
integer lattice, and denote by e; € t; N A the positive generator of the sublattice.
Throughout we denote m := dim X — dim Tj.

Let £ - X and 7 — X be complex Hilbert space bundles on which T acts
complex linearly such that the projections are equivariant. Assume that 77 acts
with finite isotropy outside the zero sections of £ and F. Let

D, : & — F,

be a smooth family of G-equivariant complex linear Fredholm operators of com-
plex numerical index

index(D) := dim® ker D, — dim® coker D, .
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Denote by

IND(D) := | J{x} x ker D, © coker Dy € Kg(X)
xeX

the topological index of D, understood as a G-equivariant K -theory class. Con-
sider the following G-moduli problem. The Hilbert manifold B is given by

Bi={(r,0)|reX et el =1}
the Hilbert space bundle H — B has fibre
H, . :=F
over (x, ¢) € B, and the section S : B — H is given by
S(x, e) := D,e.
The zero set of this section is the kernel manifold
M:={(x,e) e B| D,e =0}.

Denote by 7 : B — X the obvious projection. The equivariant K -theory class
IND(D) € Kg(X) has a nonzero weight (for the Tj-action) and hence carries
an equivariant Euler class

e (IND(D)) € Hf 1, (X).

in the 7j-rational T-equivariant cohomology of X. The following theorem gen-
eralizes the localization formula for circle actions in [8]. The assertion requires a
choice of orientations.

Remark 4.9. Orientations of X/ Ty and T; determine an orientation of the 7-mod-
uli problem (B, H, S) as follows. By choosing local trivializations we may assume
that £ and F are (complex) Hilbert spaces equipped with a T-action and so D is a
T-equivariant smooth map X — L(&, F) : x — D,, which assigns a (complex
linear) Fredholm operator D, to every x € X. In this case the vertical differential
of S at a point (x, e) € M is an operator

DS(x,e): {(x,¢) e X x E|(é,e) =0} - F.
It is given by
DS(x, e)(%, &) = Dyé + D(X)e,

where D(X)e is defined as the derivative of the path R — F : t = Dexp )€
at t = 0. Now suppose that D, is surjective. Then a positive basis of the kernel
of DS(x, e) is defined as follows. Pick a positive basis X, ..., X, of T, X/tyx
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and choose €1, ..., &, € & such that D,é; + D(x;)e = 0 and (é;, ¢) = O for
i =1, ..., m. Next choose a positive basis €, 11, ..., €,12, of the complex vec-
tor space ker D, such that ¢,,,,,_; is a positive tangent vector of the T;-orbit of
eand ¢, = e.

Then the vectors (x;,¢;) for i = 1,...,m and the vectors (0, ¢;) for j
=m+1,...,m+ 2n — 2 are declared to be a positive basis of ker DS(x, e)/t -
(x, e). This definition of the orientation is independent of the choices. If D, is not
surjective, one can apply the same construction to the kernel of a suitably aug-
mented operator. We emphasize that the orientation described here agrees with
the convention of Remark 4.2.

Theorem 4.10. Let m := dim X — dim Ty and n := index(D). Fix any ori-
entation of X/ Ty, let T\ be oriented by ey, and orient M/ T as in Remark 4.9.
Then

o
‘w=— [ Resw 36
-/M/TT[ * »/X/To = (eT(IND(D)) (0

for every a € H?”"_z(X).

The integral on the left is understood as the Euler class of the 7T-moduli prob-
lem (B, H, S) evaluated on 7 *« (see [8]). The integrand on the right is the residue
at infinity of the Tj-rational T-equivariant cohomology class «/er (ZND(D)) €
H]rff ;12 (X).Itis a Ty equivariant cohomology class in H% (X) and can be integrated
over X/ Ty because Ty acts on X with finite isotropy.

Proof of Theorem 4.10. The proof has three steps.

Step 1. We may assume without loss of generality that & is finite dimensional and
admits an equivariant trivialization and that F = 0.

The reduction to the finite dimensional case is proved as in [8, Theorem 11.1].
Hence assume £ = &£ and F = F are finite dimensional. By Proposition C.1,
there exists a T-equivariant complex vector bundle E’ — X such that E @ E’ is
equivariantly isomorphic to X x V for some complex 7T-representation V. Since
T is a torus there exists a homomorphism 7 — S! whose restriction to 7} has
nonzero degree. Multiplying the action of 7' on E’ with a suitable power of this
homomorphism we may assume that the action of 7} on E’ has nonzero weight.
Now let B C E & E’ be the unit sphere bundle, H' — B’ be the pullback of
F @ E’ under the projection 7’ : B’ — X, and S’ : B’ — H' be given by

S'(x,e,e) := (x, Dye, €).

Then the inclusion B — B’ : (x, ¢) — (x, ¢, 0) defines a morphism of 7-moduli
problems. Hence, assuming the assertion for E replaced by X x V and F replaced
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by the zero bundle, we obtain

/ e = yBES ()
M/ T

/ H/ S/ (ﬂ/*a)

X
f 7o A er(H)

7T/*Ol A er(F®E')

/ (aAeT(FEBE/)>
= — Res,
X/ Ty er(E® E')

[0
= — R o0 .
/X/TO . (eTaND(D)))

Here the second equation uses the (Functoriality) axiom for the Euler class, the
third equation uses the (Thom class) axiom (see Appendix A), the fourth equation
uses the fact that H' is the pullback of F @ E’, and the fifth equation uses the
hypothesis that the result holds when E is a trivial bundle and F = 0.

Step 2. Suppose E = L = X x C is a trivial line bundle and denote by B C L
the unit circle bundle. Then for every o = ZjSm/Z ozl € Q7 7, (X)),

o
Yo = — Resy : 37
./B/Tn %0 /X/To = (eT(L)> G7

Let p : T — S! denote the covariant action of 7 on the fibres of L and suppose
that 77 acts on the fibers with weight £. Then p(e;) = —2mi¢ and, by Lemma 4.5,
ip(§ ).

er(L, & +ze) =0z + ——
27

Eachform«; € Q?_Zj (X) is equivariantly closed and hence represents a 7 -equi-
variant cohomology class on X. Now

a.) /Z @® ;i) ]
er(§ + zer) \Jj<m2 ) 1+ L
_ /Z DGR Z(_ip@))k
\jgm/z 12 /kZO 2wz

The residue at infinity is minus the coefficient of z~! in this power series. Thus

o 1 ip(§)
Res‘”(eT(L)) T ’(€)< 2 f) o9

j=0
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By (33), the right hand side is invariant under the shift & +— & + fe; and hence
descends to a Ty-equivariant differential form on X.

To compute the integral of m*«y over B/ T, we denote the elements of B
= X x S' by (x,u), where x € X and u € S'. Then u='du is the standard
U(1)-connection form on B. Define A; € Q' (B, t;) by

iu'du
2l
This form is T -invariant and satisfies A;(0, —p(e1)z) = (ip(e1)/2nl)e; = e;.
Hence it is a T-invariant 7}-connection as in [8], where we regard the action by
p~! as the contravariant action on B. The infinitesimal covariant action of £ € t

on B is given by X¢(x, u) = (0, p(§)u). Hence the T-equivariant curvature of
A is the 2-form Fyu, 1 € QzT(B, t) given by

A] = - er.

ip(§)
2l

(see [8, Section 3]). Replacing & by Fy4, r(&§) in the equivariant differential form
m*ay € 7 (B) we obtain the T1-basic T-equivariant differential form

o 66 \ N o [_PEY
(T7o0)a, =7 ao(é— 7l el>—]§ﬂ a,(é)( 2M)

Fao1(6) == Fp +&5+A1(Xg) =8 —

er.

on B = X x S'. The projection 7 : B — X induces a Ty-equivariant diffeomor-
phism from B/7) to X, however, each point in B has an isotropy subgroup of
order ¢ under the action of 77. Moreover, the diffeomorphism is orientation pre-
serving if and only if ¢ is positive. (If &, . . ., &, is a positive basis of T, X / T and
u € S! then, according to Remark 4.9, the basis (&1, 0), ..., (§,,0) of T(x ,)B/T
is positive if and only if the vectors (&1, 0), ..., (&,,0), (0, p(ep)u), (0, u) form
a positive basis of T, X/ Ty x C. Since p(e;) = —2mi¥, this is the case if and only
if £ 1s positive.) Hence

— N | (i)Y
/B/TJT Oto—/B/T(ﬂ o)A, = ZJXZ;/X/TO%(SO)( =, ) :

and so the assertion of Step 2 follows from (38).

Step 3. We prove the theorem.

By Step 1, we may assume without loss of generality that F = 0and E = X x V
for some unitary 7 -representation V. Since T is a torus, we may assume that
V = C" and that T acts diagonally by homomorphisms p, : T — S' for
v=1,...,n. Denoteby L, := X x C the T-equivariant bundle where T" acts by
oy on the fibre. Consider the T-moduli problem (B, H, S) given by

B=XxS$"' H=r'Li® - --®n*L,_1,
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where 7 : B — X denotes the projection, and

Then the T-equivariant Euler class of H is the pullback under 7 of the Euler class
of Liy®---d L,_q,1.e.

er(H) =n"er(Li) N--- Am¥er(L,—).

Leta € Q77" 7*(X) and define B € Q7' ;. (X) by

o

o J o ) m—2j
P = Z Pie! = er(Ly)---er(Ly—1)’ Pi €ty ().

j=m/2

Since T acts on B with finite isotropy, we can represent the equivariant cohomol-
ogy class ey (H) € H%”_Z(B) by a T'-invariant and horizontal differential form
Ty € Q¥"72(B) (see [8, Theorem 3.8]). With such a representative the identity
m*a = n*B Aer(H) in Q;Tl (X) takes the form m*a = w*By A Ty. Now § is
transverse to the zero section and S~'(0) is the unit sphere bundle B, := BN L,
in L,. Hence it follows from the (Transversality) axiom for the Euler class in
Appendix A that

f n*azf n*,BoAerf n*ﬁgz—/ Resoo< P )
B/T B/T B,/T X/ Ty er(Ly)

The last equation follows from Step 2. Since B/er(L,) = a/er (E), this proves
Theorem 4.10. a

Remark 4.11. Theorem 4.10 continues to hold if we replace X by a Tp-moduli
problem (By, &, Sp) as in Appendix A and £ and F by Hilbert space bundles
over BBy. Then B is the unit sphere bundle in &, H,, = &y & Fp, S(b, ) =
(So(b), Dpe), and the right hand side of (36) is understood in terms of the Eul-
er class of (By, &), Sp). To prove this, choose a finite dimensional reduction of
(By, &y, Sp) and note that (36) continues to hold for noncompact manifolds X and
compactly supported T -equivariant differential forms «.

4.4. The index formula

We return to the setting of Section 3. Recall that P — X is a principal 7'-bundle
and L, = P x, C— X forv=1,...,n. Givenanindex set I C {l,...,n}as
in Section 3 we consider the principal Gy-bundle

Pr = AP) x P QUE. L,) - B, :=P1/Go

vel
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where the based gauge group Gy acts by

g5 (A, u,) = (A + ¢ 'dg, p(9)~'uy).

It also acts on L,,, by

g, 1= [pg@ ™", ¢1=1p, pyy(8(2)7'¢],
where z := m(p) € X. For vy ¢ I we consider the universal line bundle

. 731 XLUO

LY.
Yo

—)B[XZ.

The torus 7" acts on L' by

h*[A, u,, p, ¢1:=[A, py(h) " uy, p, oy, (W) 1.

For x = [A, u] € B, let us denote by L. the restriction of " to {x} x X. This
restriction is equipped with a natural connection (induced by A) and hence with
a Cauchy-Riemann operator

3 QU= L) — Q% (z, LY.

Next consider the universal vector bundle

E;:@L”

vel

and its restrictions [y to {x} x X. The Cauchy-Riemann operators
ox 1 QU(Z,Ey) — Q"1(T, Ey)

form a family of Fredholm operators over 3; between appropriate Hilbert space
completions & of Q(X, Ey) and Fy of Q%! (X, Ey). These operators are complex
linear and equivariant with respect to the action of 7.

As in Section 3 we denote by 77 the identity component of the isotropy sub-
group of the subspace C! := {x € C"|x, =0 for v ¢ I} and assume that 7} is
a circle. This circle acts trivially on the base 13; and with finite isotropy outside
of the zero sections of £ and F. The quotient group Ty := T/ T) acts with finite
isotropy on the moduli space M C B, of solutions of equation (13). Hence we
are in the situation of Theorem 4.10. The relevant dimensions are

dim M —dim T = (n — dim T)(2 = 2¢) +2 ) _d, =: 2m,
v=1
dim Mo — dim Ty = (|| — dim Tp)(2 — 2¢) +2) _d, +2g.

vel

index(9) = Y (dy + 1 —g).
vél



163

where d, denotes the first Chern number of the bundle L,, — X. Note that the ker-

nel manifold of 9 is precisely the space Sy of solutions of equations (17). Hence,
by Theorem 4.10 and Remark 4.11, we have

[0
o= — Reso. _
/W” /MO/TO e <eT<IND<a>>>

o
__ Res. . 39
/MO/TO * (nmeT(IND(av») <

Theorem 3.1 now follows from

Lemma 4.12. Denote by m§ : Hy 1, (A/Go) — Hf 1, (Br) the homomorphism
induced by the projection 7ty : By — A/Go. Then, for everyv ¢ I,

er(ZN'D(@")) = 75 (wy, §)" "¢ exp (— (vag)) € Hr ¢, (Bp).

Proof of Theorem 3.1. By Proposition 4.1 and (39) we have

P, T0+ET P, T0—ET
CIDX,g0 ") — CIDX,g0 ") = f o
Po/T

o
S Reso _
/MO/TO . (qu_fl eT(IND(BV)))

= f 7T6kOl(),
Mo/ Ty
where
1 a(&E + zey) Q,
o = ex dz
O(E) 2mi % 1_[1)¢I <WV7 S + Zel>dv+l_g P (%I: (an ‘i; + Zel>
(by Lemma 4.12). This proves Theorem 3.1. O

Proof of Lemma 4.12. Note first that " is the pullback under the projection 7 x
id: By x X - A/Gy x X of the bundle

. Ax L,
Go
and ZN'D(3") € Ky(B;) is the pullback under 7y of the index bundle of the

Cauchy-Riemann operators on £". The torus T acts trivially on A/Gy x ¥ and
by p, on the fibres of £”. Hence by Example 4.7,

—> A/go X E,

er(IND@". L)) =Y (wy, )P ¢;IND@", L)), (40)

j=0
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Hence it remains to compute the ordinary Chern classes of the K-theory class
IND(3", L"). The Atiyah-Singer index theorem for families asserts that

ch(ZND@®", L)) = / td(TZ)ch(L") € H*(A/G).
b
(See [1, Theorem 4.3] and [2, Theorem 5.1].) Here ch and td denote the Chern
character and the Todd class, respectively. The Todd class of 7'X is given by
d(TS) =1+ (1 - g)o,

where o € H?(X; Z) denotes the positive generator. Thus our task at hand is to
compute the Chern character of the line bundle £". By Lemma 4.13 below, the
first Chern class of £V is given by

2¢  k
C](L:U) =d,o — Z ZWW‘O(I‘ N Tjj.

i=1 j=1
From this we can compute ch(£"). Note that o; A oy = 0 wheneveri’ =i + ¢
and is equal to zero otherwise. Hence

2
2g

1 k g k
5 E E Wyt N Tjj = —O0 AN E E WyiWyirTij N Titg, j!

= —0 N Q,,

and all higher powers vanish. It follows that

2k
ch(L) =1+dyo =Y Y wWyjoi ATij —0 AQ,.

i=1 j=1
Applying the index theorem for families we obtain

ch(ZN'D@®", L)) = / td(7T )ch(L")

b
2¢ k

:/ (dv-l-l—g)O'—ZZijO{i/\‘Cl‘j—O'/\Qv
pX

i=1 j=1
—d,+1—g—Q,.

The last formula implies, by a standard algebraic argument, that

l(IND@B', L") = —-Q,, ¢;IND@B", L") = %CI(ZND(E_)", L))/,
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Hence, by (40),

er(IND@", L)) =) (w,, &) F17e (_]ﬂ
j=0 |
Q
— dy+1—g _ v
= (W, §) GXP( o, S)) -
Since ez (ZND(3")) = nier (ZND(3", L)) the result follows. O

It remains to prove

Lemma 4.13. The first Chern class of L is given by

2¢  k
c1(LY) =d,o — Z ZWW‘%’ A Tij.

i=1 j=1

Proof. Fix a reference connection Ay € A(P) and denote by Ay C A(P) the
set of connections A € A(P) that satisfy Fy = Vol(Z)~!'A(P)dvoly, and d*
(A — Ag) = 0. The restricted gauge group Goo C Go(P) consists of all gauge
transformations g : ¥ — T that satisfy d*(g~'dg) = 0 and g(zo) = 1. Identify
the quotient Ay/Goo with the standard torus T?¢* via the map

2¢  k
R*K > Ayt A, = Ay + Zztijaiej-

i=1 j=1

For i and j let g;; € Goo be the unique harmonic gauge transformation that
satisfies 8 ldg,-j = a;je; (and g;j(zo) = 1). Then the restriction of £" to the
submanifold Ay/Gyy x ¥ can be identified with the quotient R?¢% x L, /728K,
where m = {m;;} € Z** acts by

m*(t,z.v) = (t +m. 2. [ [ po(gij ()" 0).
ij
A sectionis amap R*$f x ¥ — L, : (t,2) — s(t,z) = s,(z) € L, that satisfies
st +m.2) =[] oulei@) s, m ez
ij
A connection is given by the formula
%8 & as
dVs = dA,St + Z Z —td[,'j.

8t~-
i=1 j=1 Y
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An easy computation shows that the curvature of this connection is the 2-form
FY e Q%(T?¢* x ¥, /—1IR) given by

E & (04
V_ . . t N
F* = pV(FAf) - Zzpv <atij> /\dtl]

i=1 j=1

dvol
= 2T (Wy A(P)) o +222n\/ (Wy. €)a; A dty;.
=1

Vol(2)

Since the first Chern class of £” is represented by the 2-form /—1FY /27, the
result follows. O

5. Computation of the genus zero invariants
Let 7 denote the set of partitions
Ilu---Ulkz{l,...,n}

that satisfy the (Dimension) condition in the introduction, i.e. for every j €
{1, ..., k}, the subspace

E;j :=span{w,|ve [U---UI;} Ct"

has dimension j and w, ¢ E; forevery v € ;1 U---U I. Itis now convenient
to fix an orientation of t. Forevery I = ([, ..., I}) € Z we introduce the iterated
residue ¢! = ¢' - §*(t*) — R by

_ (2 z/e))
o1 (a) == 2 )k§£ %nv .S e d,,+ldzk dzy, (41)

where d, := (w,, A). Here the lattice vectors ey, . .., e; € tform an oriented inte-
gral basis of A such that the vectors ¢;, ..., ¢; are orthogonal to the span of the
vectors w, forv € 1 U---Ul;_jand 2 < j < k. These requirements determine
the e; up to a change ¢, = *e; + >, _;a;je;. The correspondlng coordinates
£ =) zje; =) 7¢;changebyz; = £z; + ), _; a;;z;. Since the ¢; and the ¢;
form oriented bases there is an even number of minus signs. It follows from these
observations and Remark 3.2 that the integral (41) is independent of the choice
of the ¢;.

Lemma 5.1. For every regular value t of |1 there exists a collection of integers
{m}1eT such that

) (o) = Y myp)(e)

1T
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for every A € A and every a € S*(t*). Moreover, given a path y connecting t to
t* \ im u, the coefficients m; can be chosen to satisfy the following condition: If
I =(1,...,Iy) € Zissuchthat y does not intersect the hyperplane spanned by
thew, forve 1 U---UIl_y, thenm; = 0.

Proof. Theorem 1.1 and induction over the dimension of 7. O

Remark 5.2. Fix an oriented basis ey, ..., e; of t, let H, C CK be the hyperplane
Z];'=1 (Wy, )z, = 0,and denote H := | J/_, H,. Then the right hand side of (41)
can be interpreted as the integral of the k-form

_ o (X zje))
Qi [To_ (wy, D zje;) v

over a suitable homology class o; € H,(C*\ H). Hence, by Lemma 5.1, there is a
locally constant map t + o (t) := ), .7 m;(t)o; which assigns to every regular
value of i a homology class o (t) € H;(C¥\ H) such that the invariant &} " (c)
is equal to the integral of w, , over o(r) (for all A and «). It is an interesting
problem to study the map t — o (7) in more detail.

W A>+ldzl/\---/\dzkEQ"((C"‘\H)

Lemma 5.3. Forv = 1,...,nlet £, be integers and a,,, b, be real numbers such
thata, # 0. If Y " _, £, = —1 then

ﬁ % ljll(avz + bu)evdz — lj[laﬁv‘

IfY"_ £, < —1 then the integral is zero.

Proof. In the variable w := 1/z the integrand reads
a b (—dw\ T[], (a +bw)dw
l_[ (; + v> wr ] w2t b '

Since a, # 0 the numerator is holomorphic near the origin. Hence the residue is
zero whenever 2+ Y ¢, < Oandisequal to [] a’” whenever2+3Y_ ¢, =1.0

Lemma 5.4. LetI € L andey, ..., e bea positive basis of A suchthate;, ..., e
are orthogonal to w, forv € 1 U---Ul;_y (asin (41)). Let . € A and { be an
n-tuple of nonnegative integers such that

el =n—k+) d dy:=(w.h). (42)

v=1

If I € T,(0) then

k
(p){(wﬂ) — 1_[ 1_[ (an ej)ﬂu—dp—l.

j=lvel;

Otherwise ¢{ (wh) = 0.



168

Proof. The condition I € 7, (£) asserts that

Z“v —d,—1) = —1

UGIj

for j = 1,..., k. Consider the integral over z;. The coefficient (w,, e;) of z
in the linear map (zy,...,2x) — (Wy, Zj zjej) 1s nonzero iff v € I. So, by
Lemma 5.3,

1

¢ (W) = H(Wu,€k>£"’_d”_l Qi

vely
k

—1 k—1
f .. % 1_[ n(wv, szeﬂe“_d"_ldzk_l ...dzy
, =

j=1lvel;

whenever Zvelk t,—d,—1)=—1.1If Zvelk (¢, —d,—1) < —1 then the integral
over 7; 1s zero. Hence it follows by induction that ¢{ (w®) has the required form
whenever I € Z, (£). If I ¢ Z,(€) then it follows from (42) that ) _ I 4, —d,

— 1) < —1 for some j and hence ¢! (w*) = 0. O

Proof of Theorem 1.2. Assertion (i) follows from Lemmata 5.1 and 5.4.

We prove (i1). Let A € A, d, := (w,, A), £ be an n-tuple of nonnegative inte-
gers, J C {1, ..., n} be an index set such that {w, |v € J} is a basis of t*, and
assume that ¢, = d, forv € J and ¢, = d, ;| for v ¢ J. Then a partition /
belongs to 7, (¢) if and only if I € Z and I; N J consists of a single element for
each j. This follows from the equation ) _ I ¢, —d, — 1) = —1 and the fact
that each summand ¢, — d,, — 1 equals O or —1.

Assume

T ¢ C(J)={)_nw,|n =0}
veJ

We must prove that @} (w*) = 0. To see this, we examine the set Z; (¢). Since
the set {w, |v € J} is linearly independent it follows that, for each ordering
J = {v1, ..., v}, there exists a unique partition / € Z,(¢) such that v; € I;
for all j, and conversely, each partition I € 7, (¢) determines an ordering of J.
Moreover, for every such partition the hyperplane

Wi = span{w, |v & I}
agrees with the hyperplane
W,, :=span{w, |v € J \ {w}}.

Hence the hyperplanes W; for I € 7, (£) are precisely the supporting hyperplanes
of C(J). Since T ¢ C(J), there exists a straight line y connecting t to t* \ im u
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which misses the supporting hyperplanes (this is true because C(J) is a cone
over a simplex). Hence the coefficients m; in Lemma 5.1 can be chosen such that
m; = 0 for every I € Z, (£). This implies that

eTwWH = Y migi(wh) =0.

1€TZ,(0)

The same argument shows that the invariant @4 (w*) fort € C(J) is independent
of T.
Assume t € C(J). Fix an ordering J = {vy,..., v} and let I € Z,(£) be

the unique partition satisfying v; € I, for j =1, ..., k. Choose an integer basis
et, ..., e of t such that (w,,e;) =0forve 1 U---I;_; and (wvj,ej) > 0.
Let 79 be a positive linear combination of w,,, ..., w,,_,. Since the invariant is

independent of the choice of T € C(J), we may assume Tt = 79 + €11, where
71 := W,,. Since the invariant is zero outside of C(J), we have

O (wh = 0.

Hence, by Theorem 1.1,

(W) =

CDpoto nnw

(vaaek j=lvel;

Now assertion (ii) follows by induction.
We prove (iii). Assume |[¢| = n —k 4+ Y_._, d, (otherwise both invariants are
zero). Since

t,—d,—1=¢,+d —(d,+d) —1,
for every v we have

) =T +d), ¢l wh)=g¢l W)

for every I € 7 (see Lemma 5.4). Hence (iii) follows from Lemma 5.1.
To prove (iv) and (v) we introduce the following notation. For every A € A
and every n-tuple ¢ of nonnegative integers define the number

5(0) = Zmax{ﬁv —d, — 1,0} + Z C,, d, = (wy, A).

dy=0 dy<—1
Recall that J; := {v | £, < d,}. We prove (iv) and (V) in five steps.

Step 1. Each w' can be expressed as a linear combination of classes w* that
satisfy Jpr C Jy and either 1, (¢') = ¥ or £, < max{d, + 1, 0} for all v.
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We prove Step 1 by induction over ¢; (£). If 1, (¢) = 0 then £/, < max{d, + 1, 0}
for all v. Assume ¢, (£) > 0 and, by induction, that the claim has been established
for every ¢’ that satisfies ¢, (£") < 1, (¢). If Z, (¢) = @ there is nothing to prove.
Hence assume 7, (¢) # . Since ¢, (¢) > O there is a vy such that £,, > 0 and
by >dy, +1.Let]l = (Iy,...,Ix) € Z,(¢). Since Zvel,(ﬁv —d,—1) = -1
for every j there are indicesv; € I; for j =1,...,k such that EU]. < dvj. By the
(Dimension) condition, the vectors w,,, ..., w, form a basis of t*. Hence w,
can be expressed as a linear combination of the vectors w,, . Since £,, > 0 we can
replace one of the factors w,,, in w* by this linear combination. This expresses
w! as a linear combination of monomials of the form w! with ¢, 0 < 1, (£) and

Jy C Jy. Hence the assertion for w* follows from the induction hypothesis.
Step 2. If ¢, < d, + 1 for every v and L, (£) # ) then £ satisfies (ii).

Let I € 7,(£). Then the formula ) _ I (¢, —d, — 1) = —1 shows that, for each
J, there is precisely one index v; € 1 J such that E,,j = d,)j and ¢, = d, + 1 for
v € I; \ {v;}. Since the vectors w,,, ..., w,, form a basis of t*, it follows that ¢
satisfies (ii) with J = {vy, ..., v }.

Step 3. We prove (iv).

Assume d, > —1 for every v. Then, by Step 1, each w® € $™ (t*) is a linear

combination of classes w’ that satisfy either 7, (¢') = Y or ¢, <d, + 1 for all v.
Hence the assertion follows from Step 2.

Step 4. (v) holds under the assumption d, > —1 for all v.

We argue indirectly and assume that &4 (w%) # 0. Then the linear combination
in Step 1 must contain a term w' that satisfies J, C Ji, and ®%""(w’) # 0. The
latter implies that Z; (¢') # ¢ and so ¢/, < d, + 1 for all v. Hence, by Step 2,
¢’ satisfies (ii) with J = Jp = {v| €, < d,}. Since ®{""(w") # 0, it follows
from (i1) that T € C(Jy) C C(Jp).

Step 5. We prove (v).
Suppose ®; (w¥) # 0. Choose A’ such that
d = (w,, ) > max{0, —1 — d,}
for all v. Then, by (iii), we have
Py (W) = @, (W) #£ 0.
Hence, by Step 4, T € C(J), where
J:=l|t, +d <(w,, A+ 1)} ={v|¢, <d,}.

This proves the theorem. O
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6. Quantum cohomology

Let 7 be a regular value of u. Throughout this section we assume that 7' acts
freely on p~!(t). Equivalently, if J C {1, ..., n} is an index set consisting of
k elements such that T € C(J), then t belongs to the interior of C(J) and the
determinant of the tuple {w, | v € J} is equal to plus or minus one. Under this
assumption the symplectic quotient

M:=M|T(t)=pn"(v)/T

is a Kihler manifold. We denote by H*(M), respectively H, (M), the quotients
of the integral (co)homology groups by their torsion subgroups. By Kirwan’s
theorem, the homomorphism H*(BT) — H*(M) is surjective and the homo-
morphism H,(M) — H.(BT) is injective. For every v denote by w, € H*(M)
the image of the cohomology class w, € A* = H?(BT) under the Kirwan
homomorphism H2(BT) — H?(M). By Theorem E.4, the cohomology class w,,
vanishes whenever T ¢ C({1,...,n} \ {v}). The remaining classes w, generate
H?(M). Hence the image of the homomorphism Hy(M) — H,(BT) = A is the
subgroup

Aty =reA|t¢ C{l,...,n}\{v})) = (w,, ) =0}.

Recall the definition of the inverse isomorphism A(t) — Hy(M) : » — X\ and
the effective cone Aq (7)) C A(7)

Aei(T) 1= {A e A(r)|(t/,A) >0forall T’ € C(r)} ,
where C(7) denotes the chamber of 7. Note that
(T/,A) >0 forie Agr(t)\ {0}, T/ € C(7).
Denote by Degr(t) C Z" the cone
Defe (7) :={({W1, A), ..., (Wi, A)) | A € Aesr(T)}

Note that the map Ac(t) — Degr(T) is a bijection. We denote the inverse by
Detr(t) = Aer(t) : d — ry. We emphasize that Deg(T) is not necessarily
contained in the positive quadrant of Z".

Let us now consider the vector

T .= Xn:wv. (43)
v=1

(We still assume that T acts freely on £ ~'(1).) Then M is a monotone syml_)lectic
manifold (see Lemma E.3). The genus zero Gromov-Witten invariants of M with
fixed marked points in a homology class A € H,(M) are denoted by

GWY . H*(M) x --- x H*(M) — Z.
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The number of arguments will in each case be clear from the context. For an n-tuple
¢t = (¢y,...,¢,) of nonnegative integers and a cohomology class « € H*(M)
we abbreviate

GWY (W*, @) i= GWI (W1, ... Wiy Wy, Wi, @),

where each argument w,, occurs ¢, times. Since the Gromov—Witten invariants
are invariant under symplectic deformation, we have

re AN\ Ar(t) = GWY =

Lemma 6.1. Lett := ) | _ W, suppose that T acts freely on w=(v), and assume
that the minimal Chern number N of M is greater that one. Then for every d
€ Degr (1), every A € A(T), and every a € H*(M), we have

GWY (& &) =GWY (% @), (44)
where the n-tuples d™ and d~ are defined by

d—l— e— d\h lf‘dv >O7 d— — _dvv lf‘d\) <07
- 0,ifd, <0, "V~ 0, ifd, = 0.

Proof. Let & := w* for an n-tuple £ of nonnegative integers satisfying
[l =n—k+(t,2) —|d"].

By Theorem 1.2 (iii), with A replaced by A — A4, A’ = A4, and £ replaced by
£+ d—, we have

cbf,‘[(wd‘*‘—l—ﬁ) — q)ffkd(wd_+€)- (45)

Hence it follows from [10, Theorem A] and the fact that N > 1 (see equa-
tion (3) in the introduction) that

GWM( *(d++ﬁ)) — GWM (W*(d_—I—E))' (46)

Now the gluing theorem for the Gromov—Witten invariants with fixed marked
points (see [13]) asserts that

GW;_L\;I (‘X]*d+ ) — GWM( *(d+—|—2))
=3 N oW @, g)GwWH @, W),

i M£0
where the second sum is over all lattice vectors A" € A (7) \ {O}. Hence, by (46),
GW (", v‘vf) - Gwi"{ ORI S

=YY awl@E W (GWI, L 3 a)-GWI @ e)). (47)

i VA0
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Note that in each summand on the right we have

1 A
Edeg(ei)zn—k+(r,k—k)—|d |

<n—k+(t,)) —|d7|
= |£].

Hence the assertion follows from (47) by induction over |£|. O

Remark. Lett, M be as in Lemma 6.1 and A € A (7) such that (w,, A) > 0 for
every v. Then it follows from Lemma 6.1 with d, := (w,, A) and & := PD(pt)

that GW)-I? # 0. Hence the homology class A € H,(M) can be represented by a
holomorphic stable map of genus zero.

As in the introduction, let R be any graded commutative algebra (over the
reals) with unit which is equipped with a homomorphism

Aei(t) > R: A ¢*
from the additive semigroup A (7) to the multiplicative semigroup R such that
deg(g”) = 2(z, A).
The most important example is the ring

R:R[QI’,Qk,qu,,qk_l]

of polynomials with real coefficients in the variables ¢; and qj_l. To obtain the
homomorphism choose a basis ey, ..., ¢ of A, define the grading by deg(g;)

k k
qk = 1_[615”, k:ZA]e]
j=l1 j=1

With a more careful choice of the basis one can take R = Rlqj, ..., gi]. Other
possibilities are the polynomial ring R = R[g] in one variable, the ring of poly-
nomials in ¢ and ¢~!, or the ring of Laurent series in g. In these cases one can
choose g to have degree two and define ¢g* := ¢‘™*. The simplest example is
R = R with the constant map A + ¢* := 1, but then the grading has to be
reduced modulo 2N, where N is the minimal Chern number.

Given a graded algebra R as above define the quantum cohomology ring
QH*(M; R) as the tensor product

QH*(M;R) := H*(M;R) ® R
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(of vector spaces over the reals). Thus an element of QH™ (M; R) is a finite sum
& = ) _r@r such that deg(a,) + deg(r) = m for all r. The ring structure is

defined by
=Y > S owl@.al. eneir'r'qh,

i AeAegr(T) ¥ r”

where the ¢; form a basis of H*(M) and the e; denote the dual basis with respect
to the cup product pairing (see [13]).

Corollary 6.2. Let T := ) '_ W, suppose that T acts freely on w (), and
assume that the minimal Chern number N of M is greater that one. Then

— adt _
W*d _W*d q

for every d € Deg (7).

Proof. By the gluing theorem for the Gromov—Witten invariants [13], we have

= *d+ Z GWM (W*d el)e
i,A
=Y GWY. v &gt
I\
— \;v*d_q)xd

The second equality follows from Lemma 6.1. O

Proof of Theorem 1.3. We prove that the homomorphism (4) is surjective. Note
that there is an obvious inclusion H*(M) — QH*(M R) :a +— al, where 1 de-
notes the unit in K. Throughout we identify H *(M) with its image in QH*(M; R)
under this homomorphism. Since (4) is a homomorphism of /R-modules, it suf-
fices to prove that every class in H*(M) belongs to the image of (4). We prove
this by induction over the degree. If @ € H°(M) then & obviously belongs to the
image of (4). Hence let deg(a) = 2¢ > 0 and assume, by induction, that every
class in H*(M) of degree less than 2¢ belongs to the image of (4). By Kirwan’s
theorem, the class « is a linear combination of classes of the form w,, ---w,,.
Let p(uy, ..., u,) be the same linear combination of the polynomials u,, - - - u,,.
Then the image of p(u) under the homomorphism differs from « by a class of the
form

3= Biq". deg(By) =2¢—2(r,2) <2L.
A#£0

Here the sum is over all L € Aesr(7) that satisfy (r, A) > 0. Hence, by the induc-
tion hypothesis, every §; in this sum belongs to the image of (4), and so does the
class B,q”*. Hence B belongs to the image of (4), and so does &.
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Let Jy C Rluy,...,uy] be the kernel of (4). Then the linear polynomial
>, nvu, belongs to Jy whenever ) n,w, = 0. Moreover, by Corollary 6.2,

the polynomial u¢" — g*u?  belongs to Jy whenever A € Aeg(r) and d*
= max{x(w,, A), 0}. Hence J C J.

We prove that Jy C J. Define the classes ay; € H *(M), for n-tuples £ of
nonnegative integers and lattice vectors A € A¢g(7) with 0 < (7, A) < |£|, by

wr = wt + Z apaq”,  deg(ap;) = 21€] —2(t, ).
L€ Aesr (T)\{0}
For N € Z denote by Jy(N) the set of polynomials p € J of the form
plur, .. up) = Y reut, (48)
[t|l=N

where the sum is over all n-tuples £ = (¢, ..., ¢,) of nonnegative integers sat-
isfying |¢|] < N. We prove by induction on N that Jo(N) C J.For N < 0
this is obvious because Jy(N) = {0}. Let N > 0 and assume by induction that
Jo(N —1) C J.Let p € Jyp(N) be a polynomial of the form (48). Since p € J

we have
0= ZI’(V_VM = ZV_VKY'@ + ZZ&E’)‘WQA'
12 12 A

¢
This identity splits up into

0= rew'+> > aung. j=0....N.

Ll=j L>j A
1= =7 i

Since ry = O for |[£| > N, we have
Z }"gV_Ve =0.
|e|=N

Choose a basis py, . . ., p,, of the vector space span{ry | |¢| = N} C R and express
each r, in this basis, 1.e.

m
re=) aupi, auy €R, ¢ =N.
i=1

Then
> apwt =0, i=1.....m.
[(|=N

This means that the polynomials

o ¢
pio(Uy, ..., uy) = E agu-, i=1,...,m,
|t|=N
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belong to the kernel Z C Rluy, ..., u,] of the homomorphism (59) in Theo-
rem E.4. Hence they can be expressed in the form

pio=Y_ pijofi.
J

where f; € R[uy, ..., u,], and the p;;o are taken from the set of generators of 7
in Theorem E.5. Thus each p; ;o satisfies one of the following conditions.

(@) pijou) = nouy, where Y n,w, = 0.
(b) pijo(u) =u,, where Ay = 9.

(©) pijo(u) = ud", where d € D () \ {0).

In cases (a) and (b) define p;; := p;jo € J. In the case (c) it follows from the
definition of 7 that there is a generator p;; € J of the form

piiw) =u?" —q*u, piow) =u?", d € De()\ {0}.

Define p € J by

P =YY pipij(u) £ ().

i=1

Since J C Jo we have p — p € Jy. Since

m

Z Zpipijo(u)fj(”) = Z:ini()(u) = Z Z piagiu’ = Z reu,
i—1 i—1

i=1 [t|=N |e|=N

the leading terms cancel in p — p and hence p — p € Jo(N — 1) C J. Hence
p € J. This completes the induction and the proof of the theorem. O

Example 6.3. This example shows that in the definition of the ideal .7 it may not
suffice to consider vectors A € Ag(7) such that the integers d,, := (w,,, A) are all
nonnegative. Suppose the 2-torus T = T? acts on C> with weight vectors

wi=(1,0), wry=(,1), w3=ws=ws5=1(0,1).

The symplectic quotient M at the parameter T := w; + --- + ws = (2,4) is a
smooth monotone toric 3-fold with minimal Chern number N = 2. The effective
cone is given by

Actr(t) = {(A1, 22) € Z* [ A2 = 0, Ay + A5 > 0}.

It is the convex cone spanned by the vectors e := (1,0) and ¢’ := (—1, 1) with
d=(,1,0,0,0)and d’ = (—1,0, 1, 1, 1). For the quantum cohomology let us
choose the polynomial ring R := R[q, ¢2], graded by deg(gq,) = deg(q>) = 4,
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and the homomorphism ¢* := qlklﬂzqzk *. Thus ¢, g, correspond to the genera-
tors e, ¢’ of Aeg (7). Thentheideal 7 C Rluy, ..., us, q1, g2] is generated by the
relations

U3 = U4 =Us = Uy — U, Uy =q1, U3UU5 = UI]>. (49)

If one considers only vectors A € Ak (r) with nonnegative degrees d,
:= (w,, A) then one has to replace the last relation in (49) by uruszusus = qi1q»
and obtains a strictly smaller ideal.

Appendix A. G-moduli problems

In this appendix we summarize results from [8] that are used in this paper.

Definition A.1. Let G be a compact Lie group. A G-moduli problem is a triple
(B, £, §) with the following properties.

e 3 is a Hilbert manifold (without boundary) equipped with a smooth G-action.

e £ is a Hilbert space bundle over B, also equipped with a smooth G-action,
such that G acts by isometries on the fibres of £ and the projection £ — B is
G-equivariant.

e S : B — & is a smooth G-equivariant Fredholm section of constant Fredholm
index such that the determinant bundle det(S) — B is oriented, G acts by
orientation preserving isomorphisms on the determinant bundle, and the zero
set

M ={xeB|Skx)=0}
1s compact.

A G-moduli problem (B, £,S) is called regular if the isotropy subgroup
G, := {g € G| g*x = x} is finite for every x € M. A finite dimensional regular
G-moduli problem (B, E, S) is called oriented if T B/g and E are oriented vector
bundles over B and G acts on both bundles by orientation preserving diffeomor-
phisms.

Let (B, £,S) be a G-moduli problem. The fibre of £ over x € B will be
denoted by &,. Thus elements of £ are pairs (x, ¢), where x € B and ¢ € &,.
In this notation a section is a map of the form B — &£ : x — (x, S(x)), where
S(x) € &,. Abusing notation, we also denote the map B — &£ by S. The Fredholm
property asserts that, for x € M = S~1(0), the vertical differential

D, :=DSx):T,B— &,

is a Fredholm operator whose Fredholm index is independent of x. Since S is
equivariant there is a complex

Lx

0 g T.B 2

& 0, (50)
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where the map L, : g — T, B is the infinitesimal action. Note that the index of
this complex is

index(S) := index (D, ) — dim G.
Its determinant line is defined by
det(S), := A" (ker L,)* ® A" (ker D,./imL,) ® A™*(E,/imD,)*.

This defines a real line bundle over M which extends to a line bundle over an
open neighbourhood of M. The orientation hypothesis asserts that the determi-
nant bundle is oriented over such a neighbourhood. Note that in the finite dimen-
sional regular case det(S), = A™*(T,B/imL,) ® A™*(E,)* and the orientation
hypothesis asserts that both factors are oriented. G-moduli problems form a cat-
egory as follows.

Definition A.2. Let (B, £, S), (B, £, S’) be G-moduli problems. A morphism
from (B, £, S) to (B, &', S') is a pair (¥, V) with the following properties.

v By — B
is a smooth G-equivariant embedding of a neighbourhood By C B of M into 5/,
V& =€, — &

is a smooth injective bundle homomorphism and a lift of v, and the sections &
and & satisfy

Soy=¥oS, M =yM).

Moreover, the linear operators d, ¢ : T,B — TyB and ¥, : £ — ‘%(x)
induce isomorphisms

dy ker D, — ker Dy, W, : cokerD, — cokerD:p(x), (51)

for x € M, and the resulting isomorphism from det(S) to det(S’) is orientation
preserving.

Let (B,&,S) and (B, £, S’) be G-moduli problems and suppose that there
exists a morphism from (B, £, S) to (B', £, S’). Then the indices of S and S’
agree. Moreover, (B, £, S) is regular if and only if (5', £, §’) is regular.

Definition A.3. Two regular G-moduli problems (B;, &, S;), i = 0,1, are called
cobordant if there exist a G-equivariant Hilbert space bundle & — B over a
Hilbert manifold B with boundary, a smooth oriented G-equivariant Fredholm
section S : B — 5 such that the zero set M := S~ 1(0) is compact, G acts with
finite isotropy on B, and

B=ByUB, &=Elg. S =Slg.
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Moreover, det(§) carries an orientation which induces the orientation of det(Sy)
over B 1 and the opposite of the orientation of det(Sy) over 1By. Here an ¢ orientation
of det(S ) induces an orientation of the determinant bundle of S := S |,z via the
natural isomorphism det(S )s5 = Rv ® det(S) for an outward pointing normal
vector field v along 8.

The next theorem is proved in [8]. It states the properties of the Euler class.
We denote by H(B) the equivariant cohomology with real coefficients.

Theorem A.4. There exists a functor, called the Euler class, which assigns to each
compact Lie group G and each regular G-moduli problem (B, £, §) a homomor-
phism x5S H5(B) — R and satisfies the following.

(Functoriality) If (, V) is a morphism from (B, £, S) to (B, E', S') then x5:¢S
(Y*a) = xB-€-S («) for every a € HE(B).

(Thom class) If (B, E, S) is a finite dimensional oriented regular G-moduli prob-
lem and v € QG (E) is an equivariant Thom form supported in an open neigh-
bourhood U C E of the zero section such that U N E, is convex for every
x € B, UNn~Y(K) has compact closure for every compact set K C B, and
S~YU) has compact closure, then

xBES (@) = f a NSt
B/G

for every a € H3(B).
(Transversality) If S is transverse to the zero section then

xS () = f o
M/G

for every a € H5(B), where M := S~H0).
(Cobordism) If (By, &y, So), (Bi, €1, S1) are cobordant G-moduli problems then

Bo.Eo, S — Bo.&1.S
x Bo-€0 0(t3a)—)( 0.€1 1(tTa)

foreverya € Hc*;(g), where 1y : By — B andt; : B — B are the inclusions.

The Euler class is uniquely determined by the (Functoriality) and (Thom class)
axioms.

The integrals in the (Transversality) and (Thom class) axioms are defined in
terms of local slices for the G-action and an equivariant partition of unity. For
details see [8].
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Appendix B. Determinants

Let X and Y be real Banach spaces and denote by F (X, Y) the space of linear
Fredholm operators D : X — Y. For every nonnegative integer m denote by
L(X, R™) the space of bounded linear operators ® : X — R". If D € F(X,Y)
and ® € L(X, R™) then the operator D @ ® : X — Y @ R™, defined by

(D& P)x := (Dx, Dx),

is Fredholm and index(D @ ®) = index(D) — m. The determinant line of a
Fredholm operator D € F (X, Y) is defined by

det(D) := A" ker D @ A" ker D*.
Lemma B.1. There is a family of isomorphisms
T(D, ®) : det(D) — det(D & D),

one for nonnegative integer n and each pair (D, ®) € F(X,Y) x L(X,R™),
such that

T(D, V) =T(DDDP,¥V)oT(D, ) (52)
for D e F(X,Y), ® e LIX,R"),and ¥ € L(X,R").

Proof. There is an obvious isomorphism

ker D * im @*
= . - . (53)
ker D Nker ¢ m D* N im o*
Moreover,
ker (D & ®) = ker D Nker & C ker D
and hence
ker D
A" ker D = A" ker(D @ ® AT ) 54
“ DB D) ® (ker D N ker CD) (>4)

Now the kernel of (D & ®)* is given by
ker(D @ ®)* = {(y*,z") e Y* & R™)* | D*y* + &*z* = 0}.
So there is an exact sequence
0 — ker D* @ ker ®* — ker(D @ ®)* — imD* Nimd* — 0.

Here the second map is the obvious inclusion and the third map is given by
(y*, z*) > D*y* = —®*z*. This shows that there is an isomorphism

A" ker D* @ A" ker @* @ AT (imD* Nim®*) = A" ker(D @ P)*.
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Moreover,

Rm *
A" ker @* @ A" Imd* = A" ker *F @ A™* (%) = R.
er O*

Here the first isomorphism is induced by the isomorphism
®* . (R™)*/ ker ®* — imd*,

and the second one by the canonical orientation of R”. Combinig the last two
isomorphisms, we obtain

A" ker D* @ A" ({AmD* Nim®*) = A" ker(D @ ®)* @ A" imd*,

and hence

imao*
. DD ® <imD* N im@*) (55)
Combining the isomorphisms (54) and (55), and using (53), we obtain the required

isomorphism 7' (D, ®) : det(D) — det(D & ®). The construction shows that
these isomorphisms satisfy equation (52). O

Remark B.2. If X and Y are complex Banach spaces and D € F(X,Y) and
® e L(X,C™) are complex linear then the isomorphism 7' (D, ®) : det(D) —
det(D & @) of Lemma B.1 preserves the orientations arising from the complex
structures. This implies that the determinant line bundle over the space of complex
linear Fredholm operators carries a canonical orientation.

LetD € F(X,Y), ® € L(X,R"),and ¥ : R" — R” be an isomorphism.
Then the kernels of D @& ® and D & W ® are equal and there is an isomorphism
ker(D & V®)* — ker(D & ®)* : (v*,z") — (¥*, ¥*z*). This induces an
isomorphism

UM) :det(D @ VD) — det(D @ D).

Lemma B.3. For every D € F(X,Y), every ® € L(X,R™) and every isomor-
phism W : R™ — R™ the following diagram commutes:

det(D @& v@) 2% det(D @ @)
0 0

det(D) =% det(D).

Here the vertical maps are T (D, V®) and T (D, ®), respectively.
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Proof. We prove that there is a commutative diagram

ker @*¥* @ im o* \pﬁid ker ®* @ im ®*
) 0 : (56)

To see this, choose a decomposition

R™* = ker(®*¥* ) W,
and observe that

(R™)* = ker ®* @ W*W.

With respect to this decomposition, the left vertical arrow in (56) is given by
(v, w) — (v, ®*WY*w), and similarly for the right vertical arrow. Note that
although these maps depend on the choice of W, the induced maps between
the top exterior powers are independent of this choice. Commutativity of the dia-
gram (56) is now obvious from the definition of the maps. The result follows
from (56) by taking top exterior powers and observing how the resulting maps fit
into the construction of the isomorphisms 7' (D, ®) and T (D, WV ®). O

Consider now Banach spaces X, Z, V and bounded linear operators
F:X—->Z7, K:X—>V
such that K 1is surjective.

Lemma B.4. The operator F | x is Fredholm if and only if the augmented oper-
ator F ® K : X — Z @V is, and in this case their Fredholm indices agree.
Moreover, there is a collection of isomorphisms

S(F, K) : det(Flkerx) — det(F & K),

one for every such pair F, K, such that for every ® € L(X,R™) the following
diagram commutes:

det(Flier) 22 det(F @ K)
' '
S(F®P,K)

det((F & P)lkerx) —> det(F & O @ K).
Here the vertical maps are T (F |xerk» Plkerx) and T (F & K, ), respectively.
Proof. There are obvious isomorphisms
ker(Flkerx) — ker(F @& K), coker(F|kerx) — coker(F & K).

These induce the required isomorphism S(F, K). O
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The proof of the next lemma is straightforward.

Lemma B.5. Let F and K be as in Lemma B.4 and and ¥V : V — V' be a Banach
space isomorphism. Then the following diagram commutes:
det(Fliergx) =3 det(F @ K)
| )

det(Flierwi) - 5% det(F @ WK).

Here the right vertical arrow is induced by the mapid @V : Z@V - Zp V.
(The kernels are equal.)

Appendix C. Equivariant trivialization

Proposition C.1. Let G be a compact Lie group and E — X be a G-equivari-
ant complex vector bundle over compact smooth manifold X. Then there exists a
G-equivariant complex vector bundle F — X and a complex G-representation
W such that E & F is equivariantly isomorphic to X x W.

Lemma C.2. Let G be a compact Lie group, H C G be a normal subgroup, and
V be a complex H-representation. Then there exists a complex G-representation
W and an injective H-equivariant homorphism ¢ : V. — W.

Proof. Consider the infinite dimensional vector space
W :={f :G — V continuous | f(hg) = hf(g) YVh € H, Vg € G}.

This space carries an action of G by

(&' ) = f(gg")

and the evaluation map W — V : f +— f(1) is H-equivariant and surjective.
To prove surjectivity let v € V be given and let f : G — V be any continuous
extension of the map H — V : i > hv. By averaging the maps g — h~! f(hg)
over h € H we can ensure that the extension is H-equivariant. By Peter—Weyl’s
theorem, there exists a finite dimensional G-invariant subspace W C )}V such that
the restriction of the homomorphism f +— f(1) to W is still surjective. By [13,
Remark A.4.2], the surjection W — V has an H-equivariant right inverse. O

Proof of Proposition C.1. Letx € X, H C G be the isotropy subgroup of x, and
V := E,. By the local slice theorem, the restriction of E to a suitable neighbour-
hood of the G-orbit of x is equivariantly isomorphic to the bundle

GxUxV

G U,
H — XH
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where U is a neighbourhood of zero in the horizontal tangent space at x (i.e. in
the orthogonal complement of 7,Gx with respect to some G-invariant metric).
Let¢ : V — W be as in Lemma C.2. Then the map

GxUxV—->GxUxW:(g,u,v)— (g,u, gp())

descends to a G-equivariant injective bundle homomorphism from (G x U x V) /H
to (G xg U) x W (where G acts diagonally). This construction gives rise to a
G-invariant open cover {U, }, of X and a collection of G-equivariant injective bun-
dle homomorphisms ¢, : E|y, — Uy x W,.Letp, : X — [0, 1] be a G-invariant
partition of unity subordinate to the cover {U, }, and denote W := P, W,,. Then
the homomorphism £ — X x W : (x, e) = (x, {py(x)@y(x)e}y) 1s the required
G-equivariant embedding. This proves the proposition.

Appendix D. Convex polytopes

In this section we recall some well-known facts about convex polytopes (see
e.g. [9]). Let A be a compact convex polytope in the dual space V* of a finite
dimensional vector space V. We denote elements of V by v, w and elements of
V* by &, n. Define the support function ¢ : V. — R of A by

P () = inf (£, v).

The following properties of ¢ are obvious from the definition.

P1) ¢(tv) =tp(v) fort > 0.
(P2) ¢ is concave,i.e. p(v + w) > ¢(v) + ¢ (w).
(P3) A can be recovered from ¢ as the intersection of half spaces

A=YV ]E )=

veV

Let F be a face of A. Pick an interior point p of F and define the dual cone to F
by

F:={weV|({E—p,v)>0forall§ € A}.

If ¢ is another interior point of F and £ € Atheng +t(§ — p) € Afort > 0
sufficiently small. Hence (¢ — p, v) > 0iff (g +¢(§ — p) — ¢, v) > 0. This shows
that the definition of F does not depend on the point p. Moreover, the condition
(¢ — p,v) > 0forall £ € A can be rewritten as ¢ (v) > (p, v), or equivalently
¢(v) = (p,v)since p € A. So F can be written in the equivalent forms

v

F={veV]|(—-p,v)>0forallé € A, p € F}
={veV]|(p,v)y=¢()forall p e F}.

The following properties are obvious from these descriptions of F.
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(F1) F is a convex polyhedral cone.

(F2) The restriction of ¢ to F is the hnear function ¢ (v) = (p, v) forany p € F.

(F3) Fis perpendicular to ' and dim F = codimF.

(F4) If H,..., H, C V* are the supporting hyperplanes for A meeting at F,
then F is the cone generated by inward pointing normal vectors vy, ..., Uy
to the hyperplanes.

(F5) If G is a subface of F then F is a subcone of G.

(F6) The union of the cones p dual to vertices p of A is the whole space V.

The collection = of the cones F dual to nonempty faces of A is called the fan
dual to A (see [3] for the general definition of a fan).

Appendix E. The cohomology of symplectic quotients

Let T be a k-dimensional torus and p = (p1,...,pn) : T — T" := (§')" be a
diagonal homomorphism with

pu(exp(§)) = e~V

for & € t := Lie(T). Here the w, are elements of the dual lattice A* C t* as in the
introduction. We identify the Lie algebra of T" with R” via the map n — in/2x
so that the integer lattice corresponds to Z" C R”. In this identification the line-
arization of p is the map p : t — R”" given by

PE) = (Wi, E)s vy (Way ).
Consider the quotient torus
T :=T"/p(T).
Its Lie algebra is the quotient space
E=R"/p()

and the dual space of t can be identified with the subspace

t :ne (R™* wv_o} (57)

The canonical action of T" on C" induces an action of 7 with moment map
u . C*" — t* given by (1). We assume throughout that u is proper and that the
action is effective (i.e. the weight vectors w, span t*). Let T € t* be a regular
value of 1. Then the torus T acts on the symplectic quotient

M:=C")T(x)=pn'(v)/T.
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A moment map ji : M — t* for this action is given by the formula

x| + ¢
flx) = ; ,
xal* + &
where ¢ = (¢4, ..., ¢,) € (R")* is chosen such that

n
Z yWy, = —T.
v=1

The image of [1 is the convex polyhedron

A= (M) = {n e R Y mwy =0, 7 =8yt (58)
v=1
Each subset I C {1, ..., n} determines a (possibly empty) face

Ar:={neAln, =¢ forvel}.

Recall that C(I) denotes the cone spanned by the vectors w,, v € [. The next
lemma shows that if 7 is a regular value of u, then the intersection of any j
codimension-1 faces of A is either empty or has codimension j.

Lemma E.1. Assume that t is a regular value of i and let I C {1, ..., n}.

(i) The set A is either empty or has codimension |I|.
i)A; =01t ¢ C{l,...,n}\1).

Proof. We prove (i). Assume A; # @ and let J := {1,...,n}\ I. Then, by the
definition of i, thereisay € C’ such that

() =7y |nlw =t

velJ
Since t is a regular value of u, there exist indices vy, ..., vy € J such that the
vectors wy,, ..., wy, are linearly independent and y,; # O for every j. We claim

that there is a vector x € C”’ such that
ux)=rt, x,#0 forall vel.

To see this choose x, for v € J \ {vi, ..., v} such that |x,|*> = |y,|> + ¢ and
choose x,; such that

k
Z(lxvjlz - |yvj|2)wv‘,~ + 3 Z WU — 0

j=1 veJ\{vy,...,vx}
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Then p(x) = u(y) = t and, for ¢ > O sufficiently small, we get x, # 0 for all
veld.
The differential dji(x) : T.(M N C’) — t* is given by
din(x)v = 2m(xy, vy))verss

where v € C” satisfies

du(x)v =2m Z(xv, v,)w, = 0.

veJ

Since x,, # 0 for v € J, this shows that the image of 7 (M N C7) under dji(x)
equals {n € (R7)* | Y ey MWy = 0}. This space, and therefore A;, has dimen-
sion|J|—k=n—k—|I|.

We prove (ii). If A; # () there exists an n € (R")* such that

n
D mwy=0. 0y =4,
v=1

for all v, and

vel — Ny = &y

Hence
=Y —gwy, =Y (=)W, € C({L....n}\ D).
v=1 vel
The converse follows by reversing the argument. O

Standing assumption. [In the remainder of this appendix we assume that T acts

freely on n= (7). .
Denote by w, € H 2_(M ; R) the image of w, under the homomorphism A* =
H?(BT; Z) — H*(M; R).

Lemma E.2. For every J C {1, ..., n} the following holds.

@) If T ¢ C(J) then ], ., W, = 0.
(ii) If T € C(J) and |J| = k then ]_[v¢1 w, = PD(pt).

Proof. w, is the first Chern class of the line bundle L,:=u (1) x », C. Hence
the zero set of the holomorphic section M — L, : [x] — [x,x,] is Poincaré
dual to w,.. Denote this zero set by W, = {[x] eM | x, = 0} . This is a (possibly
empty) complex submanifold of M of complex codimension one. Moreover,

t¢C(J) — ﬂWV:@
veJ

This proves (i). If t € C(J) and |J| = k, then the submanifolds W, for v ¢ J
intersect transversally in a single point. This proves (ii). O
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Lemma E.3. (i) The Chern classes of TM are given by

G TM)y= Y Wy -Wy, j=1l...n—k

Vp<---<Vj
(ii) The cohomology class of the symplectic form @ € Q*(M) is
[w] =7.

Proof. We prove (i). Consider the Whitney sum p~!(t) x C" = E @ F, where
the complex vector bundles £ — p~!'(r) and F — p~!(7) are defined by

E,:={veC"|dux)v=dux)iv=0},
F,:= {v eC'"|A, netVv:v, = (W, &) +i(w,, n))xv}.
Then the bundle F* admits a T'-equivariant complex trivialization and the quotient
bundle E/T — p~'(t)/T is isomorphic to the tangent bundle of M. Hence
i(TM) = c;(u™ (@) xr CY = ) Wy oo W
V<<V

We prove (ii). Denote

1 n
Ao 1= = Z()E,,dxv — x,d%,) € QYCY,  wy:= dho,

v=1
and let o : C" — R” be the moment map given by
po(x) i=m (Iail?y oo )

Since d1n Ay = wo — Ko, the equivariant cohomology class [wy — ©o] € H. z (CM
is trivial. Pulling back under the homomorphism H2,(C") — H % (C™) induced by
pyields 0 = [wy — ] € H% (C"). Restriction to = (7) yields 0 = [t*wy — 1*T]
€ H% (,u‘l(t)), where ¢ : £~ '(tr) — C" is the inclusion. Now the result follows
by passing to the quotient. O

Theorem E.4 ([12]). The ring homomorphism
Rlut, ..., us] = H*(M;R) : p(ur, ... un) > p(Wi, .o, Wa)  (59)
induces an isomorphism

H*(M;R) = Rluy, ..., u,l/Z,

where the ideal I C Rluy, ..., u,]| is generated by the relations
Y onw, =0 = Y nu,=0, (60)
v=1 v=1
Icfl.....n}), Ay=0 = []u,=0. 61)

vel
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Remark. Theorem E.4 continues to hold with coefficients in Z. That the homo-
morphism (59) is surjective follows from Kirwan’s theorem, and that the ideal
7 is contained in the kernel of (59) is an easy consequence of Lemma E.2. The
nontrivial part of the proof is to show that the kernel is contained in Z.

Theorem E.5 ([4]). Assume = (v) # @ and T acts freely on w='(t). Then the
ideal T is generated by the linear relations (60), the linear monomials u, for
Ay = 9, and the monomials ud” ford € Dei(7) \ {0}.

For the sake of completeness, we present a somewhat more elaborated version
of the proof given in [4]. We need some preparation. Denote by A C tand A* C t*
the integer lattices. Thus A is the image of Z" under the projection R” — t and
A*=tN@Z"*  Forv=1,...,nlete, € A be the i image of the basis vector
e, =(0,...,0,1,0,...,0) € Z" under the projection R” — {.

Lemma E.6. Suppose that T acts freely on u=' (7).

(i) Let J C {1,...,n} satisfy |J| = n — k and A; # . Then the vectors
lej | j € J} form an integer basis of A.

(ii) Let d, € Z satisfy Y | _, dye, = 0. Then there exists a vector . € A such that
d, = (w,, A) for every v.

Proof. We prove (1). Assume |J| = n — k and A; # (. Since T acts freely on
w(r),and T € C{1,...,n}\ J), the vectors {w, |v ¢ J} form an integer
basis of A*. Hence, for every v € Z", there exists a unique vector A € A such
that v, = (w,, A) for v ¢ J. This implies that the image v € t of v under the
projection R” — t satisfies

U—Z(UJ (Wi, A)e;.

jeJ

Hence the vectors {e; | j € J} span the integer lattice A as claimed.

We prove (ii). By definition of the projection R” — t, there exists a vector
& € tsuchthatd, = (w,, &) forevery v. Now let J C {1, ..., n} be any index set
such that |J| = n — k and A; # (. Then the argument in the proof of (i) shows
that there exists a lattice vector A € A such that d, = (w,, A) forv ¢ J. Hence
(wy, & — L) =0forv ¢ J. Since the vectors {w, | v ¢ J} form a basis of t* we
deduce that & = X and hence d, = (w,, A) for every v. O

Proof of Theorem E.5. Let Zy C Rluy, ..., u,] be the ideal generated by the lin-
ear polynomials > " _, n,u,, where > "_ n,w, = 0, the monomials u,, where
Aqy = ¥, and the monomials ud" ford e Desr(T) \ {0}

We prove that Z, C Z. We must show that ud" e T for every d € Deg () \ {0}.
We prove a stronger statement: If A € A satisfies (t,A) > 0and d, := (w,, A)
then u?" € 7. To see this, consider the set I := {v | d, > 0}. We claim that
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A7 = (). Otherwise, by Lemma E.1, there would exist numbers 1, > 0 such that
T =) ¢ MWy But then

0<(t,A) =) ndy 0,
vel

a contradiction. Since A; = ), the monomial [ [, _; u, belongs to the ideal Z. But

u?" is a multiple of [1,<; uv and hence also belongs to Z.

We prove that Z C Z. Consider the moment polytope A C t* defined by (58).
The faces of A are subsets of the form A; for I C {1,...,n} such that t €
C{1,...,n}\ I). The vectors {e; | i € I} are the inward pointing normal vectors
to the supporting hyperplanes of A meeting at the face A ;. Hence, by property (F4)
of the dual cones (see Appendix D), the dual cone of A; is given by

A[ = {Zc,-éi Cci = 0} .
iel

By Lemma E.1, the codimension of the face A; equals |/|. In particular, the
vertices of A are subsets A; where |J| =n —k and A; # (.

Now let I C {1, ..., n} such that A; = (). We must prove that the monomial
[1,c; uv belongs to Zy. Shrinking the set 7, if necessary, we may assume without
loss of generality that A, = @ for every proper subset I’ C 1. Since ju(t) # @ we
have I # (. 1f || = 1 then the polynomial [ _; u, belongs to Z, by assumption.
Hence assume |/| > 2. Then

vel — A{v} % . (62)

We shall prove that there exists a vector d € Deg(7) \ {0} such thatd, = 1
forv e I andd, < 0 for v ¢ I. To see this, consider the vector Zie] e € A.
Since the union of the cones dual to vertices is the whole space t, it follows that
there exists an index set J C {1,...,n} such that |J| = n —k, A; # ¢, and
Yic G € A ;. Hence there exists nonnegative real numbers c¢; such that

E é,‘: E Cjéj.

iel jeJ

By Lemma E.6, the set {¢; | j € J} is an integer basis of A. Hence the cj are
actually integers and, after shrinking J, we may assume that c; > O forall j € J.
Define d € Z" by

1, ifvell\lJ,
—c,, 1fveJ\I,
l1—c¢c,, ifvelndl,
0, ifvelUl.
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Then Z’Zzl d,e, = 0and hence, by Lemma E.6, there exists a lattice vector A € A
such that d, = (w,, A) forv = 1,...,n. By (62), we have Ay, # @ for every
v € I U J. Hence d, = 0 whenever Ay, =, and this implies A € A(7).

We prove that d € Deg (1) \ {0}. Let ¢ : t — R be the support function of A
as in Appendix D. By property (P2), we have

Y ¢ <o (Z e) =¢ | ciei | =) cip@E).

iel iel jeJ jeJ

Here the last equation follows from property (F2) and the fact that the set {e; | j
€ J} spans the cone A 7. Now, by (58) and the definition of ¢, we have ¢ (e,,) > ¢,,
with equality if and only if the face A, is nonempty. Moreover, d, = 0 whenever
Ay = . This implies

n

0> Zdv¢(év) - Zdvgv = Z(Wm }\)é‘v = —(‘L’, }‘)-
v=1 v=1

v=1

If we replace T by another vector 7’ in the same chamber, the fan X remains
the same, so the above argument yields the same vector A € A. This shows that
(t/,A) > 0 for every t’ in the chamber of 7. So A € Ac(t) and d € Deg (7).
Since A; =@ and A; # ), we have I # J and hence d # 0.

We prove that I N J = . Otherwise let vg € I N J and I’ := I \ {vp}. Then
d, < 0forv ¢ I'. Hence the argument in the proof of Z, C Z shows that A; = @.
But this contradicts the minimality assumption on /. Hence I N J = ¥ as claimed.
It follows that the vector d satisfiesd, = 1 forv € I and d, < 0 forv ¢ I. Since
d € Dei (1) \ {0} we deduce that

+
I_Iztv:: u® € Io.

vel

This implies Z C Zy and hence Z = 7. O
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