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Abstract Arnold conjectured that every Legendrian knot in the standard contact structure
on the 3-sphere possesses a characteristic chord with respect to any contact form. I confirm
this conjecture if the know has Thurston-Bennequin invariant −1. More generally, existence
of chords is proved for a standard Legendrian unknot on the boundary of a subcritical
Stein manifold of any dimension. There is also a multiplicity result which implies in some
situations existence of infinitely many chords.

The proof relies on the behaviour of symplectic homology under handle attaching. The
main observation is that symplectic homology only changes in the presence of chords.

1. Introduction

1.1. The Chord Conjecture

In his 1986 paper [3], V.I. Arnold conjectured that every Legendrian knot in the
standard contact structure on the 3-sphere possesses a characteristic chord, i.e. an
orbit of the Reeb vector field intersecting the knot at least twice.

The same question can be asked in the following more general situation: Let
N2n−1 be a closed oriented manifold of dimension 2n − 1. A contact form on N is
a 1-form λ such that λ ∧ (dλ)n−1 is a positive volume form. The kernel ξ = kerλ
of a contact form is called a (cooriented) contact structure, and the pair (N, ξ)
a contact manifold. A submanifold L ⊂ (N, ξ) is called isotropic if it is tangent
to ξ . An isotropic submanifold of the maximal possible dimension n − 1 is called
Legendrian.

A contact form determines a unique vector field Yλ, called the Reeb vector
field, by the conditions iYλdλ = 0 and λ(Yλ) = 1. A characteristic chord for
a contact form λ and a Legendrian submanifold L is an orbit of the Reeb vector
field intersecting L at least twice. Let us say that the (generalised) Chord Conjecture
holds for a triple (N, λ, L) if L possesses a characteristic chord for λ, and that it
holds for a triple (N, ξ, L) if it holds for every triple (N, λ, L) with ξ = kerλ. Since
Legendrian isotopies extend to ambient contact isotopies, if the Chord Conjecture
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holds for (N, ξ, L) then it holds for (N, ξ, L̃) with any L̃ isotopic to L (through
Legendrian embeddings).

Note that the existence of a chord for a triple (N, λ, L) can be checked directly
from the Reeb flow of λ. The question becomes nontrivial if we fix the contact
structure and allow the contact form and/or the Legendrian submanifold to vary.
I am aware of only two nontrivial results concerning the Chord Conjecture: 1

Theorem 1.1. (Ginzburg and Givental [17], [18]). The Chord Conjecture holds
for (RP2n−1, ξst, L) where ξst is the standard structure on RP2n−1 = (Cn)∗/R∗
and L is isotopic to RPn−1 = (Rn)∗/R∗ ⊂ RP2n−1. Moreover, the number of
chords of lenght ≤ t grows at least linearly with t.

Theorem 1.2. (Abbas [1]). The Chord Conjecture holds for any triple (S3, λ, L)
where λ is a contact form induced by an embedding S3 ↪→ R

4 as a strictly convex
hypersurface, and L is a Legendrian knot with the following property: there exists
an unknotted periodic Reeb orbit P with self-linking number −1 such that L and
P are not linked.

C. Abbas [2] is working on a variational approach to the Chord Conjecture
on general tight 3-manifolds. Moreover, the symplectic field theory of Eliashberg,
Givental and Hofer [12] is expected to provide another way to address the Chord
Conjecture in any dimension. These approaches all rely on the study of holomorphic
curves in symplectisations. In this paper, several cases of the Chord Conjecture are
proved by a much simpler method involving holomorphic curves in Weinstein
domains.

A Weinstein domain ([27], [11], [14]) is a quadruple (W2n, ω, X, φ) where

• (W, ω) is a compact symplectic manifold with boundary;
• X is an expanding vector field, i.e. L Xω = ω;
• φ is a Morse function which has the boundary as a regular level set;
• the critical points of φ are nondegenerate zeroes of X, and X · φ > 0 outside

the critical points;
• X is outward pointing along the boundary.

It follows that all critical points ofφ have index ≤ n. Call (W2n , ω, X, φ) subcritical
if all critical points of φ have index < n. Note that the 1-form λ := iXω satisfies
dλ = ω, and λ|∂W is a contact form.

A Weinstein homotopy is a smooth family (W, ωt , Xt , φt)t∈[0,1] such that each
(W, ωt , Xt , φt) has the properties of a Weinstein domain except that critical points
of φt and zeroes of Xt may be degenerate. In general, (W, ω0) and (W, ω1)will not
be symplectomorphic. They will be symplectomorphic if the Weinstein homotopy
is fixed near ∂W .

Weinstein domains arise naturally from Stein domains. These are triples
(W2n, J, φ) where (W, J ) is a compact complex manifold of real dimension 2n,

1 After this paper was submitted, K. Mohnke [21] independently attacked the Chord
Conjecture via Gromov’s method of holomorphic disks. He proves existence of a chord
for any compact Legendrian submanifold in the boundary of a subcritical Stein manifold,
thus greatly generalizing Theorem 1.3 below. On the other hand, his method does not give
multiplicity results as in Theorem 1.4.
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and φ : W → R is a strictly plurisubharmonic (i.e. −d(dφ ◦ L) is a positive
(1, 1) form) Morse function which is constant on ∂W and has no critical points on
∂W . A Stein domain (W2n, J, φ) has an associated Weinstein structure (ωφ, Xφ, φ)
where ωφ = −d(dφ ◦ J ) and iXφωφ = −dφ ◦ J .

Another important example is the unit disk cotangent bundle DT∗Q := {p ∈
T∗Q

∣∣ ‖p‖ ≤ 1} with respect to a Riemannian metric on a compact manifold Qn .
T∗Q carries a canonical (ω, X, φ) which in local coordinates (q j , p j) is given
by ω = ∑

dq j ∧ dp j , X = ∑
p j

∂
∂p j

, and φ = ∑
p2

j . Note that X and φ are
degenerate along the zero section. But they can be perturbed (by adding a small
Morse function on Q to φ) to a canonical Weinstein structure which is unique up
to Weinstein homotopy.

It has been observed in [27] and [10] that the manifold W ∪L H2n
k obtained

by attaching a 2n-dimensional k-handle with a standard framing to a Weinstein
(respectively Stein) domain W2n along an isotropic sphere Lk−1 ⊂ ∂W carries
again a natural Weinstein (respectively Stein) structure (see Sect. 2 for definitions
and precise statements). Call the handle subcritical if k < n.

The main result of this paper is the following:

Theorem 1.3. Let (N2n−1, ξ), n ≥ 2, be the boundary of a subcritical Weinstein
domain W2n, and L ⊂ N a Legendrian sphere. Suppose that

W ∪L H2n
n ∪ {subcritical handles}

is Weinstein homotopic to

DT∗Q ∪ {subcritical handles}

for some compact manifold Qn. Then the Chord Conjecture holds for (N, ξ, L).

This result can be improved to yield chords in specific homotopy classes. Denote
by π̃1(W, L) the homotopy classes of maps x : [0, 1] → W with x(0), x(1) ∈ L.
They are in canonical one-to-one correspondence with free homotopy classes of
loops in W ∪L H2n

n , denoted by π̃1(W ∪L H2n
n ). Let

M := W ∪L H2n
n ∪ {subcritical handles} ∼= DT∗Q ∪ {subcritical handles}

be the Weinstein domain in Theorem 1.3, and denote by i# : π̃1(W, L) → π̃1(M),
j# : π̃1(Q) → π̃1(M) the maps induced by the inclusions.

Theorem 1.4. Let (N, ξ), L, W, M be as above. Then for every γ ∈ π̃1(Q) with
j#γ nontrivial there exists a chord x for (N, ξ, L) whose class [x] ∈ π̃1(W, L)
satisfies i#[x] = j#γ .

In the remainder of this section I will describe examples where these theorems
apply. Call an embedded Legendriansphere Ln−1 inR2n−1 with its standard contact
form dz −∑n−1

j=1 y jdx j a standard Legendrian unknot if its (front) projection onto
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the (x, z) subspace is a 2-valued graph over a ball with a standard cusp along its
boundary, given by the formulae

z = ±(1 − ‖x‖2)
3
2 , ‖x‖ ≤ 1,

y j = ∂z

∂x j
= ∓3

√
1 − ‖x‖2x j .

(see [4] Chapter X for a picture of a flying saucer). Call an embedded Legendrian
sphere Ln−1 in an arbitrary contact manifold (N2n−1, ξ) a standard Legendrian
unknot if it is Legendrian isotopic to a standard Legendrian unknot in a Darboux
chart. Legendrian great circles in S2n−1 (images of Rn ∩ S2n−1 ⊂ C

n under
unitary maps) are examples of standard Legendrian unknots, and any two standard
Legendrian unknots are Legendrian isotopic (Lemma 2.8 below).

Corollary 1.5. The Chord Conjecture holds for any triple (N2n−1, ξ, L), n ≥ 2,
where (N, ξ) is the boundary of a subcritical Weinstein domain, and L is a standard
Legendrian unknot.

This corollary follows from the fact that a standard Legendrian unknot can be
disjoined from all the subcritical handles, and attaching a handle to the 2n-ball
along a standard Legendrian unknot yields T∗Sn . The details are carried out in
Sect. 2.4. As a special case we obtain

Corollary 1.6. The Chord Conjecture holds for (S2n−1, ξst, L) where L is isotopic
to a Legendrian great circle. ��

In view of the covering (S2n−1, ξst, Sn−1) → (RP2n−1, ξst,RPn−1), this im-
plies the existence part (but not the linear growth) of Ginzburg/Givental’s theorem.

For a physical example, consider a mechanical system defined by a potential
V : Rn → R and Hamiltonian H(q, p) = 1

2 |p|2 + V(q). Suppose that for some
E > min V ,

〈q,∇V(q)〉 > 2
(
V(q)− E

)
for all q with V(q) ≤ E. (V )

For example, this condition is satisfied for very E > min V if V has a unique
minimum at the origin and all its level surfaces are star-shaped with respect to
the origin. Condition (V ) implies that 1

2

∑
i(qidpi − pidqi) is a contact form on

the level surface {H = E}. L := {H = E} ∩ {p = 0} is a standard Legendrian
unknot, thus it possesses a characteristic chord by Corollary 1.6. In view of the
time reversibility of the system, the chord has the following physical meaning:

Corollary 1.7. Suppose that V satisfies condition (V) for some E > min V. Then
there exists a libration motion of energy E, i.e. a motion that oscillates back and
forth along the same orbit between two points on {V = E}. ��

This result, under weaker hypotheses, is due to Bolotin [5].
For n = 2, the contact 3-manifolds filled by subcritical Stein manifolds are

S3 and k-fold connected sums #k(S1 × S2). They all carry unique tight contact
structures which are induced by the filling and will be denoted by ξst [19]. The
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Thurston-Bennequin invariant tb(L) of a null-homologous Legendrian knot L in
a contact 3-manifold is the linking number of L with its push-off in the direction
of the Reeb vector field. By the main result of [13], standard Legendrian unknots
are precisely those Legendrian unknots with tb = −1. So Theorem 1.3 implies

Corollary 1.8. (n = 2). The Chord Conjecture holds for triples (S3, ξst, L) and(
#k(S1 × S2), ξst, L

)
, where L is a Legendrian unknot with tb(L) = −1. ��

Finally, here are some explicit examples of nontrivial Legendrian knots:

Corollary 1.9. The Chord Conjecture holds for
(
#k(S1 × S2), ξst, L

)
where L is

a Legendrian knot running over the first 2g ≤ k handles with Kirby diagram [20]
as in Fig. 1.

Fig. 1.

This corollary follows from the fact, proved in Sect. 2.4, that attaching a 2-
handle to #̃2g(S1 × B3) along this Legendrian knot L yields the unit disk cotangent
bundle DT∗�g of the surface of genus g. Combining this with Theorem 1.4 yields

Corollary 1.10. For g > 0 the triple
(
#k(S1 × S2), ξst, L

)
in Corollary 1.9 pos-

sesses infinitely many chords: at least one in each relative homotopy class of loops
running over the first 2g handles such that the corresponding free homotopy class
on �g is nontrivial. ��

1.2. Symplectic homology and proof of Theorems 1.3 and 1.4

Symplectic homology has been introduced in the series of papers [15], [16], [7], [8].
In its most general form it associates to a symplectic manifold (M, ω) (satisfying
some conditions), a free homotopy class of loops α ∈ π̃1(M), a ring R, an integer k,
and real parameters a < b an R-module

SH [a,b);α
k (M, ω; R)
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called the symplectic homology of (M, ω). It is invariant under symplectomor-
phisms and has certain functorial properties.

A suitable class of symplectic manifolds for the purpose of this paper are
compact symplectic manifolds (M2n , ω) with boundary such that

∫
T 2

f ∗ω = 0 for every f : T 2 → M, (ω1)

∂M is ω-convex. (ω2)

The first hypothesis holds, for example, when ω is exact. Convexity means that
there exists a 1-form λ on ∂M such that dλ = ω|∂M and λ is a positive contact form,
i.e. λ∧ (dλ)n−1 is a positive volume form with respect to the boundary orientation
of ∂M. Note that a Weinstein domain satisfies (ω1 − 2).

The coefficient ring is Z2 := Z/2Z, so that the symplectic homology modules
are Z2 vector spaces. The interval [a, b) is chosen as (−∞,∞). If we ignore the
grading k, symplectic homology associates to each compact symplectic manifold
satisfying (ω1 − 2) vector spaces

SHα∗ (M, ω) ≡ SH (−∞,∞);α∗ (M, ω;Z2).

The construction is outlined in Sect. 3.1. Symplectic homology is invariant under
symplectomorphisms and under homotopies of symplectic forms satisfying (ω1−2)
([24], Lemma 3.7). In particular, the symplectic homology of Weinstein domains
is invariant under Weinstein homotopies.

The proof of Theorems 1.3 and 1.4 is based on the behaviour of symplectic
homology under handle attaching. For an embedding i : W ↪→ (M, ω) and a free
homotopy class α ∈ π̃1(M) of loops on M define

i−1
# α := {β ∈ π̃1(W ) | i#β = α},

SH
i−1
# α

∗ (W, ω) :=
⊕
β∈i−1

# α

SHβ∗ (W, ω).

Theorem 1.11. Let (W2n, ω), n ≥ 2, be a compact symplectic manifold satisfying
(ω1 − 2). Let (M, ω) be the symplectic manifold obtained by attaching a k-handle
to W along an isotropic sphere Lk−1 ⊂ ∂W with a standard framing. Assume that
(M, ω) satisfies (ω1 − 2).

1. If k < n then

dim SHα∗ (M, ω) = dim SH
i−1
# α

∗ (W, ω).

2. If k = n and L possesses no chord in class α ∈ π̃1(W, L) ∼= π̃1(M), and α is
a nontrivial free homotopy class, then

dim SHα∗ (M, ω) = dim SH
i−1
# α

∗ (W, ω).
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3. If k = n and L possesses no chord in class α, and α is the trivial free homo-

topy class, then either dim SHα∗ (M, ω) = dim SH
i−1
# α

∗ (W, ω) = ∞, or both
dimensions are finite and

∣∣ dim SHα∗ (M, ω) − dim SH
i−1
# α

∗ (W, ω)
∣∣ ≤ 1.

Now we are in the position to prove Theorems 1.3 and 1.4.

Proof of Theorem 1.4. Let (N, ξ), L, W , M and γ be as in the theorem. Assum-
ing that L possesses no chord in class i−1

# j#γ , we will compute the symplectic
homology of M in two different ways to get a contradiction.

First way: By assumption W ∪L H is Weinstein homotopic, up to adding and
deleting handles of index< n, to a unit disk cotangent bundle DT∗Q over a com-
pact manifold Q. The symplectic homology of DT∗Q has been computed by
Viterbo [25] and Weber [26]: In class γ it equals the singular homology of the
component�γ Q ⊂ �Q of the free loop space,

SHγ∗ (DT∗Q) ∼= H∗(�γ Q;Z2) %= {0}.
By Theorem 1.11, adding subcritical handles does not change symplectic homol-
ogy, so

SH j#γ∗ (M) %= {0}.
Second way: Since W is a subcritical Weinstein domain, repeated application of
Theorem 1.11 shows SHβ∗ (W ) = {0} for every β. If L possesses no chord in class

i−1
# j#γ then, again by Theorem 1.11, SH

i−1
# j#γ∗ (W ∪L H2n

n ) = {0}. Here we use
the hypothesis that j#γ is nontrivial. Adding further subcritical handles does not
affect symplectic homology, hence

SH j#γ∗ (M) = {0}.
This contradiction concludes the proof. ��
Proof of Theorem 1.3. The proof is analogous to the proof of Theorem 1.4, com-
puting the symplectic homology of M in two different ways. Here we consider the
total symplectic homology SH∗∗ (M) := ⊕αSHα∗ (M).
First way: By a result of Sullivan [23], the homology H∗(�Q;Z2) ∼= SH∗∗ (DT∗Q)
is infinite dimensional. By Theorem 1.11, adding and deleting a handle of index
< n changes the dimension of symplectic homology by at most 1. Hence

dim SH∗∗ (M) = ∞.

Second way: By Theorem 1.11, if L possesses no chord then adding a handle to W
along L changes the dimension of symplectic homology by at most 1. Hence

dim SH∗∗ (M) ≤ 1,

and again we have a contradiction. ��
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2. Attaching handles to Weinstein domains

This section recollects some results on Weinstein domains that will be needed in the
proof of the main theorem and its corollaries. Most of the results have counterparts
in the category of Stein domains, but proofs are generally easier for Weinstein
domains.

2.1. Weinstein structures

Recall the definition of a Weinstein domain (W2n, ω, X, φ) from Sect. 1. A relative
Weinstein domain satisfies all the conditions of a Weinstein domain except that X
may be inward pointing along some boundary components.

The symplectisation N × [a, b] of a contact manifold carries the canoni-
cal relative Weinstein structure (without critical points) ω := d(erλ), X := ∂

∂r ,
φ(y, r) := er .

The proof of the following lemma is straighforward but somewhat lengthy and
will be omitted.

Lemma 2.1. Let (W, ω, X0, φ0) be a Weinstein domain, and � ⊂ W the union
of all unstable manifolds for the flow of −X0. Let (ω, Xloc, φloc) be a Weinstein
structure on a neighbourhood Wloc of � having � as the union of the unstable
manifolds.

Then there exists a Weinstein homotopy (ω, Xt , φt) such that (Xt , φt) =
(X0, φ0) outside Wloc for all t ∈ [0, 1], and (X1, φ1) = (Xloc, φloc) near�.

Next we need a result about deformations of Weinstein structures. It is based
on the following simple but useful lemma:

Lemma 2.2. Let (λt)t∈[0,1] be a smooth family of contact forms on a closed mani-
fold N2n−1, independent of t near 0 and 1. Then there exists an R > 0 and an
increasing function h : [0, R] → [0, 1] such that h = 0 near t = 0, h = 1 near
t = 1, and d(erλh(r)) is symplectic on N × [0, R], r ∈ [0, R].
Proof. The proof is a short computation:

ω := d
(
erλh(r)

) = er
[
dr ∧ λh + dλh + h′(r)dr ∧ λ̇h

]
ωn = nenrdr ∧ (λh + h′(r)λ̇h

) ∧ (dλ)n−1.

So ω is symplectic iff (λh + h′(r)λ̇h) is positive on the Reeb vector field of λh ,
which is the case for h′(r) sufficiently small. ��

Consider two consecutive critical levels a < b of φ in a Weinstein domain
(W, ω, X, φ) with unique critical points p on level a and q on level b. Denote by
D+

p = D+
p (X) the stable manifold of p with respect to −X, and by D−

q the unstable
manifold of q. Let c be a regular level, a < c < b.
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Lemma 2.3. 1. If D+
p ∩ D−

q = ∅, then the order of p and q can be reversed
by a Weinstein homotopy. More precisely, there exists a family (φt)t∈[0,1] such
that (ω, X, φt) are Weinstein structures for all t, φ0 = φ, φt = φ outside
a neighbourhood of {a ≤ φ ≤ b}, and φ1(p) > φ1(q).

2. Suppose there exists a family of isotropic spheres Lt ⊂ {φ = c} with D−
q ∩

{φ = c} = L0. Then the Weinstein structure can be deformed such that D−
q ∩

{φ = c} = L1. More precisely, there exists a family (ωt , Xt) and constants Rt

such that R0 = 0, (ωt , Xt, φ) are Weinstein structures for all t, (ω0, X0) =
(ω, X), (ωt , Xt) = (ω, X) on {φ ≤ a}, (ωt , Xt) = (eRtω, X) on {φ ≥ b}, and
D−

q (Xt) ∩ {φ = c} = Lt.

Proof. (1) Push up the level set {φ = a} along flow lines of X until it intersects
a neighbourhood of q which is equivalent to the standard handle described in
Subsect. 2.2. Then replace the level set by a level set above the critical point q as
described in [27].

(2) We will construct (ω1, φ1). It will be clear from the construction that it can
be done as a smooth family in t. Let N := {φ = c}, λ := iXω|N . Let ψt : N → N
be a family of diffeomorphisms with ψ1 = 1l, ψt(L0) = L1−t and ψ∗

t λ = e ftλ

for functions ft : N → R. By Lemma 2.2, there exists a function h such that
d(er+ fh(r)λ) is symplectic on N ×[0, R]. This form possesses the expanding vector
field (1 + h′(r) ḟh(r))

−1 ∂
∂r , hence L0 × [0, R] is Lagrangian and invariant. Now

cut W open along N and glue in the relative Weinstein structure on N × [0, R]
by (x, r) *→ (ψh(r)(x), r). The glued in structure matches (ω, X, φ) near r = 0
and (eRω, X, φ) near r = R. Moreover, L0 × [0, R] gets mapped to the invariant
Lagrangian cylinder ∪r∈[0,R]L1−h(r) × {r}, which agrees with L1 near r = 0 and
L0 near r = R. ��

2.2. Handles

Recall the contact surgery construction from [27]. Consider an isotropic subman-
ifold Lk−1 of a contact manifold (N2n−1, ξ). The form ω = dλ for some λ with
kerλ = ξ defines a natural conformal symplectic structure on ξ . Denote the ω-
orthogonal on ξ by ⊥ω. Since L is isotropic, TL ⊂ TL⊥ω . So the normal bundle of
L in N is given by

TN/TL = TN/ξ ⊕ ξ/(TL)⊥ω ⊕ (TL)⊥ω/TL.

The Reeb vector field Yλ trivialises TN/ξ . The bundle ξ/(TL)⊥ω is canonically
isomorphic to T∗L via v *→ ivω. The conformal symplectic normal bundle
CSN(L) := (TL)⊥ω/TL carries a natural conformal symplectic structure induced
by ω.

Now let Lk−1 be the standard sphere Sk−1. The embedding Sk−1 ⊂ Rk provides
a natural trivialisation of the bundle R ⊕ T∗Sk−1 where R denotes the trivial
bundle. This trivialisation together with a conformally symplectic trivialisation of
CSN(Sk−1) specifies a standard normal framing for Sk−1 ⊂ N. Note that when
Sk−1 is Legendrian then CSN(Sk−1) = {0}, so there is a unique standard normal
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framing. Also note that for S1 ⊂ N3 the standard normal framing differs from the
trivialisation of the 2-dimensional bundle R⊕ T∗S1 coming from a trivialisation
of T∗S1 by a single twist [19].

Proposition 2.4 (Weinstein [27]). Let Sk−1 be an isotropic sphere in a contact
manifold (N2n−1, ξ). Then the manifold P := (N2n−1 ×[0, 1])∪Sk−1 H2n

k obtained
by attaching a 2n-dimensional k-handle H2n

k to [0, 1]× N2n−1 along Sk−1 ×{1} ⊂
N × {1} with a standard framing carries a relative Weinstein structure (ω, X, φ)
such that

• (ω, X, φ) is the standard structure on N × [0, 1] as a symplectization;
• X is inward pointing along ∂− P = N × {0} and outward pointing along the

other boundary component ∂+P;
• φ has precisely one critical point p of index k in the interior of the handle

whose unstable manifold intersects N × {0} in Sk−1 × {0}.
Thus ∂+ P is a contact manifold resulting from surgery on N along Sk−1. If

(N, ξ) is the boundary of a Weinstein domain (W, ω, X, φ) then the proposition
provides a Weinstein structure on W ∪Sk−1 H2n

k extending the given one. The latter
statement is also true in the Stein category [10].

Let us have a closer look at the standard handle H2n
k . Consider R2n with

coordinates (q1, p1, . . . , qn, pn) and the Weinstein structure [27]

ω =
n∑

i=1

dqi ∧ dpi,

φ =
n−k∑
i=1

(
1

4
q2

i + 1

4
p2

i

)
+

n∑
i=n−k+1

(
q2

i − 1

2
p2

i

)
,

X = ∇φ =
n−k∑
i=1

(
1

2
qi
∂

∂qi
+ 1

2
pi
∂

∂pi

)
+

n∑
i=n−k+1

(
2qi

∂

∂qi
− pi

∂

∂pi

)
.

Consider a function ψ(x, y) of

x :=
n∑

i=1

Aiq
2
i +

n−k∑
i=1

Bi p2
i , y :=

n∑
i=n−k+1

Bi p2
i

with coefficients Ai, Bi > 0. It satisfies X · ψ > 0 provided that

∂ψ

∂x
≥ 0,

∂ψ

∂y
≤ 0,

∂ψ

∂x
(x, 0) > 0,

∂ψ

∂y
(0, y) < 0,

and the partial derivatives are not simultaneously zero. The handle is the set

H2n
k := {φ ≥ −1} ∩ {ψ ≤ 1}

where the level surfaces {φ = −1} and {ψ = 1} agree outside a neighbourhood of
the origin. The relative Weinstein structure on the handle is (ω, X, ψ).
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The Hamiltonian vector field of ψ is given by

Xψ = ∂ψ

∂x

(
n∑

i=1

2Aiqi
∂

∂pi
+

n−k∑
i=1

2Bi pi
∂

∂qi

)
+ ∂ψ

∂y

(
n∑

i=n−k+1

2Bi pi
∂

∂qi

)
.

The function f := ∑n
i=n−k+1 qi pi satisfies Xψ · f > 0 outside the critical points

of f . This shows that all periodic orbits of Xψ are contained in {qn−k+1 =
pn−k+1 = · · · = qn = pn = 0}. The constants Ai, Bi can be chosen so that
none of the closed orbits has period 1, except for the critical point at the origin. So
we have shown

Lemma 2.5. The Weinstein structure (ω, X, ψ) on the handle can be chosen such
that the only 1-periodic orbit on the handle is the critical point in its center.

Now suppose k < n. Then the core disk Dk := {q1 = · · · = qn = p1 = · · · =
pn−k = 0} ∩ H2n

k is contained in the X-invariant Legendrian handle

Hn
k := {q1 = · · · = qn = 0} ∩ H2n

k .

The attaching sphere Sk−1 = Dk ∩ {φ = −1} is contained in the Legendrian
submanifold ∂−Hn

k := Hn
k ∩ {φ = −1}. The Legendrian submanifold ∂+Hn

k :=
Hn

k ∩ {ψ = 1} is obtained from ∂−Hn
k by surgery along Sk−1 with cobordism Hn

k .
In view of the normal form for isotropic setups [27], we can arrange that a given
Legendrian submanifold L ⊂ (N, ξ) intersects the handle in ∂−Hn

k . So we have
proved

Lemma 2.6. Let L ⊂ (N, ξ) be a Legendrian submanifold containing the isotropic
sphere Sk−1 , k < n. Then the manifold Q := (L × [0, 1])∪Sk−1 Hn

k is X-invariant
and Lagrangian. Its upper boundary ∂+Q is a Legendrian submanifold obtained
from ∂−Q = L × {0} by surgery along Sk−1 .

2.3. Standard Legendrian unknots

The following lemma (which seems well-known, but I did not find a proof in
the literature) states that the space of germs of contactomorphisms at a point is
connected.

Lemma 2.7. Let U be a neighbourhood of the origin in R2n−1 with the standard
contact structure. Then for every contact embeddingφ : U → R

2n−1 withφ(0) = 0
there exists a neighbourhood V ⊂ U of the origin and a smooth family of contact
embeddings φt : V → R

2n−1 with φt(0) = 0, φ0 = 1l|V and φ1 = φ|V .

Proof. Let X1, y1, . . . , xn−1, yn−1, z be coordinates onR2n−1. Denote by ∇x,y and
∇2

x,y the gradient and Hessian in the (x, y) variables. Let J0 be the standard complex

structure on R2n−2 and λ = dz + 1
2

∑n−1
j=1(x jdy j − y jdx j) the standard contact

form on R2n−1. The first 2 steps of the proof are straightforward computations.
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Step 1: A contact embedding φ : U → R
2n−1 satisfies φ∗λ = (φ∗ f )λ for some

function f : U → R. If φ(0) = 0 then its differential at the origin is of the form

Dφ(0) =
(

A a
0 α

)
,

where α = f(0), a = −J0∇x,y f(0), and A ∈ R(2n−2)×(2n−2) satisfies A∗dλ0 =
α dλ0.

Step 2: Associated to a function H : U →R is a contact vector field X H = HYλ + Z ,
where Yλ = ∂

∂z is the Reeb vector field and Z ∈ ξ satisfies (i Zdλ+ dH )|ξ = 0. If
H satisfies H(0) = 0, ∇x,y H(0) = 0, then the differential at the origin of X H is
given by

DX H(0) =
(

B b
0 β

)
,

where β = ∂H
∂z (0), b = −J0∇x,y

∂H
∂z (0) and B = J0∇2

x,y H(0).

Step 3: A contact embedding φ can be connected to a contact embedding ψ with
Dψ(0) = 1l.

Proof. The Lie algebra of the linear symplectic group Sp(2n − 2) consists of
matrices B = J0S for symmetric matrices S. Since Sp(2n − 2) is connected, every
symplectic matrix is a product of exponentials of matrices in the Lie algebra. This
implies that Dφ(0) as in Step 1 is a product of exponentials of DX H(0) as in Step 2
for suitable functions H .

The time-1 map φH of a contact vector field X H as in Step 2 is a contact
embedding that is connected to the identity by the flow of X H , and DφH(0) =
exp[DX H(0)]. A suitable product of such time-1 maps will have the same differ-
ential at the origin as φ, from which Step 3 follows.

Step 4: A contact embeddingψ with Dψ(0) = 1l can be connected to the identity.

Proof. Denote the components of ψ corresponding to (x, y, z) = (x j , y j , z) by
(ξ, η, ζ) = (ξ j , η j , ζ), j = 1, . . . , n − 1. Inspection of the 2-jet of ψ at the origin
shows, as a consequence of Dψ(0) = 1l and the contact condition, that all second

order partial derivatives of ζ at the origin vanish, except possibly ∂2ζ

∂z2 .

Since the rescaling (x, y, z) → (tx, ty, t2z) is a contactomorphism for t > 0,
the maps

ψt(x, y, z) :=



1
t ξ(tx, ty, t2z)
1
t η(tx, ty, t2z)
1
t2 ζ(tx, ty, t2z)




define a family of contact embeddings for 0 < t ≤ 1. Moreover, Dψ(0) = 1l and
the vanishing of the second order partial derivatives of ζ imply that ψt → 1l as
t → 0. ��
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Lemma 2.8. 1. Any two standard Legendrian unknots in a connected contact
manifold are isotopic.

2. The standard great circle S2n−1 ∩ Rn is a standard Legendrian unknot in
S2n−1 = {Z ∈ Cn

∣∣ ‖Z‖ = 1} with its standard contact structure given by
maximal complex subspaces.

Proof. 1. Suppose L0, L1 are standard Legendrian unknots in a connected contact
manifold (N, ξ). Let φi : R2n−1 ⊃ Ui → N, i = 0, 1, be Darboux charts such that
φ−1

i (Li) are standard. After rescaling in the Darboux charts we may assume that
U1 = U2 = U , and that U contains the origin. Note that two standard Legendrian
unknots in R2n−1 are isotopic because their front projections can be deformed into
one another through 2-valued graphs with standard cusps along the boundary of
balls. Thus we may assume that φ−1

0 (L0) = φ−1
1 (L1).

Since the group of contactomorphisms isotopic to the identity acts transitively
on points of N, there exists a family of contact embeddingsψt : U → N such that
ψ0 = φ0 and ψ1(0) = φ1(0). By Lemma 2.7 and possibly shrinking U we can
achieve ψ1 = φ1. Then Lt := ψt ◦ φ−1

0 (L0) is the desired Legendrian isotopy.

2. Equip R2n−1 with the contact form λ := dz −∑n−1
j=1 y jdx j . A standard Legen-

drian unknot is given by

z = ±(1 − ‖x‖2)
3
2 , ‖x‖ ≤ 1,

y j = ∂z

∂x j
= ∓3

√
1 − ‖x‖2x j .

Consider the Legendrian isotopy ft : Dn−1 = {x ∣∣ ‖x‖2 ≤ 1} → R
2n−1,

0 < t ≤ 1,

ft(x) :=
(

x

t
,∓3

√
1 − ‖x‖2x,± (1 − ‖x‖2)

3
2

t

)

which for t = 1 is a parametrization of the standard unknot above. Consider also
the embedding φ : R2n−1 ↪→ S2n−1 onto the open lower hemisphere given by
φ := φ̃/‖φ̃‖,

φ̃(x, y, z) :=

x + iy, . . . , z − 1

2

n−1∑
j=1

x j y j − 2i


 .

The embedding φ maps the contact structure {λ = 0} to the standard contact
structure on S2n−1. Moreover,

φ̃ ◦ ft(x) =
(

x

t
∓ 3
√

1 − ‖x‖2ix,
±√1 − ‖x‖2

t

(
1 + ‖x‖2

2

)
− 2i

)
,

‖φ̃ ◦ ft(x)‖ = 1

t2

{
‖x‖2 + (1 − ‖x‖2)

(
1 + ‖x‖2

2

)2

+ O(t)

}
.
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Thus φ ◦ ft converges as t → 0 to the map

x *→
(

x,±√1 − ‖x‖2
(

1 + ‖x‖2

2

))
√

‖x‖2 + (1 − ‖x‖2)
(

1 + ‖x‖2

2

)2
,

which is a parametrization of the standard great circle in S2n−1. ��

2.4. Proof of the corollaries assuming Theorem 1.3

Corollary 1.5 follows immediately from Theorem 1.3 and the following

Proposition 2.9. Let (W2n, ω, X, φ) be a subcritical Weinstein domain and
Ln−1 ⊂ ∂W a standard Legendrian unknot with its canonical framing. Then
the Weinstein domain (W ∪L H2n

n , ω, X, φ) is Weinstein homotopic to the unit
cotangent bundle D1T∗Sn with subcritical handles attached.

Proof. By the second part of Lemma 2.3, we may replace L by any Legendrian
sphere isotopic to it in ∂W . So we can assume that L is contained in an arbitrarily
small Darboux chart, and that it does not intersect any stable manifold of the other
critical points of φ. Then by the first part of Lemma 2.3, we can push down the
critical point on H2n

n in W ∪L H2n
n to a level below all the other critical points.

This shows that (W ∪L H2n
n , ω, X, φ) is Weinstein homotopic to (B2n ∪L̃ H2n

n ,

ω̃, X̃, φ̃) with subcritical handles attached, where φ̃ has one critical point p in the
ball B2n and one critical point q on the handle H2n

n , and L̃ ⊂ ∂B2n is a standard
Legendrian unknot.

After making (ω̃, X̃, φ̃) standard near p and pushing down L̃ by the backward
flow of X̃, we may assume that (ω̃, X̃, φ̃) are standard on B2n . Moreover, by
Lemma 2.8, we may assume that L̃ is the standard Legendrian great circle. Then
the backward orbit of L̃ under the flow of X̃ is an embedded n-ball. Together with
the core disk of the handle it forms a Lagrangian n-sphere Sn ⊂ B2n ∪L̃ H2n

n
which is the union of p with the unstable manifold of q. By Lemma 2.1 we
can achieve via another Weinstein homotopy that the Weinstein structure agrees
with the standard structure on T∗Sn near Sn . Then a neighbourhood of Sn equals
D1T∗Sn , and (W ∪L H2n

n , ω, X, φ) is obtained (up to Weinstein homotopy) by
attaching subcritical handles to this neighbourhood. ��

Corollary 1.9 is a direct consequence of Theorem 1.3 and the following

Proposition 2.10. Let (#̃k(S1 × B3), ω, X, φ) be the 4-ball with k 1-handles with
its standard Weinstein structure. Let L be a Legendrian knot in the boundary
(#k(S1 × S2), ξst) running over the first 2g ≤ k handles with Kirby diagram as in 1.
Then the Weinstein domain obtained by attaching a 2-disk along L is Weinstein
homotopic to the unit cotangent bundle D1T∗� of a surface of genus g with (k−2g)
1-handles attached.
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Proof. In the Kirby diagram 1, remove the parts of the knot L running over the
handle and at every 3-ball connect the two strands entering a handle by a cusp.
The resulting knot L̃ is easily seen to be Legendrian isotopic to the standard
unknot in S3 = ∂B4. Thus we can choose the Weinstein structure (ω, X̃, φ̃) on B4

such that the backward orbit of L̃ under X̃ is an embedded 2-disk containing the
critical point of φ̃. The knot L is obtained from L̃ by a sequence of 0-surgeries
on the handles. So by Lemma 2.6, L bounds an X-invariant Lagrangian surface
in the resulting 4-manifold M4 containing all the critical points of the extended
function φ. Attaching a 2-handle to M along L caps off this surface to a closed
invariant Lagrangian surface� of genus g in M ∪L H4

2 . Thus� is the union of all
unstable manifolds, and M ∪L H4

2 retracts onto � under the backward flow of X.
In view of the Lemma 2.1, this proves that M ∪L H4

2 is Weinstein homotopic to
T∗� with its standard structure. ��

3. Symplectic homology and handle attaching

3.1. Symplectic homology

Let us first define the appropriate version of symplectic homology, essentially
following the lines of [6]. For details see [15], [7].

Throughout this section, (M2n, ω) is a compact symplectic manifold with
boundary such that ∫

T 2
f ∗ω = 0 for every f : T 2 → M, (ω1)

∂M is ω-convex. (ω2)

The first hypothesis holds, for example, when ω is exact. Convexity means that
there exists a 1-form λ on ∂M such that dλ = ω|∂M and λ is a positive contact form,
i.e. λ∧ (dλ)n−1 is a positive volume form with respect to the boundary orientation
of ∂M. Let Yλ be the Reeb vector field and ξ the contact structure defined by λ.
Define the action spectrum of the boundary

A(∂M, λ) :=
{∫

y
λ | y closed orbit of Yλ

}
.

In coordinates (y, r) on a collar neighbourhood ∂M × (−δ, 0] we haveω = d(erλ).
Define the completion (M̂, ω̂) by

M̂ := M ∪∂M
(
∂M × [0,∞)

)
,

ω̂ := dλ̂, λ̂ := erλ on ∂M × [0,∞).

A 1-periodic time-dependent Hamiltonian H : S1 × M̂ → R is called admissible
if

H
(
t, (y, r)

) = aer + b on ∂M × [0,∞),
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where a > 0, b are constants and a /∈ A(∂M, λ). Define the Hamiltonian vector
field X H by

dx H(t, x) = −ω(X H(t, x), ·).
Note that X H

(
t, (y, r)

) = aYλ(y) on ∂M × [0,∞), so for a /∈ A(∂M, λ) all 1-
periodic solutions of the Hamiltonian system ẋ = X H(t, x) are contained in M.
Call H regular if all 1-periodic solutions are nondegenerate, i.e. the linearized
Hamiltonian flow along x does not have 1-periodic solutions.

Fix a reference loop xα in each free homotopy class α of loops in M̂ and
arbitrarily assign it an action A(xα). For a smooth loop x : S1 → M̂ with [x] = α

define its Hamiltonian action as

AH(x) :=
∫
[0,1]×S1

x̄∗ω̂−
∫ 1

0
H
(
t, x(t)

)
dt + A(xα),

where x̄ : [0, 1] × S1 → M̂ satisfies x̄(0, t) = xα(t), x̄(1, t) = x(t). The action
does not depend on the choice of x̄ because the integral of ω̂ vanishes over tori.
Critical points of AH are precisely the 1-periodic solutions of X H .

Fix a trivialisation of T M̂ over each reference loop xα. For a 1-periodic orbit
x and an extension x̄ as above let indCZ(x, x̄) be the Conley-Zehnder index ([9],
[22]) of x in the trivialisation of T M̂|x which extends over [0, 1] × S1 to match the
trivialisation of T M̂|xα . Let

Pα(H ) := {(x, x̄)
∣∣ x : S1 → M̂, ẋ = X H(t, x), [x] = α,

x̄ : [0, 1] × S1 → M̂, x̄(0, ·) = xα, x̄(1, ·) = x
}/∼,

where (x, x̄) ∼ (y, ȳ) iff x = y and indCZ(x, x̄) = indCZ(y, ȳ). Each equivalence
class [x, x̄] possesses a well-defined action AH([x, x̄]) = AH(x) and Conley-
Zehnder index. Let

Pαk (H ) :=
{[x, x̄] ∈ Pα(H ) ∣∣ indCZ([x, x̄]) = k

}
.

Note that for every 1-periodic solution x there is at most one element [x, x̄] in
Pαk (H ), hence for regular admissible H the set ∪αPαk (H ) is finite for every k.

A Hamiltonian H : R× S1 × M̂ → R is called a monotone homotopy between
admissible Hamiltonians H−, H+ if

∂H

∂s
(s, t, x) ≤ 0 for all (s, t, x), (H1)

H(s, t, x) =
{

H−(t, x) for s ≤ −s0;
H+(t, x) for s ≥ s0,

(H2)

H
(
s, t, (y, r)

) = a(s)er + b(s) on ∂M × [0,∞), (H3)

a′(s) < 0 for s ∈ (−s0, s0). (H4)
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Pick an (s, t)-dependent almost complex structure J(s, t, x) on M̂ such that

ω̂
(·, J(s, t, x)·) is a Riemannian metric for every (s, t), (J1)

J(s, t, x) =
{

J−(t, x) for s ≤ −s0;
J+(t, x) for s ≥ s0,

(J2)

J
(
s, t, (y, r)

) :



ξ → ξ
∂
∂r → Yλ
Yλ → − ∂

∂r

on ∂M × [0,∞). (J3)

Then the L2 gradient of AH(s) (for fixed s) at s : S1 → M̂ is given by

A′
H(s)(x) = −J(s, t, x)ẋ − ∇J(s,t)H(s, t, x),

where ∇J(s,t) is the gradient with respect to the metric ω̂(·, J(s, t, x)·). A smooth
map u : R× S1 → M̂ is a gradient trajectory for AH connecting periodic orbits
[x−, x̄−] ∈ Pα(H−), [x+, x̄+] ∈ Pα(H+) if

∂u

∂s
+ J(s, t, u)

∂u

∂t
+ ∇J(s,t)H(s, t, u) = 0, (u1)

u(s, ·) −→ x± in C∞ as s → ±∞, (u2)

[x+, x̄−#u] = [x+, x̄+], (u3)

where x̄−#u denotes the concatenation along x−. Note that the action AH(s)
(
u(s, ·))

is increasing in s. For generic J the spaces

M([x1, x̄1], [x2, x̄2]; H, J )

of solutions of (u1-3) are finite dimensional manifolds of dimension indCZ([x+, x̄+])
− indCZ([x−, x̄−]).

For regular admissible H = H(t, x) let Cαk (H ) be the finite dimensional vector
space over Z2 = Z/2Z with basis Pαk (H ). Define linear maps

∂k = ∂k(H, J ) : Cαk (H )→ Cαk−1(H ),

∂k[x, x̄] :=
∑

[y,ȳ]∈Pαk−1(H )

〈[x, x̄], [y, ȳ]〉1 · [y, ȳ],

where 〈[x, x̄], [y, ȳ]〉1 is the (finite!) number mod 2 of 1-dimensional components
ofM([y, ȳ], [x, x̄]; H, J ). These maps satisfy ∂k−1 ◦ ∂k = 0. The homology

FHα
k (H ) := ker(∂k)/im(∂k+1)

is called the Floer homology of H . The Floer homology is independent of J ,
but it does depend on H . Introduce a partial ordering on the set of admissible
Hamiltonians via

H1 ≤ H2 :⇐⇒ H1(t, x) ≤ H2(t, x) for all (t, x).
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A monotone homotopy H(s, t, x) between two regular Hamiltonians H1 ≤ H2
(going from H2 to H1) induces a linear map

σk(H, J ) : Cαk (H1, J1) → Cαk (H2, J2),

σk(H, J )[x1, x̄1] :=
∑

[x2,x̄2]∈Pαk (H2)

〈[x1, x̄1], [x2, x̄2]〉0 · [x2, x̄2],

where 〈[x1, x̄1], [x2, x̄2]〉0 denotes the (finite) number mod 2 of 0-dimensional
components of M([x2, x̄2], [x1, x̄1]; H, J ). It turns out that σk(H, J ) is a chain
map. The induced map on Floer homology does not depend on the choice of
(H, J ). Denote it by

σk(H1, H2) : FHα
k (H1) → FHα

k (H2).

For 3 regular Hamiltonians H1 ≤ H2 ≤ H3 the corresponding maps satisfy the
composition law

σk(H2, H3) ◦ σk(H1, H2) = σk(H1, H3).

Define the symplectic homology

SHα
k (M, ω) := lim−→FHα

k (H ),

where the direct limit is taken over admissible Hamiltonians tending to +∞ with
respect to the partial ordering ≤.

A free homotopy class α determines a component �α of the free loop space.
Fix a reference loop xα in each�α. Evaluation of c1(TM) on tori defines a homo-
morphism π1(�α; xα) → Z. Its image is either 0, in which case we set cα := ∞,
or cα · Z for some cα ∈ N. For cα < ∞ symplectic homology is 2cα-periodic,

SHα
k+2cα(M, ω) = SHα

k (M, ω).

Define

dim SHα∗ (M, ω) :=
{∑2cα−1

k=0 dim SHα
k (M, ω) if cα < ∞,∑∞

k=−∞ dim SHα
k (M, ω) if cα = ∞.

Remark 3.1. It follows from the definition that SHα
k (M, ω) can be computed using

any cofinal sequence H1 ≤ H2 ≤ . . . of admissible Hamiltonians. Moreover, if
ωi is a sequence of symplectic forms with ωi = ω near ∂M, then SHα

k (M, ω) can
be computed as the direct limit of HFαk (ωi; Hi) with connecting homomorphisms
σ(ωi , Hi;ω j , H j) defined by counting gradient trajectories with an s-dependent
symplectic form connecting ωi and ω j (see [24] for details).
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3.2. The Annulus Lemma

Extend the function r from ∂M × [0,∞) to M̂ by setting r := 0 on M. For
x : S1 → M̂ write r(t) = r ◦ x(t). For R ≥ 1 consider the “annulus”

Z(R) := {x ∈ C∞(S1, M̂)
∣∣ max

t∈S1
r(t) ≥ 2R, min

t∈S1
r(t) ≤ 3R}.

The Annulus Lemma states that for a gradient trajectory u to traverse Z(R) it needs
arbitrarily large energy. It is based on the following estimate:

Lemma 3.2. Let H be an admissible Hamiltonian H(t, x) or a monotone homotopy
H(s, t, x). Then there exists an ε > 0 such that for every R ≥ 1, s ∈ R and
x ∈ Z(R),

−
∫ 1

0

∂H

∂s
(s, t, x)dt + ‖A′

H(s)(x)‖2
L2(dt) ≥ ε‖A′

H(s)(x)‖L2(dt).

Proof. Denote by | |r the metric induced by ω̂ on ∂M ×[0,∞) and by | | the metric
induced on ∂M. On ∂M × [0,∞) we have

ẋ − X H(t, x) = ṙ
∂

∂r
+ (ẏ − a(s)Yλ(y)

)
,∣∣∣∣ ∂∂r

∣∣∣∣2
r
= |Yλ|2r = er, |v|2r = er |v|2 for v ∈ ξ.

We will treat the case when H is a monotone homotopy, the s-independent case
being similar but simpler. By assumption, H = a(s)er + b(s) on ∂M × [0,∞),
a(s) = a1 for s ≤ −s0, a(s) = a2 for s ≥ s0, a1, a2 /∈ A(∂M, λ) and a′(s) < 0 for
s ∈ (−s0, s0). Hence there exist ε > 0 and s̃0 < s0 such that

‖ẏ − a(s)Yλ(y)‖L2(dt) ≥ ε for all |s| ≥ s̃0, y ∈ C∞(S1, ∂M);
a′(s) ≤ −ε2 for |s| ≤ s̃0.

For R ≥ 1 and x ∈ Z(R) we distinguish two cases.

Case 1: There exist t1 < t2 such that |r(t2)− r(t1)| ≥ R.
In this case, ∥∥A′

H(s)(x)
∥∥2

L2(dt) ≥
∫ t2

t1
|ṙ|2erdt

≥
(∫ t2

t1
|ṙ|dt

)2

≥ R2

≥ ε2 for ε ≤ 1.

Case 2: R ≤ r(t) ≤ 4R for all t ∈ S1.
In this case either‖A′

H(s)(x)‖L2(dt) ≥ ε and we are done; or‖A′
H(s)(x)‖L2(dt)<ε,

which implies |s| ≤ s̃0, hence a′(s) ≤ −ε2 and

−
∫ 1

0

∂H

∂s
(s, t, x)dt ≥ ε2 ≥ ε

∥∥A′
H(s)(x)

∥∥
L2(dt). ��
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Lemma 3.3 (Annulus Lemma). Let H, a, ε, R be as in Lemma 3.2. Let u :
[s1, s2] × S1 → M̂ satisfy (u1) and

max
t∈S1

r(s1, t) ≤ R, min
t∈S1

r(s2, t) ≥ 2R.

Then
AH(s2)

(
u(s2)

)− AH(s1)

(
u(s1)

) ≥ Rε.

Proof. Since the action is increasing with s, we can make s1 larger and s2 smaller
until

max
t∈S1

r(s1, t) = R, min
t∈S1

r(s2, t) = 2R,

u(s) ∈ Z(R) for all s ∈ [s1, s2].
Then by Lemma 3.2,

AH(s2)

(
u(s2)

)− AH(s1)

(
u(s1)

) =
∫ s2

s1

{〈
A′

H(u),
∂u

∂s

〉
L2(dt)

−
∫ 1

0

∂H

∂s
dt

}
ds

≥
∫ s2

s1

ε
∥∥A′

H(u)
∥∥

L2(dt)ds

≥ ε

∥∥∥∥
∫ s2

s1

∣∣∣∣∂u∂s
∣∣∣∣ ds

∥∥∥∥
L2(dt)

≥ ‖r(s2, t)− r(s1, t)‖L2(dt)

≥ εR. ��

3.3. The transfer morphism

A crucial feature of symplectic homology is the existence of a transfer morphism
first observed by Viterbo [24].

We will need some homological algebra. Let (I,≤) be a directed set. A directed
chain complex {Ci , ∂i , σi j } consists of a collection of chain complexes of vector
spaces (Ci , ∂i), i ∈ I , and chain maps σi j : Ci → C j such that the induced maps
on homology σ̄i j : HCi → HC j satisfy

σ̄ jk ◦ σ̄i j = σ̄ik .

A short exact sequence of directed chain complexes is a collection of chain maps
λi : Bi → Ci , πi : Ci → Ai such that in the diagram

0 −−−−→ Bi λi−−−−→ Ci πi−−−−→ Ai −−−−→ 0(σi j

(σi j

(σi j

0 −−−−→ B j λ j−−−−→ C j π j−−−−→ A j −−−−→ 0
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the rows are exact, and the squares commute on the level of homology. We obtain
exact triangles in homology

HCi π̄i−−−−→ HAi)λ̄i

(∂̄i

HBi HBi

whose maps commute with the induced maps σ̄i j on homology. Since exactness is
preserved under direct limits, this gives rise to an exact triangle on the direct limits
of homology,

lim−→HC
π̄−−−−→ lim−→HA)λ̄ (∂̄

lim−→HB lim−→HB

If all dimensions are finite we read off from the exact triangle that

dim lim−→HC − dim lim−→HA = dim lim−→HB − 2 dim ker λ̄.

So we have proved

Lemma 3.4. Consider a short exact sequence of directed chain complexes as
above. Then there exists an exact triangle

lim−→HC
π̄−−−−→ lim−→HA)λ̄ (∂̄

lim−→HB lim−→HB

If dim lim−→HB < ∞ then either dim lim−→HC = dim lim−→HA = ∞, or both dimen-

sions are finite and

| dim lim−→HC − dim lim−→HA| ≤ dim lim−→HB.

Now consider a codimension 0 submanifold W of (M, ω) with ∂W ω-convex,
i.e. there exists a contact form λ on ∂W with dλ = ω|∂W . The form λ provides
a canonical way to fix the arbitrary constants A(xα) in the definition of the action
functional: We can compute symplectic homology of W using Hamiltonians that
are C2-small Morse functions in the interior of W and increasing sharply near ∂W .
The 1-periodic orbits of such Hamiltonians are either constant orbits inside W ,
corresponding to critical points, or nonconstant orbits near ∂W . Since all such
orbits are homotopic to loops in ∂W , this shows that SHα∗ (W, ω) is nonzero only
for homotopy classes α of loops that can be homotoped into ∂W . So we can choose
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the base loops xα to lie on ∂W and define their action as A(xα) := ∫
xα
λ. In

particular, A(x0) = 0 for the constant base loop. With this normalisation,

AH(x) =
∫

x
λ−

∫ 1

0
H(t, x)dt

for every loop x on ∂W .

Lemma 3.5. There exists a family of symplectic forms ωi on M, ωi = ω near ∂W
and outside W; a cofinal system H1 ≤ H2 ≤ . . . of Hamiltonians on (M, ωi ); and
monotone homotopies Hi,i−1 between Hi and Hi−1 with the following properties:

1. Ki := Hi|W form a cofinal system of admissible Hamiltonians on (W, ωi ), and
Ki,i−1 := Hi,i−1|W are monotone homotopies between Ki and Ki−1;

2. all 1-periodic orbits of Hi in W have positive (Hamiltonian) action, and all
1-periodic orbits of Hi in M \ W have negative action;

3. all gradient trajectories of Hi or Hi,i−1 connecting 1-periodic orbits in W are
entirely contained in W.

Proof. The first argument follows [24]. Let (Ŵ, ω̂) be the completion of (W, ω).
It will be convenient to use the coordinate z = er rather than r. Then Ŵ =
W ∪ (∂W ×[1,∞)

)
and ω̂ = d(zλ) on ∂W ×[1 − γ,∞) for some γ > 0. Consider

a Hamiltonian K on Ŵ such that K is C2-small and < 0 inside W and K = h(z)
on ∂W × [1 − γ,∞), where h is a small perturbation of the function depicted in
Fig. 2 with slope a /∈ A(∂W, λ).

Fig. 2.

In view of the normalisation of the action functional, 1-periodic solutions at z
have Hamiltonian action zh′(z)− h(z). K has 4 types of 1-periodic solutions:

• critical points in W of action > 0;
• nonconstant orbits near z = 1 of action ≈ 1 · h′(z) > 0;
• critical points for z ≥ c of action ≈ −a(c − 1) < 0;
• nonconstant orbits near z = c of action ≈ c h′(z)− a(c − 1) < 0 for large c.

For the last statement, note that since a /∈ A(∂W, λ), there exists an η > 0
such that |h′(z) − a| > η for every 1-periodic orbit. Thus ch′(z) − a(c − 1) ≤
c(a − η)− a(c − 1) = a − cη < 0 for c sufficiently large.



Chord Conjecture 137

For fixed slope a the maximal action difference between 1-periodic orbits
in W is bounded. Therefore, by Lemma 3.3, for large c all gradient trajectories
connecting orbits in W are contained in {z < c}.

Let K̃1 ≤ K̃2 ≤ . . . be a cofinal sequence of such Hamiltonians on W̃ with
slopes ai → ∞ and constants ci → ∞. Making the ci larger and using Lemma 3.3
again, we find monotone homotopies K̃i,i−1 such that all gradient trajectories
connecting orbits in W are contained in {z < ci}.

Switch back the coordinate from z = er to r, writing γ = eδ and ci = r Ri . Pick
functions fi : [−δ, 0] → [−δ, Ri] satisfying

• fi(r) = r near −δ;
• fi(r) = r + Ri near 0;
• f ′

i (r) > 0 for all r.

Define ψi : W → W ∪ (∂W × [0, Ri]
)

by{
ψi(y, r) := (y, fi(r)

)
on ∂W × [−δ, 0],

ψi(x) := x in W \ (∂W × [−δ, 0]).
Use ψi to pull the following quantities back to W :

ωi := e−Riψ∗
i ω̂, Ki := e−Riψ∗

i K̃i , Ki,i−1 := e−Riψ∗
i K̃i,i−1.

Note that ωi = ω near ∂M for all i, and the Ki have slope ai → ∞ and value
ai(1 − e−Ri ) → ∞ near ∂W . Extend Ki to an admissible Hamiltonian Hi on M by
a small perturbation of the constant function ai(1 − e−Ri ), and then increasing to
slope bi near ∂M (see [24]). The 1-periodic orbits of Hi outside a neighbourhood
of W are either critical points or nonconstant orbits near ∂M, both of which have
negative action for bi small compared to ai . Since ai → ∞, we can choose bi → ∞
with this property, so the Hi form a cofinal sequence for (M, ωi ) with the desired
properties. Extending the monotone homotopies Ki,i−1 to Hi,i−1 on M in the same
way finishes the proof. ��

Let Hi , Hi,i−1 be as in Lemma 3.5. Let (Ci , ∂i , σi j ) be the directed chain
complex given by




Ci := Cα∗ (M, ωi , Hi),

∂i := ∂(ωi , Hi) : Ci → Ci ,

σi j := σ(ωi , Hi;ω j , H j) : Ci → C j .




Let Bi ⊂ Ci be the subspace generated by periodic orbits of action < 0, and
Ai := Ci/Bi the quotient space generated by orbits of action ≥ 0. Since ∂i de-
creases action, it maps Bi into itself. The map σi j can be written as a composition
of monotonicity homomorphisms σ(Hk,k−1) with fixed ωk−1, which are action
decreasing, and homomorphisms σ(ωk, ωk−1) for fixed Hamiltonian Hk. A com-
pactness argument shows that if the latter homotopy is sufficiently slow then it maps
orbits of negative action to orbits of negative action. This shows that σi j maps Ai
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to A j , and (Ai) is a subcomplex of (Ci). So we have a short exact sequence of
directed chain complexes

0 −−−−→ Bi λi−−−−→ Ci πi−−−−→ Ai −−−−→ 0,

where λi is the inclusion and πi the projection. By properties 2 and 3 in Lemma 3.5,
the directed chain complex (Ai, ∂i , σi j ) is given by




Ai = C
i−1
# α
∗ (W, ωi , Ki),

∂i := ∂(ωi , Ki) : Ci → Ci ,

σi j := σ(ωi , Ki;ω j , K j ) : Ci → C j ,




where i : W ↪→ M is the inclusion. By the remark at the end of Sect. 3.1, since
ωi = ω near ∂W and ∂M, the direct limits of homologies are

lim−→HC = SHα∗ (M, ω),

lim−→HA = SH
i−1
# α

∗ (W, ω).

Denote lim−→HB by SH
j−1
# α

∗ (M,W, ω), where j : M \ W ↪→ M is the inclusion.

Then Lemma 3.4 yields

Proposition 3.6. Let W be a codimension zero submanifold of (M, ω) with ω-
convex boundary ∂W. Then there exists an exact triangle

SHα∗ (M, ω)
π(M,W )−−−−→ SH

i−1
# α

∗ (W, ω))λ(M,W )

(∂(M,W )

SH
j−1
# α

∗ (M,W, ω) SH
j−1
# α

∗ (M,W, ω).

If dim SH
j−1
# α

∗ (M,W, ω) < ∞ then either dim SHα∗ (M, ω) = dim SH
i−1
# α

∗ (W, ω)
= ∞, or both dimensions are finite and

∣∣ dim SHα∗ (M, ω) − dim SH
i−1
# α

∗ (W, ω)
∣∣ ≤ dim SH

j−1
# α

∗ (M,W, ω).

The homomorphism π(M,W ) is the dual of the transfer morphism in [24].
A first application of the transfer morphism is a proof of

Lemma 3.7 (Viterbo [24]).

1. SHα
k (M, ω) does not depend on the choice of contact form λ on ∂M with

dλ = ω|∂M.
2. SHα

k (M, ω) depends only on the homotopy class of ω in the space of symplectic
forms satisfying (ω1 − 2).
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Proof. (sketch) 1. Let λ0, λ1 be two contact forms on ∂M with dλi = ω|∂M . Then
λt := (1 − t)λ0 + tλ1 is a homotopy of contact forms satisfying dλt = ω|∂M . By
Lemma 2.2, there exists a symplectic form ω1 on M1 := M ∪ (∂M × [0, R1]

)
and

a nonzero expanding vector field X1 on ∂M × [0, R1] such that ω1 = ω on M,
iX1ω1 = erλ0 near r = 0 and iX1ω1 = erλ1 near r = R1.

In this situation the transfer morphism π(M1,M) is an isomorphism. This
can be seen as follows: The same construction as above yields an extension of
(ω1, X1) to (ω2, X2) on M2 := M ∪ ∂M × [0, R2] with iX2ω2 = erλ0 near
r = R2. Then π(M1,M) ◦ π(M2,M1) = π(M2,M), and π(M2,M) induces
the rescaling isomorphism SHα

k (M2, ω2) ∼= SHα
k (M, eR2ω) ∼= SHα

k (M, ω). Re-
versing the argument shows that π(M1,M) is an isomorphism. It follows that
SHα

k (M, ω, λ0) ∼= SHα
k (M, eR1ω, eR1λ1) ∼= SHα

k (M, ω, λ1).

2. Let (ωt)t∈[0,1] be a smooth family of symplectic forms and λt contact forms with
dλt = ωt |∂M . Now the proof is analogous to part 1, again using Lemma 2.2. ��

3.4. Handle attaching and proof of Theorem 1.11

In this subsection we investigate how symplectic homology changes under handle
attaching. In the absence of chords, this change is determined by the local Floer
homology of a critical point.

Consider a monotone homotopy H(s, t, x) between admissible Hamiltonians
H− ≥ H+ on (M̂, ω̂) such that H(s) is regular except for finitely many s. Suppose
that there exists a point p ∈ M which is a critical point for all H(s) and such that

AH(s)(p) < AH(s)(x)

for all 1-periodic orbits x %= p of H(s), for all s. Assume also that H(s, t, p) is
constant in t for all s. Write the point p as p±, ps when viewed as a 1-periodic
orbit of H±, H(s). The point p can be connected by a path p̄ of constant loops
to the base point of the trivial homotopy class α = 0 of loops. With this path p̄
understood, we can view p± as elements in P0(H±).

Lemma 3.8. For H and p as above the following identities in the Floer complex
hold:

1. ∂(H±)p± = 0.
2. 〈σ(H+, H−)p+, x−〉 = 0 for all p− %= x− ∈ P0(H−).
3. If p is nondegenerate for all H(s) then σ(H+, H−)p+ = p−.
4. If indCZ(p−) %= indCZ(p+) then σ(H+, H−)p+ = 0.

Proof. (1) holds because ∂(H±) decreases the Hamiltonian action.
If (2) does not hold, then there exist arbitrarily close s1 < s2 such that

〈σ(Hs2, Hs1)ps2, x1〉 %= 0 for some ps1 %= x1 ∈ P0(Hs1). But for |s2 − s1| small,
AHs2

(p) < AHs1
(x1) for all p1 %= x1 ∈ P0(Hs1), which yields a contradiction

because σ(Hs2, Hs1) decreases action.
For (3), fix a contractible neighbourhood U of p. For s1 < s2 denote by H[s1,s2]

a monotone homotopy between Hs2 and Hs1 obained from H by rescaling in s.
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A compactness argument as in [8] shows that for |s2 − s1| sufficiently small each
u ∈M(ps1, ps2; H[s1,s2]) is contained entirely in U . Then an implicit function type
argument as in [8], based on the nondegeneracy of p, shows that for |s2 − s1| suf-
ficiently small the only u ∈M(ps1, ps2; H[s1,s2]) is the constant map u(s, t) ≡ p.
Hence σ(Hs2, Hs1)ps2 = ps1 , and since σ(H+, H−) is a composition of such maps,
(3) follows.

For (4), let s∗ be a value at which p is singular for H(s∗) and changes Conley-
Zehnder index. Let s1 < s∗ < s2 be values for which p is regular such that
indCZ(ps1) %= indCZ(ps2). For |s2 − s1| small we can modify the monotone homo-
topy H such that H(s1, t, p) = H(s2, t, p) for all t. Then AH(s1)(p) = AH(s2)(p),
and since σ(Hs2, Hs1) decreases action, the only u ∈ M([ps1, p̄1], [ps2, p̄2];
H[s1,s2]) is the constant map u(s, t) ≡ p. Here p̄i are not necessarily constant
paths from p to the base point for the trivial homotopy class. The existence of such
a u implies [ps1, p̄1] = [ps1, p̄2]. Hence

indCZ([ps1, p̄1]) = indCZ([ps1, p̄2]) %= indCZ([ps2, p̄2]).
This proves that

〈σ(Hs2, Hs1)[ps2, p̄2], [ps1, p̄1]〉 = 0,

from which (4) follows. ��
Proof of Theorem 1.11. The proof consists in the computation of the relative

homology SH
j−1
# α

∗ (M,W, ω) as defined in Proposition 3.6. Let ωi , Hi , Ki , Hi,i−1,
Ki,i−1 be as in Lemma 3.5. In this situation the definition of Hi can be modified as
follows: Instead of making Ki flat near ∂W and extending it as a constant over M,
we can retain its slope ai near ∂W and extend it over the handle by a function ψ
as in Lemma 2.5. The resulting Hamiltonian Hi on M has slope bi > ai near ∂M,
and its only 1-periodic orbit on the handle is the critical point pi in its center.

If L possesses no chord then by choosing the handle sufficiently thin we can
avoid creating new 1-periodic orbits that traverse the handle. The same can be
achieved for k < n by a perturbation of L (see [24]). In either case, the only
1-periodic orbit of Hi on M \ W is the critical point pi .

Define the monotone homotopies in a similar way such that the ωi , Hi, Hi,i−1
satisfy the properties in Proposition 3.6. With these choices, the chain groups Bi

defined preceding Proposition 3.6 are generated by the single elements pi . Since
the pi have lower action than all other 1-periodic orbits of Hi , we are precisely in
the situation of Lemma 3.8.

(3) follows immediately from Proposition 3.6 because dim SH
j−1
# α

∗ (M,W, ω)≤1.

(2) holds because SH
j−1
# α

∗ (M,W, ω) is generated by the critical point on the handle
which lies in the trivial homotopy class of loops in M.

(1) For k < n we can always increase the Conley-Zehnder index of pi by multiples
of 2 by increasing the second derivative of Hi at pi . So we can achieve indCZ(pi) >

indCZ(pi−1) for all i. Moreover, the monotone homotopies Hi,i−1 can be chosen
to satisfy the assumptions of Lemma 3.8 near the critical point pi = pi−1. It
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follows that σ(Hi−1, Hi)pi−1 = 0 for all i. So pi dies in the direct limit, hence

SH
j−1
# α

∗ (M,W, ω) = 0, and the statement follows from Proposition 3.6. ��
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