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KA1 CIELIEBAK', A. Rita GAI0?,
IeNnASsT MUNDET 1 RIERA, DIETMAR A. SALAMON

In this paper we define invariants of Hamiltonian group actions for
central regular values of the moment map. The key hypotheses are
that the moment map is proper and that the ambient manifold is
symplectically aspherical. The invariants are based on the sym-
plectic vortex equations. Applications include an existence theo-
rem for relative periodic orbits, a computation for circle actions on
a complex vector space, and a theorem about the relation between
the invariants introduced here and the Seiberg—Witten invariants
of a product of a Riemann surface with a two-sphere.

1. Introduction.

In this paper we study the vortex equations with values in a symplectic
manifold (M,w). We assume that (M,w) is equipped with a Hamiltonian
action by a compact Lie group G that is generated by an equivariant moment
map

w:M—g.

The symplectic vortex equations have the form
(1) 07.4(u) =0, *xF gy + p(u) = 7.

Here P — X is a principal G-bundle over a compact Riemann surface,
u : P — M is an equivariant smooth function, and A is a connection on
P. To define the terms in (1) we must fix a G-invariant almost complex
structure on M, a Riemannian metric on 3, and an element 7 € Z(g) in
the center of the Lie algebra. The expression O 7,4 denotes the nonlinear
Cauchy—Riemann operator, twisted by the connection A, and * denotes the
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Hodge *-operator on X. Equations (1) were introduced in [6, 14, 25]. In the
physics literature these equations are known as gauged sigma models in the
case where the target space M is a complex vector space. Special cases of the
symplectic vortex equations include pseudoholomorphic curves in symplectic
manifolds (G = {1}), the usual vortex equations over ¥ (M = C with the
standard S!-action [3, 16]), Bradlow pairs (M = C? with the standard
U(2)-action [4, 36]), anti-self-dual instantons over a product ¥ x S (M is
the infinite dimensional space of SO(3)-connections over S and G is the
gauge group), and the Seiberg—Witten equations over ¥ x S (M is the space
of pairs, each consisting of a connection on a line bundle L — S and a
holomorphic section, and G is the gauge group of L). In the present paper
the symplectic manifold M is always finite dimensional.

In the K hler case the symplectic vortex equations admit an algebro
geometric interpretation. For example, if M is a complex vector space then
the map u defines a holomorphic section of a vector bundle over ¥ and the
solutions of (1) correspond to stable pairs.

We impose the following conditions on the triple (M, w, ).

(H1) The moment map p is proper.

(H2) There exists a (strongly) convex structure (f,.J) on M. This means
that J is a G-invariant and w-compatible almost complex structure on
M, f: M — [0,00) is a proper G-invariant function, and there exists
a continuous function Z(g) — R : 7+ ¢(7) such that

(Vi Vi(z),v) + (V5 Vf(z),Jv) >0,
df (z)J (z) La(p(z) — 7) > 0

for every z € M, v € T, M, and 7 € Z(g). Here V denotes the Levi-
Civita connection of the metric (-,-) = w(-,J-) and L, : g — TpM
denotes the infinitesimal action.

f(z) >e(r) =

(H3) The manifold (M, w) is symplectically aspherical, i.e.

/ v’'w =0
S2

for every smooth function v : S? — M.

Hypothesis (H2) is a natural generalization of the existence of a plurisub-
harmonic function on noncompact symplectic manifolds [12]. Both hypothe-
ses (H1) and (H2) are natural in the context of this paper and are needed



to obtain any kind of compactness theorem for the solutions of (1). Hy-
pothesis (H3) constitutes a more severe restriction and should in the future
be removed or weakened. It implies that M is noncompact whenever there
exists a G-orbit of positive dimension. However, there are many interesting
examples where all three hypotheses are satisfied, e.g., linear actions on C"
with proper moment maps [6]. The three hypotheses together guarantee
that the moduli space of gauge equivalence classes of solutions of (1) is com-
pact. As a result one can use these moduli spaces to define invariants which
are analogous to the Gromov—Witten invariants in the nonequivariant case.
Let B € HQG (M;Z) denote the equivariant homology class represented by
the map u. Then the invariants take the form of a homomorphism

YU HY(M;Q) — Q

whenever T is a central regular value of u. This homomorphism takes integer
values on integral cohomology classes whenever G acts freely on p~!(7). It
depends only on the component of 7 in the open set of central regular values.
We emphasize that the complex structure on X is fixed in the definition of
our invariant. There should be natural extensions which involve varying
complex structures on the domain ¥ and dispense with hypothesis (H3).
However, the definition of the invariants in these cases will probably require
a considerable amount of nontrivial analysis. For first steps in this direction
see [25, 26].

As a first application we establish the existence of relative periodic orbits
for time dependent G-invariant Hamiltonian systems. This can be viewed
as an equivariant version of a theorem of Gromov [17].

Theorem A. Assume (H1—3) and let T € Z(g) be a central regular value of
w such that u~ (1) # 0. Then every time-dependent 1-periodic G-invariant
Hamiltonian system admits a contractible relative periodic orbit in p=1(7).

If G is abelian then the hypothesis that 7 is a regular value can be
dropped and we obtain a contractible relative periodic orbit on every
nonempty level set of . It is natural to conjecture that this should con-
tinue to hold under hypothesis (H1) only. Our proof of Theorem A follows
closely Gromov’s argument in [17] for the nonequivariant case. The pseudo-
holomorphic curves in Gromov’s proof are replaced by the solutions of the
perturbed symplectic vortex equations.

In some cases the invariants can be computed explicitly. We carry out
such a computation for linear circle actions on C*. Suppose S' acts on C”
with positive weights /1, ...,£, and denote the correponding moment map



by p¢. Then there is only one nontrivial chamber for the regular values of
e and we denote by C"+# the invariant in this chamber.

Theorem B. Let ¥ be a compact Riemann surface of genus g, d € 7. =
H$'(C™,Z) an integer, and ¢ € H2,(C;Z) = Z the positive generator.
Suppose that

mi=> (df,+1-g)+g—-1>0.

v=1

Then

n 9 n
@S:]nul (Cm) — <Z £V> H g;(dfy+1*9)‘
v=1 v=1

In the case ¢, = 1 and d > 2g — 2 this was proved by Bertram—
Daskalopoulos—Wentworth [2]. The proof of Theorem B involves the Atiyah—
Singer index theorem for families of Cauchy—-Riemann operators.

Our invariants are related to the Seiberg—Witten invariants of certain
four-manifolds. The key observation is that the symmetric product of a Rie-
mann surface S can be interpreted as a symplectic quotient of the infinite
dimensional space whose elements are pairs, each consisting of a connection
and a holomorphic section of a line bundle L — S of degree d. In this
situation the symplectic vortex equations, with M replaced by the infinite
dimensional space of which Symd(S ) is a quotient, are the Seiberg—Witten
equations on ¥ x .S. When d > 2gg — 2 one can write the symmetric product
as a quotient of a finite dimensional symplectic manifold My s (called the
vortex manifold of the pair (d,S)) by a Hamiltonian S' action with a mo-
ment map pg,5 which satisfies (H1 — 3). The following theorem relates the
invariants of (Mgs, ptq,5) to the Seiberg-Witten invariants. It is a special
case of a result for general ruled surfaces in [27].

Theorem C ([27]). Let S be the Riemann sphere and ¥ be a compact
Riemann surface of genus g. Let d and k be nonnegative integers such that

m:=d(l—g)+(d+1)k>0.

] h(??l Hd, s — V‘/ Yk,d ),
M, ’ y
i d,S ! (Cm) = S XS( ) )

where v q4 denotes the spin®-structure determined by k and d. Moreover, if

k>2g9—-2,



then u
@IJCV,[;J,S#M,S (cm) — @d,g,z,ﬂk,z (Cm)

Combining Theorems B and C one can recover the computation of the
Seiberg-Witten invariants of product ruled surfaces by Li-Liu [21] and Ohta—
Ono [28].

It is also interesting to examine the relation between our invariants and
the Gromov—Witten invariants of the symplectic quotient

M := M))G(7) := p~ (1) /G

whenever G acts freely on p (7). Such a relation was established in [15]
under the hypothesis that the quotient is monotone. Under this condition
(and hypotheses (H1 — 3)) it is shown in [15] that there exists a surjective
ring homomorphism
b 1 HE(M) — QH ()
(with values in the quantum cohomology of the quotient) such that
St () = GWH (4(a))

for every a € HY(M) and every B € Hy(M;Z), where B denotes the image
of B under the homomorphism Hy(M;7Z) — HS (M;7). The proof is based
on an adiabatic limit analysis which relates the solutions of the symplec-
tic vortex equations in M to pseudoholomorphic curves in the symplectic
quotient M. This analysis is analogous to the proof of the Atiyah-Floer
conjecture in [11].

The present paper is organized as follows. In Section 2 we discuss the
basic properties of solutions to the symplectic vortex equations such as the
energy identity, unique continuation, and apriori estimates under the con-
vexity hypothesis (H2). Section 3 establishes the basic compactness and
regularity theorems and Section 4 discusses the Fredholm theory. In Sec-
tion 5 we establish the integer invariants under the hypothesis that G acts
freely on p~!(7). Section 6 is of preparatory nature. In it we recall some
background from [7] about the equivariant Euler class of G-moduli problems.
Section 7 establishes the rational invariants in the presence of finite isotropy
and discusses some relations between the invariants. Theorems A, B, and C
are proved in Sections 8, 9, and 10. Appendix A establishes existence and
uniqueness for a coupled Kazdan-Warner equation that appears in the proof
of Theorem C. Appendix B gives a proof of the local slice theorem for gauge
group actions in a form needed for the compactness and regularity results
of Section 3.



2. The geometry of symplectic vortices.
2.1. The vortex equations in a symplectic manifold.

Let (M,w) be a (not necessarily compact) symplectic manifold and G be
a compact Lie group which acts on M by symplectomorphisms. Let g =
Lie(G) denote the Lie algebra and

g — Vect(M,w) : £ — X¢

denote the infinitesimal action. We assume that the action is Hamiltonian.
This means that the action is generated by an equivariant map pu: M — g
that satisfies

UXe)w = d{p, &)
for every £ € g. Here (-,-) denotes an invariant inner product on g. The
function p is called a moment map for the action.

Let P — X be a principal G-bundle over a compact connected oriented
Riemann surface (X, Jy,dvoly). We emphasise that the volume form and
the complex structure on 3 are fixed. Denote by C& (P, M) the space of
equivariant functions u : P — M and by A(P) the space of connections
on P. We think of A € A(P) as an equivariant Lie algebra valued 1-form on
P which identifies the vertical tangent space with g. Its curvature is a 2-form
F4 on ¥ with values in the associated Lie algebra bundle gp := P X,q @.
In this paper we study the following system of nonlinear first order partial
differential equations, for pairs (u, A) € C& (P, M) x A(P),

d7,4(u) =0, *Fg 4 p(u) = 7.

Here 7 € Z(g) is an element in the centre of the Lie algebra, Jg(M,w)
denotes the space of G-invariant and w-tame almost complex structures
on M, and J : ¥ — Jg(M,w) is a smooth family of such almost complex
structures. The space of such families of almost complex structures will be
denoted by

T =T M,w,p) :=C%®E, Ja(M,w)).

The covariant derivative of u with respect to the connection A is the 1-form
dau € QY(P,u*TM) given by

dau :=du+ X g(u).

This 1-form is equivariant and horizontal and hence descends to a 1-form
on ¥ with values in w*T'M/G. The family of almost complex structures .J



determines a G-invariant complex structure

Ju(p) := J(7(p), u(p))

on the bundle ©*TM — P and hence a complex structure on the bundle
uw*TM/G — %, which will also be denoted by J,. The term 074 (u) denotes
the (0,1)-part of this 1-form and so is a (0,1)-form on ¥ with values in
w*TM/G. Its lift to a 1-form on P with values in ©*T'M will also be denoted
by 8,4 (u) and is given by

= 1
O0ja(u) == 3 (dau+ Jodyuo Jy).

The right hand side is well defined since du is horizontal. Namely, given
a tangent vector v € TP, lift the vector Judn(p)v € Ty X to T, P, and
apply the linear map J(7(p), u(p))dau(p) to the lift. The resulting vector
in Ty M is independent of the choice of the lift, because the 1-form dau
vanishes on vertical tangent vectors. Equations (1) were introduced in [6,
14, 25]. They are a generalized form of the vortex equations. In the case
of linear actions on C" they are known in the physics literature as gauged
sigma models.

Remark 2.1. The space C(P,M) x A(P) is an infinite dimensional
Fréchet manifold and admits a natural symplectic structure. The gauge
group G(P) acts on this space by

9" (u, A) = (¢ 'u, g~ "dg + g~ Ag).
This action is Hamiltonian and the function
(2) CEF(P,M)x A(P) = C>®(Z,gp) : (u, A) — *xFa + u(u)

is a moment map for this action (see [6]). The space of solutions of (1)
is invariant under the action of G(P). The quotient can be interpreted
as a symplectic quotient whenever the space of pairs (u, A) that satisfy
d7,.4(u) = 0 is a symplectic submanifold of CX (P, M) x A(P).

2.2. Hamiltonian perturbations.

Le C& (M) be the space of smooth G-invariant functions on M. A Hamil-
tonian perturbation is a 1-form H € Q(3,CP(M)). One can think of



H as a G-equivariant section of the vector bundle T*¥ x M — ¥ x M. The
space of Hamiltonian perturbations will be denoted by

H = H(Z, M,w,pn) = Q (2, C&F(M)).

For H € H and ¢ € T.X we write He := H,({) € C& (M) and denote by
X, € Vect(M,w) the G-invariant Hamiltonian vector field of Hy, i.e.

(X )w = dH;.

A Hamiltonian perturbation H € H and a section u € C& (P, M) determine
a 1-form Xy (u) € Q(P,u*TM) given by

(Xu(w)p(v) == Xny,, (u(p))-
This 1-form is equivariant and horizontal and so is
di,a(u) == dau + X (u).

Hence Xy (u) and dy a(u) descend to 1-forms on ¥ with values in v*TM/G.
We denote

Ogma(w) = (dg.a(u)® = da(w) + (Xu(u)*! € QY (S, w*TM/G)
and replace (1) by the perturbed equations
(3) 5JyH’A(’LL) =0, *Fy + ,u(u) = T.

2.3. Energy.

Fix a central element 7 € Z(g), an almost complex structure J €
J(Z,M,w,p), and a perturbation H € QYZ,C¥(M)). The energy of
a pair (u, A) € C& (P, M) x A(P) is defined by

1
B 4) =5 [ (1dma@F +1Fa + u(w) - 72) dvols,

This functional is invariant under the action of the gauge group G(P). De-
note by [w+7—u] € H?(Mg;R) the equivariant cohomology class determined
by the symplectic form w and the moment map p — 7 (see [6]), and denote
by [u] € Ha(Mg;Z) the homology class determined by u. More precisely,
there is an equivariant classifying map 6 : P — EG and hence the map
(u,0) : P — M x EG descends to a map

ug : 2 — Mg = M xqg EG.



The class [u] € Hao(Mg;Z) is defined as the pushforward of the fundamental
class [¥] under the map induced by ug. For every pair (u, A) € C3°(P, M) x
A(P) the cohomology pairing between the classes [w+ 7 — p] and [u] is given
by

(w7 —pl[u]) = /E (v'w = d(p(u) = 7, A4)).

This topological invariant appears in the following energy identity. Another
ingredient in this formula is the curvature of the Hamiltonian connection H.
Since Y carries a volume form this curvature can be expressed as a function
Qg : X x M — R which is invariant under the G-action on M. It is defined
by the formula

1
Qp dvoly, := d>H + SUHANHY € Q3(%,C&(M)),

where {-,-} denotes the Poisson bracket for functions on M. The Hofer
norm of the curvature Qg is defined by

12| 1=/ <Sup Qp(z,z) — 1nf Qu(z, a:)) dvols.
>

zEM

This quantity is independent of the volume form of X. The next proposition
states the basic energy identity. The first term on the right is the L?-norm
of the terms in equation (3), the second term is a topological invariant, and
the last term is bounded by ||Qx]||.

Proposition 2.2. For every A € A(P) and every u € C (P, M),

(4) E(u,A) = /2 <|5’JHA ’ + = |*FA+M(U) —'r|2) dvoly
+ (w7 — i, Jul) + / Qp () dvols.
¥

In particular, E(u, A) < ([w+ 7 — pl, [u]) + [|Qu]| for every solution of (3).

Proof. Choose a holomorphic coordinate chart ¢ : U — X, where U C C is
an open set, and let ¢ : U — P be a lift of ¢, that is 7 o ¢ = ¢. Then u, A,
and H are in local coordinates given by

W i=uop, ¢ A=®ds+Vdt, ¢*H=Fds+Gdt



where &,V : U — gand F,G : U x M — R. The pullback volume form on
U is dvol2® = A2 ds A dt for some function A : U — (0, 00) and the metric is
A\2(ds? + dt?). Hence

¢*Qu = X2 (0:G — O, F + {F,G}),
¢ Fy= (0,9 — 8,8+ [®,0]) ds Adt,
qg*dAu = (8suloc + Xq,(uloc)) ds + ((%uloc + X\y(uloc)) dt,
- 1
6 Ora(u) = 5 (Eds — J*(s, £, u*)E dt),
where {F, G} := w(Xr, X¢) denotes the Poisson bracket on M,

5 = asuloc +X<I>(UIOC) + JlOC(s’t’uIOC) (atuloc +X\I/(Uloc)) ,

and J'°(s,t,z) := J(¢(s,t),z) for (s,t,z) € U x M. In the following we
shall drop the superscript “loc”. Then (3) have the form

(5) Osu+ Xo(u) + Xp(u) + J (Ou + Xy (u) + Xa(u)) =0,
05V — 0,® + (8, 0] + N (u(u) — 1) =0,

The pullback of the energy integrand under ¢ : U — X is given by eds A dt
where e : U — R is the function

1 1
e = 510+ Xo(u)+ Xp(w)| + 5 10 + Xu(u) + X (u)l’
0T 0B 4 (B, 4 ) — o
2)\2 S t b 2 :u’ u T
1
= 3 105w + Xo(u) + Xp(u) + J(Ou + Xg(u) + Xg(u))?
/\2
+ 5 A0 = 0@ + [@,9]) + () - 7* + R
The remainder term R has the form

R = w(0su+ Xa(u)+ Xr(u), 0w+ Xg(u) + Xag(u))
_<BS\II — th) + [(I)a \Il],,u(u) - T)
= w(0su,0u) — 05 (G(u) + (u(u) — 7, %)) + 9y (F(u) + (u(u) — 7, ®))
+ (0sG — OF + {F,G}) ou.

This proves (4). O



2.4. Unique continuation.
A solution (u, A) of (3) is called horizontal if dg a(u) =0 and p(u) = 7.
Lemma 2.3. Let (u, A) be a solution of (3) with H = 0. Then (u,A) is

horizontal if and only if the homology class [u] € Ho(Mg;Z) is torsion.

Proof. The “if” part follows from the energy identity. To prove the converse
note that A is flat for every horizontal solution (u, A) of (3) and hence, in
the case H = 0, every equivariant cohomology class vanishes on [u] (see [6]).

O

Lemma 2.4. Suppose u and A satisfy (3) with H =0. If dau and p(u) —7
vanish to infinite order at some point pg € P then (u, A) is horizontal.

Proof. Replacing p by p — 7 we may assume that 7 = 0. Consider the
equations in their local coordinate form (5). In the case H = 0 they read
v + Juy = 0, /s:—l—)?p(u) =0

foru:U — M and ®,¥ : U — g, where vs,vy : U > u*"TM and k: U — g
are defined by

vs = Osu + Ly P, v = O + L, P, k=00 — 5, + [9, 9],

where L, : g — T, M denotes the infinitesimal action given by L,n := X, ().
Let us denote

Vas€ = Vil + VeXo(u), Vas€ = Vil + ViXu(u),
Vasn = 0+ [®,1], Vagn = 0Om+[¥,n),
for £ : U - u*TM and n: U — g. Then
(6) Va0t — Vavs = Lyk = = A2 Ly u(u)

(7) VA,sLu"’/ - LuVA,sn = Vvan(U)’ VA,t]--/un - LuVA,tn = Vthn(U)~
Since du(u) = — L% .J we have

(8)  Vasu(u) =du(u)vs = —Ljvy, Vau(u) = dp(u)vy = Ljvs.



It follows from (6), (7), and (8) that
(9)  Vau (Vaws — Vasvr) = (0:A?) Lupu(u) + A2dp(u)ve + A2V, X ) (0).
Since 0 = (Lx,J)¢ = (Vx, J)§ + Vg X, — Ve X;), we obtain
Va,sJ =V, J + 0sJ, Vaud =V, J + 8¢J,
and hence, using the identity (V,,J)v: = (Vi J)vs,

(10) Vasvs +Vaor = Vai(Jvs) — Vas(Jvr)
= (O)vs — (0sT)vr + AT Lypu(u).

This gives rise to an inequality of the form
|Va,s (Va,svs + Vavp)| < 1 (|vs] + |0svs| + [Opvs] + |p(w)]) -
Moreover, by (9),
[Va,e (Vavs = Vasvn)| < ea (Jvs] + [p(w)])
and, by the curvature identity Va Va4 £ — Va4 Va & = R(vs,v)+ Ve X (u),
|Va,s Va0 — VaVa,sv| < eslvsl.
Putting these three inequalities together we obtain
|Va,sVa,svs + Va1 Vavs| < eq (|vs] + |0svs| + |[Opvs| + [u(w)]) -
Moreover,
Vas(Ly€) — LyVas€ = p(vs,€),  Var(Ly€) — Ly Vad = p(vi, €),

where p € QQ(Ma g) is defined by <77’p(§la§2)> = <v§1X77’§2> (See [15])
Hence, by (8) and (6),

Via,s Va,spi(w) + VagVagp(u) = XL Lyp(u) — 2p(vs, vy).
Hence there exists a constant ¢ such that
|Avs| < e (Jvs| + |0svs| + |Opvs| + |p(u)]) |[Ap(u)] < c(|p(w)] + |vs) -

Hence it follows from Aronszajn’s theorem that, if vs and p(u) vanish to
infinite order at a point in U and U is connected, then vs and p(u) vanish
identically on U. O



Lemma 2.5. Suppose u and A satisfy (3) with H = 0. If there exists an
open set U C P such that dau(p) = 0 and L 19 = Ty M is injective
for every p € U then (u, A) is horizontal.

u(p) (»

Proof. By (6), Ly(p(u) —7) = 0in U. Hence pu(u) = 7 in U and hence, by
Lemma 2.4, we have dqu = 0 and p(u) = 7. O

2.5. Convexity.

Definition 2.6. A convex structure on (M,w,u) is a pair (f,J) where
J € J(M,w) is a G-invariant w-compatible almost complex structure on M
and f : M — [0, 00) is a smooth function satisfying the following conditions.

(C1) f is G-invariant and proper.

(C2) There exists a constant ¢y > 0 such that

for every x € M and every £ € T, M. Here V denotes the Levi-Civita
connection of the metric (-,) = w(-, J-).

(C3) There exists a constant ¢y > 0 such that
f@) > = (@)@ Lep(z) >0
for every z € M.

The second hypothesis says that the upward gradient flow of f expands the
metric outside of a sufficiently large compact set. It is sometimes useful to
assume condition (C3) for all moment maps y — 7.

(C3’) There exists a continuous function Z(g) — R : 7 — ¢o(7) such that
f@)zealr) = df(x)J(x)Le(p(z) —7) 20
for every 7 € Z(g) and every x € M.

A convex structure (f, J) that satisfies (C3') is called strongly convex.

Lemma 2.7. Fiz a homology class B € Ha(Mg;Z) and let (f,Jo) be a
convez structure for (M,w,u — 7). Denote

Mo::{a:EM\f(:B)SCo},



where cy = co(7) is chosen such that (C2) and (C3') are satisfied and

(w+7—-4,B)
Vol(X)

(11) f(@) > co = () — | >

Let P be a principal G-bundle over a compact Riemann surface X, suppose
that J € J agrees with Jy outside My, and let H € H be a Hamiltonian per-
turbation with support in My. Then every solution (u, A) of (3) representing
the class B satisfies u(P) C My.

Proof. Assume without loss of generality that 7 = 0 and continue the nota-
tion of the proof of Lemma 2.4. Since Vf is a G-invariant vector field we
have [V f, X,] = 0 for every n € g and hence

VasVf(u) =V, Vf(u), VasVfiu) =V, Vf(u).
Let A := 92 + 0? denote the standard Laplacian. If f(u) > co then

Af(u) = 0s(V f(u),vs) + 0V f (), vy)
= (Va4 Vf(u),vs) + (Va i VF(),v0) + (VF(u), Vasvs + Vavr)
= (Yo, V£ (1), vs) + (Y, V£ (w), v0) + N*(Vf (1), J Lupa(u))
> (Vi Vf(u),vs) + (W, V), ve).

Here the third equality follows from (10) and the last inequality from (C3).
Now suppose, by contradiction, that m := maxp f o u > ¢y and choose a
local coordinate chart as above near a point where fow attains its maximum.
Since f o u is subharmonic it follows from the mean value inequality that
f ou = m in a neighbourhood of this maximum. Hence the subset of P
where f ou = m is open and closed, and hence f o u = m. Hence, by (11),

E(u, A) > /2 |e(w)]? dvoly, > Vol(E)ix}gf|,uou|2 > ([w — pl, B).

Since Qj vanishes on the image of u, this contradicts the energy identity.
d

Example 2.8 ([6]). Consider the linear action of a compact Lie group G on
C™ by a homomorphism p : G — U(n) with proper moment map p, : C* — g

given by
pip(@) =7y (‘%ﬂw*)



where 7, := p* : u(n) — g is the dual operator of the Lie algebra homomor-
phism p : g — u(n) with respect to the inner product (A4, B) := trace(A*B)
on u(n). A strongly convex structure for p is the pair (f,J) with J =7 and

1
fl@) =5l
To see this note that V f(z) = z and

df (2)J Ly (pp(z) — 1) = (pp(), pp(x) — 7)

Note that the pair (f,i) with f(x) = |u(z)?/2 need not be a convex struc-
ture. An example is the action of T? on C? by (t1,t2) (21, 22) = (t121, t2x2).

Example 2.9 (Contact boundaries). Suppose (M, w) is a compact sym-
plectic manifold with boundary M, equipped with a Hamiltonian G-action
generated by a moment map p : M — R. Suppose that X € Vect(M) is a
G-invariant vector field which points out on the boundary and satisfies

Lxw=uw, w(X,, X) >0

near M. Such a vector field gives rise to a convex structure as follows.
Let ¢; denote the flow of X and choose a G-invariant w-compatible almost
complex structure J on M such that

dpi(x)J () = J(pe(2))dgy(2),  w(X(2),J(2)X(z)) =1,

and w(X(z), J(z)v) =0 for x € OM, v € T,0M, and —e < t < 0. Then the
function f : M — R, defined by

f(pu(z)) =1t

for x € OM and —e < t < 0 defines a convex structure near M. Its
gradient is the vector field X and its covariant Hessian is half the identity.
Moreover, the manifold can be extended by attaching a cylindrical end of
the form OM x [0,00) with the obvious extensions of the symplectic and
almost complex structures to obtain a noncompact manifold as above.

Example 2.10 (Convex fibrations). Let G and H be compact connected
Lie groups with Lie angebras g = Lie(G) and h = Lie(H). Let (M,w) be a
(not necessarily compact) symplectic manifold equipped with Hamiltonian
action by both Lie groups G and H, generated by moment maps pug : N — g



and pug : N — h. We assume throughout that the action of G commutes
with the action of H. This is equivalent to the condition

pc(he) = pa(z),  pulgz) = pn(w)

for g€ G, h € H, and z € M. Let (S,0) be a compact symplectic manifold
and wg : Q@ — S be a principal H-bundle. We assume that Q) is equipped with
a connection B € A(Q) C QY(Q, ) with nonpositive curvature. This means
that there exists a o-compatible almost complex structure Js € J(S,0)
such that

(12) dn(q)w' = Jsdn(q)w = (Fp(w,w"), pu(x)) < 0.

Then the manifold 3
M := Q xu M

carries a symplectic form w € QQ(]\;[) whose pullback under the projection
m:Q x M — M is given by

0 = mow — d(B, ug) + i o,

where 7 : QXM — S and 72 : @ X M — M denote the obvious projections.
A moment map ji: M — g for the obvious G-action on M is given by

(g, z]) :== pc(z)

for ¢ € Q and z € M. Here [q,z] = [gh,h~'z] denotes the equivalence
class of the pair (¢,x) in @ xg M. Note that if ug is proper then so is fi.
Note also that every H-invariant and w-compatible almost complex structure
J € Ju(M,w) induces an almost complex JeJg (M ,@) which acts by Jg
on the horizontal subbundle and by .J on the vertical subbundle of TM. If
J is invariant under both G and H, then J in invariant under the G-action
on M.

Now suppose that (J, f) is a convex structure for the G-action on M (as
in Definition 2.6). Suppose also that J and f are H-invariant. Then the
above almost complex structure J and the function f : M — [0,00) given
by N

f(lg,z]) == f(=)
define a convex structure for the G-action on M. To see this, note that the
gradient Vf is given by Vf([q,a:]) = [0,Vf(z)]. Let ¢ : M — M denote
the (upward) gradient flow of f. Then the gradient flow of fis given by

de(lg, 2]) = [a, $e(x))-



for ¢ € Q and = € M. Hence dcfﬁt([q,x])[w,é]Nz [w,dp(x)€]. In particu-
lar, the image of a horizontal tangent vector § = [w, —Yp, (x)(7)] under

d¢([g, z]) is the horizontal vector

gt = [w, —YBq(w)(¢t($))] € T[q,tﬁt(m)]M’

and so

il = ldms(@)w]® + |de(2) Vi, () |* = (Fp(w,w'), uu(@)),

where w' € T,Q satisfies drg(q)w’ = Jsdng(q)w. Here we have used the
fact that ¢; commutes with the action of H and so uy o ¢ = uy. It follows
from the hypotheses on (J, f) that the function ¢ — |&/ is nondecreasing
whenever f([g, ¢(z)]) is sufficiently large.

3. Compactness and Regularity.
3.1. Regularity.

The next theorem asserts that every weak solution of equations (3) is gauge
equivalent to a strong solution. For an integer ¢ > 1 we denote by

T =TS M,w, )
the space of almost complex structures of class C¢ and by
H = 1D, M, w, p)

the space of Hamiltonian perturbations of class C* (see Section 2.2). Thus
¢ is the vector space of G-equivariant C¢-sections of the vector bundle
T*Y x M — ¥ x M. For ¥ = oo we write 7 =: J and H*> =: H. Consider
the symplectic fibre bundle

M:=PxgM =%

with fibres diffeomorphic to M. There is a one-to-one correspondence be-
tween sections 4 : X — M and G-equivariant functions u : P — M via

@om(p) = [p,u(p)]

for p € P. For a positive integer £ and a constant p > 2 we denote by
Wé’p (P, M) the Banach manifold of all continuous G-equivariant functions
u : P — M such that the corresponding section @ : ¥ — M is of class WP,



Theorem 3.1. Fiz a constant p > 2 and let £ be either a positive integer
or be equal to co. Let J € J* and H € H**'. Ifu € Wé’p(P, M) and
A € AYP(P) satisfy (3) then there exists a gauge transformation g € G*P(P)
such that g~ 'u and g*A are of class WP, For £ = oo this means that
g 'u and g*A are smooth.

Proof. Let (u, A) € WHP(Z, P xg M) x AYP(P) be a solution of (3). Assume
first that there exists a smooth connection Ay € A(P) such that

(13) (A = Ag) = 0.

Under this assumption we shall prove that the pair (u, A) is of class W*1P,
Denote o := A — Ay € WIP(S,T*S @ gp). Then the first equation in (3)
has the form

(14) 87,40 (1) = — (Xa(u) + Xp(u) ™,

where the (0,1)-part of the 1-form X,(u) — Xg(u) on ¥ with values in
w*TM/G is understood with respect to J,. The second equation in (3)
and (13) together have the form

(15) dago = —Fa, — %[a A a] + (1 — p(u)) dvoly, dy o =0.

We prove by induction that u and A are of class W5P for every integer
k < £+ 1. For k = 1 this holds by assumption. If u and A are of class
WHkP for some k < £ then, by (15), da,a and d’y,« are of class WkP and
hence « is of class W TP, Moreover, by (14), 9;.4,(u) is of class Wk
and the complex structure .J, on the bundle u*TM/G is also of class W*P.
Hence u is of class W*T1P (see [23, Proposition B.4.7]). This completes the
induction. Hence the pair (u, A) is of class WP and is smooth in the
case £ = co.

Thus we have proved the theorem under the assumption that A satis-
fies (13) for some smooth connection Ag. In general, it follows from the local
slice theorem (see Theorem B.1) that there exists a smooth connection Ag
and a gauge transformation g € G*P(P) such that

d’4(g«Ao — A) = 0.

Then g*A satisfies (13) and hence the pair (g7 u, g*A) is of class W*H1P,
and is smooth in the case £ = oo. O



3.2. Compactness with bounded derivatives.

In this section we prove a compactness result for solutions of (3) with values
in a fixed compact subset of M under the hypothesis that the first derivatives
satisfy a uniform L*-bound. We assume that w, € Q%(M) is a sequence
of symplectic forms on M converging uniformly with all derivatives to a
symplectic form w and that u, : M — g is a sequence of moment maps
(corresponding to a sequence of w,-Hamiltonian G-actions on M) that con-
verges uniformly with all derivatives to the moment map u. We assume that
w, agrees with w and p, agrees with u outside of a compact set. We assume
further that dvoly , is a sequence of volume forms on ¥ converging in the
C*>°-topology to dvoly and Jy, is a sequence of complex structures on X
converging in the C*°-topology to Jx.

Theorem 3.2. Let £ be either a positive integer or be equal to co. Suppose
that
(Jua Hu) € je(za M, w,y, ,Uu) X 'H“—l(za M, wy, ,Uu)

is a sequence such that J, converges to J € JE(E, M,w, ) in the C*t-norm
on every compact set, and that H, converges to H € HTY(S, M, w, u) in the
C**1-norm on every compact set. Suppose further that 7, € Z(g) converges
to 7. For every v let (u,,A,) € Wé’p(P, M) x AYP(P) be a solution of (3)
with (u, Jx, dvols, J, H, T) replaced by (., Jx,, dvols ,, Ju, H,, 7). Suppose
that there exist a constant ¢ > 0 and a compact set K C M such that

uw(P)C K,  |ldaullpe <c

for every v. Then there exists a sequence of gauge transformations g, €
G*P(P) such that the sequence (g, 'u,,g%A,) has a C*-convergent subse-
quence.

Lemma 3.3. Fiz positive integers k and n, a real number p > 2, an open
set U C C, and a compact subset K C U. Let J, C R>*?" denote the
set of complex structures on R*™. Then for every constant cy > 0 there
exists a constant ¢ = c(co, K,U,n,k,p) > 0 such that the following holds. If
J e WkP(U, J,,) satisfies

||J||Wk,p(U) < ¢

then every function u € W*HLP(U R?™) satisfies the inequality

[wllyrsrpcry < c <||83u + JOwullyrpwy + lullwerw) + HUHWLOO(U)) :



Proof. We argue by contradiction. Suppose that there exist sequences J, €
Wk»(U, 7,) and u, € W*HLP(U, R?™) such that

||Ju||ka(U) < co, ||Uu||Wk+1m(K) — 0

and
105wy + JoOpun|[yepry + llwwllwrr @y + luwllproo@y < 1.

Passing to a subsequence, if necessary, we may assume that there is a com-
plex structure Jo € W*P(U, J,,) such that .J, converges to Jy in the weak
WkP_topology and in the strong C°-topology. Choose a smooth cutoff func-
tion B : U — [0, 1] with compact support such that S|k =1 and define

vy 1= Puy,.
Then v, is bounded in WP and W and it satisfies the identity
Osvy + JoOyvy, = B(Osuy + J0puy) + (0sB)uy + (0:8) Jyuy + (Jo — Jo)Opvy.
The elliptic estimate for the operator 95 + JyJ; has the form
lellwsinwy < e (1050 + JoBeolwiow) + lollwiow))

for some constant ¢ > 0 and every function v : U — R?" with compact
support (see for example [23, Proposition B.4.7]). Hence

HUV”W’“H»P(U) < C<||r6(asuu + Juatul/)Hkap(U)
+ [|(9sB)uy + (atﬁ)JuuVHWk,p(U)

+ 10— 200ty + [0y

IA

d (Hasul/ + Juatuunwk,p(U) + ”UUHV[/k,p(U)

+ 170 = ullwew () 100l oo (1)
+ IJo — JVHLOO(U) ||vu||Wk+1m(U))

for every v. If v is sufficiently large then ¢’ || Jo — Ju || ooy < 1/2 and hence

lollwasiow) < 2¢ (100 + HBut i) + s llyioq

+4c ey [[0wvu (| poc (1) -



This contradicts the fact that |luy ||y r+10 (g diverges to co. O

Proof of Theorem 3.2. The proof consists of three steps.

Step 1. Fiz a constant p > 2 and a smooth reference connection Ay € A(P).
We may assume without loss of generality that the sequence A, — Ag is
bounded in WP,

Since Fyu, = (7, — p(uy))dvoly ,, it follows from the assumptions that

sup [ Fa, || oo < 00
v

Hence, by Uhlenbeck compactness [32, 37], there exists a sequence of gauge
transformations g, € G>P(P) such that the connections g} A4, € A"P(P) sat-
isfy a uniform W'P-bound. Replace the sequence (u,, 4,) by (g, 'u,, g:A,).

Step 2. We may assume without loss of generality that A, converges weakly
in WP and strongly in C° to a connection A € A“1P(P), that u, converges
weakly in WP and strongly in C° to a section u € Wé+1’p(P, M), and that

d(A, — A) = 0.

By Step 1, the sequence A, — Ag is bounded in WP and, by assumption,
the sequence u,, is bounded in WP, Hence, by the theorems of Alaoglu and
Rellich, we may assume, after passing to a subsequence if necessary, that A,
converges weakly in W1 and strongly in C° to a connection A, € A"P(P),
and wu, converges weakly in WP and strongly in C? to a section us, €
WLP(2, E). Since 9y, m, a,(u,) converges weakly in LP to 9y m 4., (Uoo)
and F}y, converges weakly in LP to F4__ it follows that the limit (us0, Aco)
satisfies (3). By Theorem 3.1, there exists a gauge transformation g €
G*P(P) such that the pair

(U> A) = (g_luooa g*Aoo)

is of class W!t1P. Moreover, g*A, converges weakly in W' and strongly
in C° to A and g~ 'u, converges weakly in W and strongly in C° to u.
By the local slice theorem (Theorem B.1), there exists a sequence of gauge
transformations h, such that

dy(hig* A, — A) =0



and

Vli_)ngo \hyg* Ay — Al » =0, sgp lhyg" Ay — Al 1 < 0.

Passing to a subsequence, if necessary, we may assume that h}g*A, con-
verges weakly in the W1P-norm and strongly in the C%-norm. The limit is
necessarily equal to A. Moreover, the sequence h, is uniformly bounded in
the W?P-norm. Passing to a further subsequence we may assume that h,
converges weakly in W2P and strongly in WP to a gauge tranformation
h € G*P(P). This gauge transformation satisfies

hW"A=A

and hence is of class W*t2P, Tt follows that h,'g 'u, converges weakly
in W'P and strongly in C° to h~'u. Now replace A, by h’g*A,, u, by
h;'g'u, and u by A~ 'u.

Step 3. The sequence (u,, A, — A) is bounded in WP,

We prove, by induction, that (u,, A, — A) is bounded in WP for 1 <
k < £+ 1. For k = 1 this was proved in Step 1. Let «, := A, — A and
assume, by induction, that the sequence (u,,c,) is bounded in W*® for
some k € {1,...,¢}. In local Jx ,-holomorphic coordinates on ¥ and local
coordinates on M the equation 0y, m, 4, (u,) = 0 has the form

Osuy + Ju(8,t, )0y = — X, (y,0,) (W) — Ju(8,6,u) Xy 4,0, (W)

where A, = ®,ds + ¥, dt and H, = F,,ds + G, dt. This local equation
holds in an open set U C C, the function u, : U — R?" takes values in
an open set V C R?", the function J, : U x V. = J, is of class C* (with
a uniform Cz-bound), and the functions F,,G, : U x V — R are of class
C**1 (with uniform C**'-bounds). Since w, is uniformly bounded in W
so is the complex structure U — J,, : s + it — J,(s,t,u,(s,t)). Moreover,
the sequences ®,, ¥, : U — g are bounded in W*P. Hence the sequence
sy, + J,(8,t,u,)0uy, = U — R?™ is bounded in W*P. By assumption, the
sequence u, : U — V is bounded in W1H*°. Hence, by Lemma 3.3, the
sequence u,, is bounded in W**1P. Now, by Step 2, we have

1
daoy, = —Fy — E[a,, Aoy + (1 — pw(wy)) dvoly, dha, = 0.

Since the sequences o, and wu,, are bounded in W*P it follows that dacy, is
bounded in W*? and hence the sequence o, is bounded in W5+, This
completes the induction. Hence, by Rellich’s theorem, the sequence (u,, A,)
has a C%convergent subsequence. O



3.3. Bubbling.

The following theorem removes the hypothesis of a uniform L* bound on
the first derivatives in Theorem 3.2. The manifold (M,w) is called sym-

plectically aspherical if
/ v'w =0
S2

for every smooth map v : S2 — M. This implies that there is no nonconstant
J-holomorphic sphere (for any almost complex structure on M that is tamed
by w).

Theorem 3.4. Suppose that M is symplectically aspherical and fiz a com-
pact subset K C M. Let ¢ be either a positive integer or be equal to oco.
Let wy, py, dvoly,, Js,, Ju, H,, and 7, be as in Theorem 3.2. For
every v let (u,,A,) € Wé’p(P, M) x AYP(P) be a solution of (3) with
(w, Jx,dvols, J, H,T) replaced by (., Jx,,dvols ., J,, H,,7,) such that

uy,(P) C K
for every v and

(16) sup(lw, — pul, [u]) < oo.

Then there exists sequence of gauge transformations g, € G>P(P) such that
the sequence (g, 'u,, g% A,) has a Ct-convergent subsequence.

Proof. By Theorem 3.2, it suffices to prove that

(17) sup ||da, uy|| o < 00.
v

Fix a constant p > 2. By Step 1 in the proof of Theorem 3.2, we may
assume that the sequence A, — Ag satisfies a uniform W1P-bound for some
(and hence every) smooth connection Ag. Now suppose, by contradiction,
that the sequence ||da,uy| ;o is unbounded. Passing to a subsequence, if
necessary, we may assume that this sequence diverges to co. Choose a
sequence p, € P such that

Cy = |dAuuV(pU)| = ”dAuuVHLOO — 0.

Passing to a subsequence, we may assume without loss of generality that p,
converges. Let po 1= lim, 00 pp and 2o = T(Poo). Choose a convergent



sequence of local Jy, ,-holomorphic coordinates s + it on X near z,, and lift
these to a convergent sequence of local sections of P that pass at the origin
through poo. In this local frame equations (3) have the form

as“u + XFy'i‘(l’fu,‘I’u)(ul’) + JV(S? t, U‘V) (atu’/ + XGV+<NV7\I’V>(UV)) = O’
0V, — 0P, + [q)l/’ \IIV] + )‘Q(M(UV) - TI/) =0.

Now consider the rescaled sequence

1
v (8, 1) := uy(ens,€ut), £y = —.
Cy
This sequence satisfies
as'Uu + JV(EVS, eut, 'Ul/)atvu = &YWy,

where
wu = X‘I’u(€u37€ut) (vll) + XFV (€V87 €Vt’ /UV)

+ JI/(Ellsv eut, vu) (X\Ilu(e,,s,e,,t) (vu) + XG,, (51/37 eut, v,,)) .

The sequences ®,, and ¥, satisfy uniform W'P-bounds and, by construc-
tion, the sequence v, satisfies a uniform W1*-bound on every compact set.
Hence the sequence w, satisfies a uniform W'P-bound on every compact
set. By Lemma 3.3, the sequence v, satisfies a uniform W?P-bound on
every compact set. It follows that v, has a subsequence which converges
strongly in C! on every compact set. The limit is a nonconstant pseudo-
holomorphic curve v : C — K with respect to the almost complex structure
Joo := J(2c0, ). We prove that it has finite energy. To see this note that, for
every R > 0,

. 2

- Vli)rgo BR ’asvy + gqu)U(Eus’th) (/UV) + 6VXFV (61/5’ gut, vy) JV(EI/S’EVt)'UV)
. 2

= ulggo 0suy + Xo, (un) + X5, (8,8, w)[7, (5.1,

BEVR

< limsup E,(uy,, Ay).

v—00



By (16) and the energy identity in Proposition 2.2, the sequence E(u,, A,) is
bounded. Hence v has finite energy, and hence, by the removable singularity
theorem (see for example [23, Theorem 4.2.1]), it extends to a nonconstant
Joo-holomorphic sphere in K. Since M is symplectically aspherical such a
Jo-holomorphic sphere does not exist. This contradiction proves (17). O

Combining Theorem 3.4 with the apriori estimate of Lemma 2.7 we ob-
tain the following compactness result for the moduli space of solutions of (3).

Corollary 3.5. Suppose (M,w, u) is symplectically aspherical and admits a
strongly convex structure (f,Jy) as in Section 2.5. Let ¢ be either a positive
integer or be equal to co. Let wy, p,, dvols ., Jx ., Ju, Hy, and 1, be as in
Theorem 3.2. Let cg : Z(g) — (0,00) be as in (C3'), suppose that (11) holds
with co = co(T), that each J, agrees with Jy outside of the compact set

My:={ze M| f(z) <co(r)+1},
and that each Hamiltonian H, is supported in My. Then, for every se-
quence (uy, A,) of WYP-solutions of (3), with the tuple (u, Js, dvoly, J, H, T)
replaced by (py, s, dvols,, Jy, Hy,7,), such that w, represents a fized

equivariant homology class there exists a sequence of gauge transformations
gy € G*P(P) such that (g, uy, g% A,) has a Ct-convergent subsequence.

Proof. By Lemma 2.7, u,(P) C My for every v. Hence the result follows
from Theorem 3.4 with K = Mj. O

4. Fredholm theory.

Fix a symplectic 2n-manifold (M, w) with a Hamiltonian G-action and mo-
ment map p: M — g, a compact Riemann surface (3, Jy, dvoly), an almost
complex structure J € J, a Hamiltonian perturbation H € H, an equiv-
ariant homology class B € Ha(Mg;Z), and a principal G-bundle P — ¥
whose characteristic class [P] € H3(BG;Z) is the image of B under the
homomorphism Ha(Mg;Z) — Ha(BG;Z). In this section we examine the
moduli space

Mpys = Mpyx(r;J, H)
= {(u,4) € WEP(P, M) x A?(P)|(u, A) satisty (3), [u] = B} .
The quotient by the action of the gauge group will be denoted by
Mps = Mpx(r;J, H) == Mps(r; J, H)/G*(P).



In this section we prove that, for a generic Hamiltonian perturbation, the
subspace M7 y, of irreducible solutions is a finite dimensional manifold.

4.1. Regular and irreducible solutions.

Let J € J% and H € H* (see Sections 2.2 and 3.1 for the notation). We
denote by G, := {g € G| gz = x} the isotopy subgroup of z € M.

Definition 4.1. A solution (u, A) € WgP(P, M) x AP(P) of (3) is called
regular if

(18) dan=0, L,n=0 — n=20

for every n € W?P(3,gp). It is called irreducible if there exists a point
p € P such that

Note that every irreducible solution is regular. Note also that an element
T € Z(g) is a regular value of the restriction of the moment map

WP (P, M) x AY(P) — LP(S,0p) : (u, A) > *Fa + p(u)

to the space of pairs (u, A) such that 95y 4(u) = 0 and [u] = B if and only
if every pair (u, A) € Mpx(7;J, H) is regular. The next lemma shows that,
if 7 is a regular value of p then regularity can be achieved by choosing a

Riemann surface with large volume.

Lemma 4.2. Let T € Z(g).

(1) If T is a regular value of p then there exists a constant § > 0 with the
following significance. If B, %, and H satisfy

(wt7r—p, B) + 19l _

(19) Vol(X)

then every solution (u, A) of (3) (for every J € J*) with [u] = B is
reqular.

(ii) If G acts freely on p='(7) then there exists a constant § > 0 with the
following significance. If B, ¥, and H satisfy (19) then every solution
(u, A) of (3) (for every J € J*) with [u] = B is irreducible.



Proof. Choose § > 0 such that
lw(z) — 7] <6 == ker L, = {0}.

Let (u,A) € Wép(P, M) x AYP(P), be a solution of (3) such that [u] = B.
Then, by Proposition 2.2, we have

inf luu(p) = 7I* < s [ ) = o[ ol
E(u,A)
~ Vol(%)
_ Aot 74 B) + 0]
- Vol(X)
<.

The last inequality follows from (19). Hence there exists a point py € P

such that |u(u(pg)) — 7| < & and so, by definiton of §, the linear map

Ly(po) : 8 = Toy(py)M is injective. Now suppose that n € WLP(%, gp) satisfies
dan =0, L,mn=0.

Then n(pg) = 0 and hence n = 0. This proves (i). To prove (ii) choose § > 0
such that

lu(z) =72 <6 = G, ={1}, im L, Nim J(z,z)L, = {0}
for all (z,z) € ¥ x M and argue as in the proof of (i). O

Given 7 € Z(g) and (J,H) € J x H, we denote the set of irreducible
solutions of (3) by

/T/l/j{;’z = ME’E(M,LO,M,T; J,H) := {(u,A) € //\\/l/B,g | (u, A) is irreducible}
and the quotient space by

M5 := M (M. w, i, 7], H) := My 5 (M., i, 73], H) /G (P).
Remark 4.3. The regularity criterion of Lemma 4.2 is useful in certain

situations (e.g. for the adiabatic limit argument in [15]). However, the
condition is rather restrictive and in many cases the solutions are regular



under much more general hypotheses. For example, in the case of linear
torus actions, one can consider the element 7y € g defined by

(20) TO =T — Voll(E) /ZFA

for A € A(P). This element is independent of the connection A. Suppose
M = C" and G is abelian and acts linearly on M. If G and acts freely
(respectively with finite isotropy) on u !(79) then the gauge group acts
freely (respectively with finite isotropy) on the space of solutions of (3) for
every Hamiltonian perturbation. To see this note that, for every subgroup
H C G, the set

MY :={zec M|HCG,}

is a linear subspace of M = C" and so u(M*") is a closed convex cone.
Applying this to the subgroup

H:= m Gu(p)s

peEP
where *F4 + p(u) = 7, we find that

1
=— dvol M.
" = i [ty dvols € uar™)
Hence, if G acts freely on p~!(7p), it follows that H = {1} and, if 79 is a
regular value of u, it follows that H is finite. Since H is isomorphic to the
isotropy subgroup of the pair (u, A), this proves the claim.

4.2. The linearized operator.

Cauchy-Riemann operators. Fix an almost complex structure J € J
and a Hamiltonian perturbation H € H. We begin with a discussion of the
Cauchy-Riemann operator on the vector bundle E, := v*TM/G — ¥ asso-
ciated to a pair (u, A) € C(P, M) x A(P). This operator will be denoted
by Dy : C®(Z,E,) — Q%(X, E,). It is obtained by differentiating the
first equation in (3) with respect to u and is given by

(21) Dy s = (Vial)™ = 31 (%)051.4(x)

for £ € C*°(X, Ey,). Here V denotes the Levi-Civita connection of the met-
ric w(-,J-) on M. Since J depends on the basepoint z € ¥ so does the
connection V. The connection Vi 4 on E, is given by

(22) V4§ = VE+ Ve Xy a(u),



where the 1-form Xy 4 : TP — Vect(M,w) is given by

(XHaA)P(v) = XAP(U) + XHdTr(p)v
for v € T,,P.

Remark 4.4. In conformal coordinates s+t on ¥ the connection Vi 4 has
the form

Vh,4,s6 = Vo€ + Ve X + Ve Xp, Vi,4,:6 = Vi€ + Ve Xy + Ve Xq.

Here €2 C C is an open set, u : Q@ — M is a smooth function, V denotes the
Levi-Civita connection of the metric (-, )s¢ = w(-, Js4-), and

A=dds+ Vdt, H=Fds+ Gdt
where &, ¥ : Q — gand F,G : Q@ x M — R. Thus the Cauchy-Riemann

operator has the form

1
Dy = (€ ds+ J¢ dt),
where .
¢ = Vi as€ + TV, a6 = 5T (V) (vs = Jvi)

and
s = Osu+ Ly® + Xp(u), o= O+ Ly ¥ + Xa(u).

The covariant derivatives of J = J(s,t,u(s,t)) with respect to the connec-
tion Vg 4 are given by

VH,A’SJ =V,J + OsJ — ,CXFJ, VH,A,tJ =V,J + O — ,CXGJ.

Remark 4.5. We obtain a Hermitian connection 61{ 4 on w*T'M by the
formula

~ 1
Vi, 4€ := Vi A€ — §J(VH,AJ)§-

)0,1

The complex linear part of D, 4 is given by & — (61; A€ and, moreover,

Daa€ = (V148" + N (€, Dpm aw) + 5 (I (Lxpd — D)™
(see [15]). Here

N(&;&2) = 2J (Vg J)61 = J (Ve J)&o

denotes the Nijenhuis tensor of J = J,.



An abstract setting. Consider the infinite dimensional Banach manifold
B := B .= WEP(P, M) x A*P(P).
The tangent space of B at (u, A) € B is given by
T, a)B = WHP(S,E,) x WHP(S, T*S @ gp), By :=u"TM/G.

The almost complex structure J € J determines a complex structure .J, on
E, and hence a vector bundle £ = £¥~1P — B with fibres

Euya) = Eu = WHF (2, A T*S @ B,) x WEIP(S, gp).

The action of the gauge group G2P(P) on B lifts to an action on £. For every
Hamiltonian perturbation H € H there is a G>P(P)-equivariant section

f:fH,JiB—)g

given by
Fu,1(u, A) = (05,m,4(u), *Fa + p(u) — 7).

The space MB,E(J\I,w, w, 75 J, H) is the zero set of this section.

The linearized operator. The vertical differential of F at a zero (u, A)
gives rise to an operator

Dy,a: TaB" — £ & WH (S, gp)

given by

(23) Dua = Lit —da

< é ) Du,Af + (Lua)o’l
dp(u)é + *d s

Here the linear map L, : g — T, M is given by the infinitesmal action, i.e.

Lyn = Xn(x)

forx € M and n € g, and L} : T, M — g denotes its dual operator with
respect to the given invariant inner product on g and the inner product
w(-, J(z,z)-) on T, M. Note that this inner product, in general, depends
both on & € M and on the point z € X.



Proposition 4.6. Assume J € J* and H € H' and let k € {1,...,0+1}
and p > 2. Then the operator Dy 4 : T(U’A)Bk’p — Elr g Wk=LP(S gp),
defined by (23), is a Fredholm operator for every pair (u, A) € B*P. It has
real index

index Dy, 4 = (n — dim G)x(Z) + 2(c$(T M), [u]),
where ¢(TM) € H*(Mg;Z) denotes the first Chern class of the vertical

tangent bundle TM xqg EG - M xq EG = Mg.

Proof. The operator

Ql(z,gp) — QO(E,gp) > QO(EagP) T (_d*Aau *dAOé)
has index —x(X)dim G and, by the Riemann-Roch theorem, the Cauchy-
Riemann operator D, 4 : C®(%,E,) — Q%(%, E,) has index nx(Z) +
2¢1(E,), where c1(E,) := (c$(TM),[u]) denotes the first Chern number

of the complex vector bundle E, — X. The operator D, 4 is a compact
perturbation of the direct sum of these operators. O

The adjoint operator. The formal L?-adjoint operator

DZ,A : 85+1’p © Wk+1’p(2, gp) — T(U,A)Bk’p

is given by
4 [ 8 ) = (P st
wA i’ Lin — dag — +datp

for n € Q5 (3, E) and ¢,v € QO(2, gp).

Proposition 4.7. If u and A satisfy (3) then

n Duy,aD;, 4n+ (LuLzm)® + (Dy,aJ — J Dy a) Lyt
DyaDyal| ¢ | = ddag + L Ly
Y ddap + LE Ly + L (DyaJ — JDy a)*n

forn € Qf),;l(E,Eu) and ¢, € Q°(%, gp).



Proof. We shall abbreviate D := D,, 4 and use the identities
dha=—xdy*aq, xdadagp = [*Fa, @),

du(u)J =Ly, du(u)Lud = [¢, p(u)]
for a € Q1(, gp) and ¢ € QO(X, gp). With this understood we obtain

Du,ADZ,A (77, ¢, w) = (ﬁv (gv 1;)’

where

i = D(D*n+ Lu¢ + JLup) + (Lu(Lin — dad — +darp))*!
= DD*n+ (L,Lin)™!
+DLy¢ — (Ludad)®' + DI Lytp — (Ly % datp)™",
¢ = Ly(D*'n+ Ly¢+ JLuth) — da(Lyn — dad — xd 1)
dada¢ + Ly Lu¢ + Ly D*n — diy Lin 4 [xFa + p(u), 9],
¥ = dp(u)(D*n+ Ly¢ + JLu) + *da(Lin — dad — *da1))
= djgdAw + LZLuw + L;J*D*n + dj‘4 * L:‘m — [*FA + u(u), ¢].

The assertion then follows from the fact that

(25) J(Lyo)®t = (L, %)™, LXJ'n=—x%Lin,

for a € Q1(2,gp) and n € ng(E,Eu), and

(26) Oyua(u)=0 = DL,¢ = (Lydad)™t

for ¢ € Q%(X, gp). The first equation in (25) follows from the fact that
xa@ = —aoJy

for every 1-form o on ¥ (with values in any vector bundle) and hence

1
(Lu)®! = S(Laa+ TLy(ao Jy))

1
= 5((Lu*a)oJ2—JLu*a)
= —J(Ly *a)®.

The second equation in (25) follows from the first by duality. Next we
observe that the operator (u, A) — 9, m,4(u) is a section of the bundle over B



with fibres Qg’ul (X, E,). Its vertical differential at a zero (u, A) is the operator
(¢,a) = Dy aé+(Lya)®t. Since the section (u, A) + 0,4 (u) is equivariant
under the action of G(P) it follows that the pair (§,a) = (Ly¢, —dad) is
contained in the kernel of the vertical differential at any zero (u, A). This
proves (26). O

Proposition 4.8. Let 7 € Z(g). Then the following holds.

(i) If (u, A) is a regular solution of (3) then Dj 4(n,$,v) = 0 implies
¢ =0.

(ii) IfH =0, J =0, J is integrable, and (u, A) is a regular solution of (3)
then Dy, 4(n, ¢,) = 0 implies ¢ =+ =0, D, yn=0, and Lyn = 0.

Uu

(iii) If H =0, J = 0, J is integrable, (u,A) is a regular solution of (3),
and Ly 8 = Ty M is onto for some p € P then Dy, 4 is onto.

(iv) FH=0,J=0,dsu=0, pu)=7, & =52, and (u, A) is irreducible
then D, 4 1s onto.

Proof. If u and A satisfy (3) and Dj, 4(n, #,%) = 0 then, by Proposition 4.7,
da¢ = 0 and L,¢ = 0. Since (u, A) is regular it follows that ¢ = 0. This
proves (i). If u and A satisfy (1) and J is integrable then

Dy aJ = JDya
and, by Proposition 4.7, we have
U Dy aD}; 4n + (LyLin)™!
Du,ADZ,A ¢ = dszQé + LZLU¢
() djdaty + Ly Lyy

This proves (ii). To prove (iii) suppose that (u, A) is a regular solution
of (1), J is integrable, and D} 4(n,#,v) = 0. Then, by (ii), ¢ = =0 and
Dy 4n =0, Lyn =0. Since L/Z(p) is injective for some p € P it follows that n
vanishes on some open set. Hence, by unique continuation, n = 0. Thus we
have proved that D , is injective. Hence Dy, 4 has a dense range and hence,
by elliptic regularity, D, 4 is onto. To prove (iv) note that, by Remark 4.5,
The operator D, 4 is complex linear whenever H = 0, J= 0, and dgqu = 0.
Hence D} ,(n, ¢,%) = 0 implies ¢ =+ = 0 and D} ,n =0, L;n = 0. Since
n is a (0, i)—form we have ’

dp(u)n = =Ly Jn = Ly(no Js) = 0.



Since dgqu = 0 the image of w is an orbit of some point zyg € M under
the G-action. Since (u, A) is irreducible, G, = {1}. Hence 7 defines an
element of the cokernel of the Cauchy—Riemann operator along the constant
function @ = [z9] : & — M = M//G(7). Since ¥ = §2, it follows from the
Riemann—Roch theorem, that n = 0. O

4.3. Transversality.

In this section we establish transversality for the irreducible solutions of (3)
for generic Hamiltonian perturbations.

Definition 4.9. A pair (J,H) € J x H is called regular (for the sixtu-
ple (B,%, M,w,p,7)) if the operator D, 4 is surjective for every (u,A) €
M’é o(M,w,p, 73 J,H), i.e. for every irreducible solution of (3) representing
the class B.

Given an almost complex structure J € J we denote by Hieg(7,J) C H
the set of Hamiltonian perturbations H such that the pair (J, H) is regular.
Given 7 € Z(g) and B € Hy(Mg;Z) we denote by Jreg(7,B) C J the set
of almost complex structures J such that the pair (J, H = 0) is regular for
B. If (J, H) is regular then it follows from Proposition 4.6 and the infinite
dimensional implicit function theorem that M7}, (M, w, p, 7; J, H) is a finite
dimensional smooth manifold of dimension ’

27)  dimMp (M, w,p,7;J,H) = (n— dim G)x(Z) + 2(c(TM), B).

Theorem 4.10.

(i) For every J € J and every T € Z(g) the set Hreg(T,J) is a countable
intersection of open and dense subsets of H.

(ii) Assume B is not a torsion class. Then, for every T € Z(g), the set
Treg(T, B) is a countable intersection of open and dense subsets of J .

Proof. Fix a sufficiently large integer ¢, a constant ¢ > 0, a compact set
K C M, and a real number p > 2. Consider the space of pairs (u, A) €
Wé’p(P, M) x ALP(P) that satisfy

(28) wP)C K,  |daulpe <c



and, for some pg € P and all n;,ny € g,

. 1
(29) “ 1;1%1} [u(po) — x| > = Im| + Im2] < ¢|Lugpoym + J Lupo)n2| -

T

Denote
MC’K(H) = {(U,A) € MB,E(M,M,M,T; J,H)|u and A satisfy (28—29)} .
By Theorem 3.2, the moduli space

MK (H) := MK (H) /G*P(P)

is compact, and it consists entirely of irreducible solutions of (3). We shall
examine the universal moduli space

ué,c,K — az,c,K/gzp(P)’
Ubek .= {(u, A H)|H € HY, (u, A) € MK (H), (28 — 29)} .

We prove that 44X is a Banach manifold. To see this we must show that
the linearized operator

Du,A,H : B(li)A) @ /HE - 85 @ Lp(za gP)

given by

¢ e[ Xt
(30) Dyam | @ | =Dya ( o ) + 0 :

H 0
is surjective for every triple (u, A, H) € UK The proof of Theorem 3.1
shows that we may assume, without loss of generality, that u and A are of
class W%?. By Proposition 4.6, Dy, a is a Fredholm operator and hence it
suffices to prove that D, 4 x has a dense range. Let 1/p+ 1/¢ = 1 and
assume that the triple

(n,¢,%) € LU, AY T*S @ B,) x LS, gp) x LS, ap)

is L? orthogonal to the image of Du,a,n- Then, in particular, the triple
(n,¢,v) is L2-orthogonal to the image of D, 4. Since u and A are of class
WP and H is of class C* it follows from elliptic regularity that 1, ¢, and
are of class W*P (and hence of class C*~1) and

(31) na(n,¢,9) = 0.



Moreover,
(32) / (n, X g (u)) dvoly =0
b))

for every H € H*. Since u is irreducible, there exists a py € P such that
(33) Gu(po) = {1}, im Lu(po) N JLu(pO) = {0}.

We prove that the linear map 7, : Tp, P — Tyy(,) M is equal to zero. Suppose
otherwise that 7,, # 0 and choose vy € Tp, P such that ny,(vo) # 0. Since
the linear map 1y, : Ty, P — Tyypy)M vanishes on pg - g we have vy & po - g.
Denote

xo = u(po), 20 := 7(po), Co := dm(po)vo # 0,

and choose vy € T, P such that

¢ = dm(po)v1 = —JIx(o, Mpo (V1) = J (20, 20)Mp, (v0)-

The last identity follows from the fact that n is a (0, 1)-form. By (33), np, (vo)
and 7, (v1) cannot both lie in the image of the map Ly, : g — Ty M. Let
us assume, without loss of generality, that

Mo (vl) ¢ im L-’UO‘

Since G, = {1} there exists a G-invariant neighbourhood Uy C M of zg
such that G, = {1} for every = € Up. Since G, = {1} for every z € Up
there exists a smooth G-invariant function Hy : M — R, supported in U,
such that R

dHo(0)1py (v1) > 0.

Hence
(X gy (u(p0)). 7o (20)) = (X, (20). 7 (20, 0o (v0)
= w(X g, (20),Mpy (v1))
= dﬁo(afo)npo(vl)
> 0.

Now let ( : ¥ — T% be a vector field such that ((z9) = (9. Choose a
neighbourhood Vj of zg such that, for every p € P and every v € T, P,

m(p) € Vo, dm(pv=((r(p)) = (Xg (u)),np(v)) >0



Now choose a cutoff function 5 : ¥ — [0, 1] which is supported in Vj and
satisfies 3(29) = 1. Define H € H by the conditions

He(,) = B(z)Ho, Hype() =0

Then (n, X ;(u)) > 0 at the point zg and (n, X ;(u)) > 0 everywhere. Hence

/ (0, X ; (w)) dvoly; > 0
b
in contradiction to (32). Thus we have proved that, for every p € P,

Moreover, by (31) and Proposition 4.8, we have that ¢ = 0. Since ker L,,(,) =
0 whenever G,y = {1}, it follows from (24) and (32) that

Gupy =1{1} = (p) =

Hence n and v vanish simultaneously on some open subset of P. Since
D 4(n,0,4) = 0 it follows by unique continuation for first order elliptic
opérators that n =0 and ¢ = 0.

Thus we have proved that the operator D, 4y has a dense range for
every (u, A, H) € Utk , as claimed. Since D, 4 is Fredholm, the operator
Dy, 4, has a right inverse. Hence, by the implicit function theorem, ULk
is a separable Banach manifold of class C*~1. The projection

7I.Z,C,K . uZ,c,K N HZ

is a Fredholm map of index (n — dim G)x(Z) + 2(c{(T'M), B). Hence, for
14 sufﬁmently large, it follows from the Sard-Smale theorem, that the set
HESK (7, J) € HE of regular values of 74©K is dense in H’. Moreover, the
moduli space

MUK (HY = {[u,A] | ([u, A], H) € ufvc”(}

is compact for every H. Hence the set ’erfgl (7,J) is open and dense in HE.

Hence the set ’Hreg (r,J) = Hféfg’K (r,J)NH is dense in 7% and hence is also
dense in H. That it is open follows again from compactness. Hence the set

c, K
reg T? m Hreg



is a countable intersection of open and dense subsets of . This proves (i).

We sketch the proof of (ii). Assume B is not a torsion class. Then, by
Lemma 2.3, every solution (u, A) of (3) with H = 0 representing the class B
satisfies dqu # 0 and so, by Lemma 2.5, dqu # 0 almost everywhere. Hence,
for every irreducible solution (u, A) of (3) with H = 0 that represents the
class B, there exists a point py € P such that

Gu(po) = {]1}, imLu(po) N im JLu(po) = {0}, dA(u(po)) 75 0.

With this understood the proof of assertion (ii) is almost word by word the
same as that of (i) and will be omitted. O

4.4. Cobordisms.

Let (7a,Jx) € Z(g) x J and Hy € Hyeg(Ta, Jy) for A = 0,1 . For every
smooth homotopy

{TAa‘])\aHx\}OS)\Sl S Z(g) X j X H

from (79, Jo, Ho) to (71, J1, H1) we consider the space

Wg s = Wgs({7a, Ja, Hata) == U {A}UME s(7a; Jn, Hy)-
0<x<1

Definition 4.11. A homotopy {7, Jx, Hx}» is called regular (for the tu-
ple (B,X, M,w,pn)) if Hy € Hreg(7a,Jy) for A = 0,1 and, for every triple
(A, [u, A]) € Wi s, we have

. R
Euw =1mDy 4 + span~ () y. 4,

where
VA(éJAyH)\,A (u))
(34) Oyu,A = 0
—6,\@\

Here the expression Vi (0, u,,4(u)) is independent of the (Hermitian)
connection used to define it. If {7y, Jy, Hx}, is a regular homotopy then the
moduli space WE,E({T)\, Jx, Hy}a) is a smooth finite dimensional manifold
with boundary

6WE,E({T,\, J,\,H)\})\) = {O} X ME,E("'-O; Jo,Ho) U {1} X M*B,E(Tl; Jl,Hl).



Let HI%U(Hy, H;) denote the space of smooth paths [0,1] — H : A — H)

with fixed endpoints Hy and H;. Given a homotopy {7, Jx}a from (70, Jo)
to (71, J1) denote by Hﬁ’g”(Ho,Hl; {7y, Inha) € HIOU(Hy, Hy) the set of all
smooth homotopies { Hy}» from Hy to H; such that the triple {7y, Jx, Hx}a
is regular. The next theorem asserts the set of regular homotopies is of the

second category in the sense of Baire.

Theorem 4.12. Assume G =T is a torus. Let {7y, Jx}o<r<1 be a smooth
homotopy in C* (3, Z(g)) x J and let Hy € Hreg(Ta, Jx) for A=0,1. Then

the set HL%’;](HO, Hy; {7x, Ja}r) is a countable intersection of open and dense
subsets of HIOU(Hy, Hy).

Proof. The proof is similar to that of Theorem 4.10 and we only sketch the
main points. Denote by 71 the set of all C! homotopies from Hy to Hj.
Fix a constant ¢ > 0 and a compact set K C M and consider the universal
moduli space of all gauge equivalence classes of quadruples

(A u, A, {Hy 1Y) €[0,1] x WEP(P, M) x AYP(P) x H

such that (u, A) € /\A/l/‘g s(7a; Jx, Hy) and u and A satisfy (28-29). The proof
of Theorem 4.10 shows that this space is a separable Banach manifold. The
projection

(A [u, Al {Hx 1) = {Ha}a

is then a Fredholm map and a smooth homotopy {H)}, is a regular value
of this projection for every triple (K, c,¥¢) if and only if

{Hy}y € HIG (Ho, Hy; {my, Ja 1))
Hence the result follows from the Sard-Smale theorem. O

4.5. Orientation.

In this subsection we shall prove that the moduli spaces M}‘;’z(M yw, w; J, H)
carry natural orientations. Consider the determinant line bundle

det(D) — B=C&(P,M) x A(P)
whose fibre over (u, A) is the 1-dimensional real vector space

det(Dy,4) := A" (ker Dy 4) @ A" (ker Dy, 4)



(See, for example, [31, Appendix A] for a detailed exposition.) Here
Du,A = Du,A : T(U’A)B — 5u

denotes the Fredholm operator given by equation (23). The orientation of
the moduli spaces is an immediate consequence of the following proposition.
The proof is reminiscent of the arguments in [23, 31].

Proposition 4.13. The determinant line bundle det(D) — B admits a nat-
ural G-invariant orientation.

Proof. The tangent space
T(u,A)B = COO(E,EU) 2 Ql(za gP)

admits a natural complex structure given by the complex structure J, on
E, and the Hodge *-operator on Q!'(%). The fibre

Eu= QY (5, Ey) @ Q°(S, gp) & Q°(S, ap)

also admits a complex structure given by the complex structure J, on E,
and by the map (¢,v) — (=, ¢) on Q°(Z, gp) ®NQ%(T,gp). The only term
in the formula (23) for the operator D, 4 that is not necessarily complex
linear, is the operator

Dy,a: C%(S, E,) — Q%N (S, Ey).

However, by Remark 4.5, the complex anti-linear part of D, 4 is of zeroth
order and is therefore compact. Hence D, 4 is a compact perturbation of a
complex linear operator and hence admits a natural orientation. It follows
that the real line bundle det(D) — B admits a natural orientation (see [23]).

Now let g € G(P) and choose a pair (u, A) € B. Linearizing the action
of the gauge group gives rise to isomorphisms

(35) ker Dy 4 —> ker Dy-1,, gea : (§, ) (g7, 97 ag),

ker D} 4 = ker D} v, a0t (0,6,9) = (97 'n, 97" b9, 97 ")
We prove that the resulting isomorphism of determinant lines is orientation
preserving with respect to the natural orientations introduced above. To

see this, we assume first that H = 0 and J(z,-) is integrable near u(p) for
every z € ¥ and every p € P with 7(p) = 2. Then the operators D, 4 and



Dy-1,,4+4 are both complex linear, and hence the orientations of det(D,, )
and det(Dy-1, 4+ 4) both agree with the orientations induced by the complex
structures. Hence, in this case, the result follows from the fact that the
maps (35) are complex linear. In general, the result follows from the fact
that the spaces ‘H and J are both connected and hence the isomorphism
det(Dy,4) — det(Dy-1, 4+ ) is orientation preserving for some pair (H, J) if
and only if it is orientation preserving for every pair (H,.J). O
Proposition 4.14. Let {H)}) € HL%’gl](HO, Hy;{7mx,Ix}r)- Then the moduli
space WEE({T)\, JIx, Hx}a is an oriented cobordism from M*B’E(To; Jo, Hp) to
M*B,E(Tl; J1, Hl).

Proof. The tangent space of W s, at a triple (A, u, A) is the kernel of the
operator
D,\,y,,A R x T(U’A)B — &y

given by A A A
Dyu,a(M € a) := Dy a(€, @) + Ay u,a

for A\ € R and (§, ) € T(y,4)B, where (544 € &, is given by (34). Since
Diu,a is surjective, the orientation of the kernel is determined by the orien-
tation of the determinant line. Thus we must examine the determinant line
bundle

det(D) — [0,1] x B

whose fibre over a triple (A, u, A) € [0,1] x B is det(Dj y,4). The homotopy
t + () u,4 yields a natural isomorphism

det(D) = priT[0,1] @ prs det(D) = pr} det(D),

where pry : [0,1] X B — [0,1] and prs : [0, 1] x B — B denote the obvious pro-
jections. This is because the tangent space T3[0, 1] is canonically isomorphic
to R and, for ¢t = 0, we have

ker D 2 R x ker D, cokerD 2 cokerD.

Hence det(D) inherits the orientation of det(D) and, since the orientation
of det(D) is invariant under the action of G so is the orientation of det(D).
It follows that the manifold Wy y, admits a natural orientation.

Now choose a triple (X, [u, A]) € Wi . such that Dy 4 is onto. Then a
positively oriented basis of T(y [y, 4)) W} y, has the form

(1,60,050)’ (Oagl’al% ey (Oagkaak)a



where the vectors (&1, 1), ..., (&, ax) form a positively oriented basis of the
kernel of D, 4. With the standard convention for orienting the boundary
(the outward unit normal vector comes first) the result follows. O

5. Integer invariants.

Let (M, w, u) be a symplectic manifold of (real) dimension 2n equipped with
a Hamiltonian action by a compact Lie group G which is generated by a mo-
ment map p : M — g. Suppose that the triple (M, w, ) satisfies (H1 — 3).
We shall define rational invariants of the triple (M, w, u) for central regular
values of the moment map under these hypotheses. Conditions (H1 — 2)
are needed to prove that the moduli spaces are compact. It should be pos-
sible to remove condition (H3), however, the construction of the invariants
without this condition will probably require considerably more analysis than
has been carried out in the present paper. This would include a full ver-
sion of compactness for the solutions of (3) without loss of energy and with
preservation of the homotopy class in the limit, as well as the construction
of virtual moduli cycles analogous to the definition of the Gromov-Witten
invariants for general symplectic manifolds as in [13, 20, 22, 29]. On the
other hand, there are many interesting examples that satisfy (H1— 3), such
as linear actions on complex vector spaces. (In this case (H1) implies (H2),
and (H3) is obvious.) In the present section we define integer invariants
under the additional assumption that G acts freely on p~!(7) for some cen-
tral element 7 € Z(g). This hypothesis will in Section 7 be replaced by the
assumption that p has a central regular value.

5.1. Smooth moduli spaces.

Fix an equivariant homology class B € Hy(Mg;Z) and a compact Riemann
surface (X, Jy,dvoly). Recall from Section 4 the definition of the moduli
space .
M(T; Ja H) = MB,E(T; Ja H) = MB,E(T; Ja H)/g(P)
of gauge equivalence classes of solutions of (3) for a (family of) almost com-
plex structures J € J and a Hamiltonian perturbation H € H. Consider
the set
Zo(g) :== {7 € Z(g) | G acts freely on p ()} .

By (H1), this set is open and we assume here that it is nonempty. Choose
a smooth function § : Zy(g) — (0, 00) such that

(36) |uw(z) =7 <d8(r) = G,={1}, imL,NimJ(z,z)L, = {0}



for all (z,z) € ¥ x M and 7 € Zy(g). If

(w7 —pl,B) +[92%]|

(37) Vol(X)

< o(7)

then the moduli space Mp s (7;J, H) consists entirely of irreducible solu-
tions (Lemma 4.2) and hence is a smooth manifold for a generic Hamiltonian
function H that satisfies (37) (Theorem 4.10). Moreover, Mp x(7;J, H) is
compact whenever H has compact support and J agrees with the almost
complex structure Jy of hypothesis (H2) ouside of some compact subset of
M (Corollary 3.5). Let us denote by Joy the space of almost complex struc-
tures that agree with Jy outside of a compact set, by H(7;0) the space of
compactly supported Hamiltonian perturbations that satisfy (37), and, for
T € Zy(g) and J € Jo, denote by

,Hreg(Ta J; 5) = Hreg(Ta J) N ,H(TS 5)
the subset of regular perturbations in the sense of Definition 4.9. Let
B*C B=C&(P,M) x A(P)

denote the subset of irreducible pairs (u, A) € B (see Definition 4.1). By
the local slice theorem (see Theorem B.1) the quotient space B*/G is an
infinite dimensional Fréchet manifold (determined by u, P, and ). The next
theorem summarizes our results about the moduli spaces Mp x(7;J, H).

Theorem 5.1. Assume (H1 — 3) and let 7 € Zy(g). Then the following
holds.

(i) For every pair (7,J) € Zo(g) X Jo the set Hyreg(T, J;0) is open and dense
in H(T;9).

(ii) For every pair (1,J) € Zp(g) x Jo and every H € Hyeg(T,J;0) the
moduli space Mpx(7;J, H) is a compact smooth naturally oriented
submanifold of B*/G of dimension

dim Mp x(r; J, H) = 2m := (n — dim G)x(Z) + 2(c (T M), B).
(iii) For A =0,1 let (T,\,J)\) S Z()(g) X Jo and Hy € 'Hreg(T,\,J)\;(S). Sup-
pose that 1o and 11 belong to the same component of Zy(g). Then the

moduli spaces M(7o; Jo, Hy) and M(71;J1, H1) are oriented cobordant
in B*/G, i.e. there exists a compact oriented submanifold

W cl0,1] x B*/G



of dimension 2m + 1 such that

oW = {1} X M(Tl;Jl,Hl) — {0} X M(T();J(),H()).

Proof. By Corollary 3.5, the moduli space M(7;J, H) is a compact subset
of B/G and, by Lemma 4.2, it consists entirely of irreducible solutions of (3)
for every H € H(7;0). Hence the set H,eg(7,J;6) is open in H(7;d). By
Theorem 4.10, it is dense. This proves (i).

That M*(7; J, H) is a smooth submanifold of B*/G of dimension 2m for
H € Hyeg(7,J;0) follows from the definitions, from Proposition 4.6, and from
the implicit function theorem. That M(7; J, H) = M*(r; J, H) follows from
Lemma 4.2, and that M(7; J, H) is orientable follows from Proposition 4.13.
This proves (ii). Assertion (iii) follows from Theorem 4.12, Corollary 3.5,
and Proposition 4.14. O

5.2. Definition of the invariants.

The evaluation map. The group G x G acts freely on the product B* x P
by
(g:h)"(u, A,p) := (g 'u, 9" A, pg(p) " 'h)
for g € G, h € G, (u,A) € B*, and p € P. Hence there is a principal
G-bundle
P:=(B*x P)/G— B*/G x X.

The classifying map B*/G x ¥ — BG of this bundle lifts to a map 6 :
B* x P — EG that is G-invariant and G-equivariant:
0(9~ " u, 9" A, pg(p)~'h) = h™'0(u, A, p).

Likewise, the evaluation map B* x P — M : (u, A,p) — u(p) is G-invariant
and G-equivariant. These two maps together give rise to a map

eVG:B*/gXE—>MG :ZMXGEG
given by
eva([u, 4,p]) :== [u(p), 8(u, A, p)].

The composition of evg with the projection pps : Mg — BG is the classifying
map of P:

B*/G x ¥ %> Mg

S

BG



If M is contractible, then the projection pp; : Mg — BG is a homotopy
equivalence.

The projection. Now fix a point py € P, denote by Go :={g € G | g(po) =
id} the based gauge group, and consider the space

.Ag =A Xg EG,

where G acts by g*(A4,e) := (g*A4, g(po) 'e). This space can be identified
with A/Gy xg EG. Since G acts freely on B* there is a principal G-bundle

Po :=B*/Go — B*/G.

The classifying map of this bundle lifts to a G-equivariant map 6y : B* — EG,
which is equal to the restriction of 6 to B* x {pg}. It satisfies

80(g9 'u. g*A) = g(po) 'b0(u, A)

and gives rise to a projection
wa:BY/G — Ag

given by
mA([u, 4]) := [4,00(u, A)].

The composition of 74 with the projection p4 : Ag — BG is the classifying
map of Py:

B*/G —As Ag

S

BG

The invariants. We define invariants of the sixtuple (M,w,u, 7, B,X)
with 7 € Zy(g) by integrating suitable cohomology classes over the moduli
space Mp x(7;J, H). Such cohomology classes can be obtained by pulling
back equivariant cohomology classes on M under the evaluation map evg
and equivariant cohomology classes on A/Gy under the projection 7 4. Let
a € H*(Ag;Z), B1,...,0k € H*(Mg;Z), and ~1,...,v € Hi(X;Z) such
that

k k
deg(a) + Y deg(B;) — > _ deg(y;) = 2m,

i=1 =1



and define
M,,LL—T
(DB,E (a;ﬁlv"‘aﬁk;fyl,...,’yk)

- / T VB — - < eviBi/ .
Mp s(1;J,H)

Here the map HY(B*/G x ¥;7Z) x H;(X;Z) — HI"{(B*/G;Z) : (B,v) — B/y
denotes the slant product, J € Jy, and H € Hyeg(T, J;9), where the function
0 : Zo(g) — (0, 00) satisfies (36).

Theorem 5.2. Assume (H1 — 3) and let 7 € Zy(g) (i.e. G acts freely
on p~1(1)). The invariant @gng(a;ﬂi;%) is independent of the almost
complez structure J and the Hamiltonian perturbation H used to define it. It
depends only on the triple (M, w, 1), on the (co)homology classes B, o, i, i,

and on the component of T in Zy(g).

Proof. The space B*/G depends on M, the G-action, ¥, and P. The invariant
is defined by pairing an integral cohomology class on B*/G, determined
by o, fi,7i, with the homology class [Mpx(7;J,H)| € H.(B*/G;7Z). By
Theorem 5.1, the latter is independent of .J and H and depends only on the
component of 7 in Zy(g). That it is also independent of the metric on ¥
follows by a similar cobordism argument. O

Remark 5.3. The hypothesis that the Hamiltonian is small (compared to
the volume of ¥) is quite restrictive. If we allow for more general (abstract)
perturbations of the symplectic vortex equations, then the condition that
all solutions of (3) are irreducible can be replaced by the weaker condition
that the gauge group acts freely on the space of solutions of (3). In the
case of linear torus actions this condition is satisfied for every Hamiltonian
perturbation whenever G acts freely on p~!(79), where 70 € g is defined
by (20) (see Remark 4.3).

6. G-moduli problems and the Euler class.

In this section we review the results of [7] about the Euler class of G-moduli
problems. They play a crucial role in the definition of the rational invariants
in the presence of finite isotropy.

Definition 6.1. Let G be a compact oriented Lie group. A G-moduli
problem is a triple (B,£,S) with the following properties.



e 3 is a Hilbert manifold equipped with a smooth G-action.

e £ is a Hilbert space bundle over B, also equipped with a smooth G-action,
such that G acts by isometries on the fibres of £ and the projection
& — B is G-equivariant.

e §: B — £ is a smooth G-equivariant Fredholm section of constant Fred-
holm index such that the determinant bundle det(S) — B is oriented,
G acts by orientation preserving isomorphisms on the determinant
bundle, and the zero set

M :={z € B|S(z) =0}
is compact.

A finite dimensional G-moduli problem (B, E,S) is called oriented if B
and F are oriented and G acts on B and E by orientation preserving diffeo-
morphisms. A G-moduli problem (B,£,S) is called regular if the isotropy
subgroup G, := {g € G| g*x = =z} is finite for every z € M.

G-moduli problems form a category as follows.

Definition 6.2. Let (B,&,S8), (B',£',S’) be G-moduli problems. A mor-
phism from (B, &, S) to (B, &', S8') is a pair (¢, ¥) with the following proper-
ties. ¢ : By — B’ is a smooth G-equivariant embedding of a neighbourhood
By C Bof M into B, ¥ : & := &|p, — &' is a smooth injective bundle
homomorphism and a lift of 4, and the sections S and &’ satisfy

Soyp=ToS, M =yp(M).

Moreover, the linear operators dyv : T,B — Tw(x)Bl and U, : &, — 812(1,)
induce isomorphisms

(38) dz - ker D, — ker Dip(x), T, : cokerD, — COker,Dip(gc)a

for z € M, and the resulting isomorphism from det(D) to det(D’) is orien-
tation preserving.

Let (B,£,8) and (B',&',S8’') be G-moduli problems and suppose that
there exists a morphism from (B,&,S) to (B',&',S8’). Then the indices of
S and 8’ agree. Moreover, (B,€&,S) is regular if and only if (B,£',S8') is
regular.



Definition 6.3. Two regular G-moduli problems (B,&;,S;), ¢ = 0,1, (over
the same base) are called homotopic if there exists a G-equivariant Hilbert
space bundle £ — [0, 1] x B and a G-equivariant smooth section S : [0, 1] X
B — & such that & = &lfy«p and S; = Sl for i = 0,1, the triple
(B, &, 8t), defined by & := &[5 and S; = S|y« is a regular G-moduli
problem for every ¢ € [0, 1], and the set M := {(¢,z) € [0,1] x B|Si(z) = 0}
is compact.

The following theorem in proved in [7]. It states the properties of the
Euler class. We denote by H{(B) the equivariant cohomology with real
coeflicients.

Theorem 6.4. There exists a functor, called the Euler class, which as-
signs to each compact oriented Lie group G and each regular G-moduli prob-
lem (B,€,S) a homomorphism x2S : H;(B) — R and satisfies the follow-
mg.

(Functoriality) If (v, ) is a morphism from (B,E,S) to (B',£',S") then
XBES (*a) = XB €S (a) for every a € HE(B').

(Thom class) If (B,E,S) is a finite dimensional oriented regular G-
moduli problem and T € Q(E) is an equivariant Thom form supported
in an open neighbourhood U C E of the zero section such that U N E,
is convez for every x € B, U N7 1(K) has compact closure for every
compact set K C B, and S’l(U) has compact closure, then

XB’E’S(a) :/ aAS*r
B/G

for every closed form o € Q(B).

(Transversality) If S is transverse to the zero section then

X% () =/ a
M/G

for every a € HE(B), where M := S~ 1(0).

(Homotopy) If (B,&y,So) and (B,E1,S1) are regular homotopic G-moduli
problems then x5:€0:5 () = \BE151 () for every a € H(B).

(Subgroup) If (B,£,S) is a regular G-moduli problem and H C G is a
normal subgroup acting freely on B then

XB/H’S/H’S/H(O[) — XB,S,S(ﬂ_*a)



for every a € HE/H(B/H), where 7 : Hé/H(B/H) — HE(B) is the
homomorphism induced by the projection 7 : B — B/H.

(Rationality) If a € HE(B;Q) then x54°(a) € Q.

The Euler class is uniquely determined by the (Functoriality) and (Thom
class) azioms.

7. Rational invariants.

Our next goal is to drop the hypothesis that G acts freely on p~!(7) and
construct invariants for every central regular values 7 € Z(g) of the moment
map g : M — g. In this case we must deal with the presence of finite
isotropy subgroups. We assume as before that the hypotheses (H1 — 3) are
satisfied.

7.1. The setup.

Let us fix the following data:
e an equivariant homology class B € Ha(Mg;Z),

e a compact connected Riemann surface (X, Jy,dvoly) and a principal G-
bundle 7 : P — ¥ whose characteristic class is the image of B under
the homomorphism Ho(Mg;Z) — H2(BG;Z),

e a point pg € P and an integer k > 2.

We emphasize that the purpose of fixing the point pg is not in the definition
of the evaluation map, but to obtain an action of the gauge group on the
classifying space EG of G. Throughout we shall denote by G := GF+1.2(P)
the group of gauge transformations of P of class W**+12 and by

Go:=Gs " (P) = {g € G*T12(P) | g(po) = 1}

the (normal) subgroup of based gauge transformation. When the need arises
we shall think of the gauge group G as acting on EG by g*e := g(po) e. So
the subgroup Gy acts trivially on EG.

The above data give rise to a G-moduli problem (B, £, S) as follows. The
Hilbert manifold B is the quotient

_ WE(P,M;B) x A*(P)
- g(l)(?-‘rl,Q(P)

(39) B:

I



where W& (P, M; B) := {(u € W§*(P, M) | [u] = B}. The Hilbert manifold
B carries a G-action since the quotient group G/Gyp is isomorphic to G.
Consider the bundle £ — B with fibres

(40) Euyay = WIS AV TS @, w*TM/G) @ WF (3, gp).

The action of the gauge group identifies &, 4) With £gy-1, 4+ 4) for every
g € G. Thus & carries a G-action. More precisely, the fibre of £ over a point
[u, A] € B is the union of the spaces E(g-1u,g-a) over all g € Gp and any two
such spaces are identified by the action of the based gauge group. Then
the quotient group G = G /Gy acts on both £ and B and the projection is
G-equivariant. For every Hamiltonian perturbation H the left hand side of
equation (3) defines a G-equivariant section S : B — £ given by

(41) S([u, A]) := [05,,4(u), *Fa + p(u) — 7).
Lemma 7.1. Assume (H1 — 3) and let 7 € Z(g) be a regular value of .

(i) The triple (B,E,S) defined by (39), (40), and (41) is a G-moduli prob-
lem (see Section 6) of index

index(S) = (n — dim G)x(Z) + 2(c§ (T M), B) =: 2m.

(ii) There exists a constant & > 0 such that the G-moduli problem (B,E,S)
s reqular whenever

(42) (lw - 1 +7],B) + Q]| < 6VoI(S).

Proof. That £ is a Hilbert space bundle over a Hilbert manifold is a con-
sequence of the local slice theorem (for W*?2 connections). That S is a
Fredholm section follows from Proposition 4.6 and so does the index for-
mula. That the zero set of § is compact follows from Corollary 3.5. This
proves (i). Assertion (ii) follows from Lemma 4.2. O

We can now evaluate the Euler class x%¢°, defined in Section 6, on
equivariant cohomology classes of B. As in Section 5.2, such cohomology
classes can be obtained by pulling back equivariant cohomology classes on M
with the evaluation map and equivariant cohomology classes on A/Gy with
the projection onto the space of connections. More precisely, abbreviate



A = AP2(P) and G = G¥*12(P). Consider the action of the group G x G
on the space

X =AxPxEG

by
(9.h)*(A,p,€) == (g" A, pg(p) 'R, g(po) 'e).

Lemma 7.2. There exists a continuous function 8 : X — EG which is
G-invariant and G-equivariant. Thus

(43) 8(9" A, pg(p) 'k, g(po) 'e) = h'0(A, p,e)

for (A,p,e) € X, g € G, and h € G. Any two such maps 0y,0; : X — EG
are homotopic through maps satisfying (43). Moreover,  can be chosen such
that

0(A,po,e) = e.

Proof. The group G x G acts freely on X'. Hence the quotient X'/G is a prin-
cipal G-bundle over X' /(G x G). The classifying map of this bundle lifts to a
G-equivariant map from X' /G to EG. The composition of this map with the
projection X — X /G is the required map . The last two assertions follow
from the fact that any two classifying maps are equivariantly homotopic. O

Note that we can identify the space B xg EG with the quotient of the
space Wé’Q(P, M; B) x A*2(P) x EG by G = G¥*1.2(P), where the action
of the gauge group is given by g*(u, 4,e) := (g7 u, g* 4, g(po) 'e). Hence
there is an evaluation map

evg : (B xg EG) x ¥ - M xg EG,

defined by
eV(}([U, A, e]v 7T(p)) = [’LL(p), Q(A,p, e)]a

and a projection
WA:BXGEG—).AQ ::AXQEG

defined by
WA([U, A, 6]) = [A, 6].



7.2. Definition of the invariants.

Let
aGH*(Ag), 51,...,ﬁk EH*(Mg), Y1y sV EH*(E)
such that
k k
deg(er) + > _ deg(B:) —  _ deg(vi) = 2m,
i=1 i=1
and define

M,p—
(I)B,g T(a;ﬁl’“'a/gk;fh,...,"yk)
= XB,E,S (71'_:"405 — evaﬁl/'yl NN eV*Gﬁk/’Yk) )

Here the map H((BxgEG) xX) x H;(X) — HI"{(BxgEG) : (8,7) — B/
denotes the slant product, the G-moduli problem (B, £, S) is defined by (39),
(40), and (41), where the Hamiltonian perturbation H satisfies (42), and the
Euler class x2S : H(B) — R is defined in Section 6.

Theorem 7.3. Assume (H1 — 3) and let 7 € Z(g) be a regular value of
w. The invariant @g’g_T(a;ﬂi;fyi) is independent of the almost complex
structure J, the Hamiltonian perturbation H, the point pg € P, and the
integer k used to define it. It depends only on (M,w, u), on the genus of X,
on the component of T in the (open) set of central reqular values of u, and

on the (co)homology classes B, a, B;, ;.-

Proof. The independence of k follows from the fact that a finite dimensional
reduction for & = 2 is also a finite dimensional reduction for every k£ > 2, and
that the classifying map 6%2 : X¥2 — EG can be defined as the restriction
of the classifying map 6%2 to the subspace X*? C X?2. The independence
of J, H, Jx, dvoly, and 7 follows from the (Homotopy) axiom for the Euler
class.

We prove the independence of the basepoint pg. Let p; € P and suppose
that H = 0 and that J is independent of the point z € ¥. Choose a dif-
feomorphism ¢ : ¥ — X that is isotopic to the identity and a G-equivariant
lift ¢ : P — P such that ¢¥(p1) = po. Then the G-moduli problem with
po, Jx, and dvoly, replaced by p1 = ¥~ 1(pg), ¢*Jx, and ¢*dvoly, respec-
tively, is diffeomorphic to the original one. The diffeomorphism is given by
[u, A] — [u o 1,1p*A]. Hence the invariants are the same. O



Remark 7.4. We emphasize again that the condition (42) on the Hamilto-
nian perturbation is quite restrictive and that much more general regularity
criteria are available in the abelian case. For example, if G is abelian and
acts linearly on M = C" and the element 7y € g, defined by (20), is a reg-
ular value of u then, for every Hamiltonian perturbation and every almost
complex structure, the gauge group acts on the space of solutions of (3) with
finite isotropy (see Remarks 4.3). So in this case the smallness condition (42)
on the Hamiltonian can be dropped. Such more general criteria can also be
obtained in the nonabelian case.

Theorem 7.5. Assume (H1-3) and let T € Z(g) such that G acts freely on
p~ (7). Then the invariant @g”g_T(a;ﬁi;'yi) defined in this section agrees
with the one defined in Section 5.2.

Proof. By Theorem 5.1, there exists a Hamiltonian perturbation H that
satisfies (42) and is regular in the sense of Definition 4.9. For such a per-
turbation the section S : B — &, defined by (41), is transverse to the zero
section. Hence the result follows from the (Transversality) axiom for the
Euler class. g

7.3. Relations.

There are two kinds of relations between the invariants defined in Section 7.2,
namely those arising from relations between the slant product and the cup
product and others arising from relations between certain universal bundles
in gauge theory.

Proposition 7.6. Let . : ¥ — 3 x X denote the inclusion of the diagonal
and suppose that 8,5', 5" € H*(Mg;Z) and v,~.,~! € H.(5;Z) satisfy

m
B=B —pB"  Lr=) 1o

=1

Then

Mp—

(I)B,Zl; T(a;ﬂ’ﬂla e aﬂk;’Y?'Yl, Ce ,’yk)

m

! 1Y = M p—

= Z(fl)deg(’n)deg(ﬂ /i )(I)B’g T(OG,B,,,B",,BL N aIBkS%{a%{Ile; )
=1



In particular, if v; = [pt] for every i, then

M,p— M.u—
¢B”£ T(a;ﬂla'“,ﬂk;pta“'apt) = QB:E!)L T(O‘;ﬂl ~ V,Bk,pt)

Proof. This follows from the formula

for o/, € H*(3;7). O
Let us denote by
04:Ag x ¥ — BG

the map
0.4([A, €], m(p)) := [6(A, p, €)],

where 6 is as in Lemma 7.2. This is a classifying map for the bundle
Pa:=(Ax PxEG)/G— Ag x &,

where the gauge group G acts by g*(4,p,e) := (9*A4,pg9(p)~, g(po)le).
Recall that pys : Mg — BG denotes the projection.

Proposition 7.7. For every c € H*(BG;Z) and every v € H.(2;Z),

M, pu—
Byt (@ P C By s BV Vs W)

M,p—
= (I)B,g T(a ~ (016/7);ﬂ1’ tee aﬂk; RATERE a’Yk)
Proof. By definition of the maps, there is a commuting diagram

(BxgEG) x © % M xq EG .

waidl tpM

Ag x 2 BG

A
Hence, for every class ¢ € H*(BG;Z) and every v € H.(X;Z), we have
evgpme/y = ((ma x id)*05e) /v = w4 (04c/ 7).

This proves the proposition. O



Let us now consider the abelian case G = T. Then the constant gauge
transformations act trivially on A. Hence there is a principal bundle

Pajg:=(AxP)/Go— A/G x %,
where Gg is the based gauge group. Let us denote by
04/ A/G x X — BG.
It lifts to a map 6y : A x P — EG that satisfies
80(9" A, pg(p) ") = 9(po) " 60(4, p)-

Consider the homomorphism y 4,5 : H4(BG; Z) x H;(X;Z) — HY™*(A/G; Z)
defined by
,uA/g(c, v) = 9:‘4/gc/fy € H*(A/G; 7).

Let m4,g : Ag — A/G denote the obvious projection.

Proposition 7.8. Assume the abelian case G = T. Then, for every c €
H*(BG;Z) and every v € H,(X;Z) such that

deg(v) > 0,
we have
M —T *
q)B,’Xl]L (a;pMCth“'7ﬁk;7a71)-"17k)
M, —T *
=0p% (o — Tghasg (e V)i By s Bri Vs - Ye)-

Proof. In the abelian case the projection
Ag — A/G x BG

is a homeomorphism. We define the tensor product of two principal T-
bundles 7y : Py — X and 7wy : P, — X as the quotient

P1®@ Py :={(p1,p2) € P x P2|mi(p1) = ma(p2)} /T
by the diagonal action. With this notation
Pa=(Pajg xBG) @ (A/G x X xEG) — A/G x X x BG.

An explicit bundle isomorphism is [A,p,e] — [([4,plo,[e]), ([4], [p],e)],
where [A,plo € Pgig = (A x P)/Gy denotes the equivalence class under



the action of Gp, and [A], respectively [p] and [e], denote the equivalence
classes under the action of G, respectively G. Hence

deg(y) >0 =5 Oyc/y = 7rj‘4/g(9j‘4/gc/7) = ﬂl/g#A/g(C, v)

and hence the result follows from Proposition 7.7. O

The classes p4 /g(c, ~) are easy to compute and they generate the coho-
mology of A/G = A/Gy. Let A := exp~!(1) C t and denote by W C t the
dual lattice (of elements whose periods on A are integer multiples of 27).
Then every w € W determines a homomorphism

pw: T — S,
given by pyw(exp(7)) := exp(i(w, 7)) and hence complex line bundles
LY := EG x,, C — BG, LY := P x,,C— 3.
The first Chern class of £V will be denoted by
cw = c1(L%) € H*(BG; 2).

We describe the map v — py /g(cw,'y) explicitly. Every w € W and every
loop 7 : S' — ¥ determine a real valued 1-form on A given by

(44) TA.Azﬂl(E,t)—>R:a|—>—%/<w,a).
g

This 1-form is closed and G-invariant, so it descends to a closed 1-form
i (7) € QY(A/G). Similarly, every 2-chain ¢ on ¥ induces a function fi(o)
on A/G defined by

() ((4) = =5 [ (. F)

By Stokes’ Theorem, djiw(0) = fiw(00) and hence there are induced homo-
morphisms fiy, : H1(2;Z) — HY(A/G;Z) and iy, : Ho(%;Z) — H(A/G; 7).
The following lemma asserts that jiw(v) = pa/g(cw,7)-

Lemma 7.9. For every w € W the following holds.

(i) pasglew, [pt]) = 0 and pasg(ew, [E]) = (er(LY), [E]) € H(A/G; Z).



(ii) For v € H1(3;Z) the class pi4/g(cw,v) € H'(A/G;Z) is represented
by the closed 1-form on A/G induced by (44). The Poincaré dual of
,uA/g(cW,fy) is represented by the cycle

Gt = {141 € 4/ | [ w4~ a0) =of
with the orientation determined by —w.
(iii) The map
W@ Hi(S;7) = H' (A/GZ) = (w,7) = najg(ew, )
induces an isomorphism from the exterior algebra on the free Z-module
W ® H(%;Z) to H*(A/G;Z).
Proof. The bundle P4, = (A x P)/Gy — A/G x ¥ carries a universal
connection induced by the Gg-invariant 1-form A € Q'(A x P,t),
Aap) (a,v) = Ap(v) + (d*d)fld*a(p).
Here d*d denotes the isomorphism
d*d: Q%(Z,t) — im(d* : QT 1) — QU(T,1)).
The curvature F of A is given by
(Fa) g, (@0 0), (B,w)) = Fa(v, w) + a(w) - B (v)
for v,w € T, and o, 8 € QY(%,iR). Let [y] € Hi(X;Z) and [4] €
H,(A/G;Z) be represented by loops v : R/Z — ¥ and A : R — A such

that A(t+1) = g*A(¢) for some g € G. Since the closed 2-form —(w, Fa)/27
represents the cohomology class c1 (8% /gﬁw) = 0% /GCws We have

1 1
oo 14D = 52 [ [t Fa(A). 30 dsat

_ _/01 <% /7<W,A(s))) ds

= (iw([7]), [A])-



This proves (ii). Assertion (i) is proved similarly. To prove (iii) let m :=
dim 7" and pick integer bases w1, ..., w,, of W and y1,...,7v24 of Hi(%;Z).
Now let a;; € Q1(Z,t) be a harmonic 1-form such that

1
o /%<ijaw ) = 0ii16j;
fori,4/ =1,...,2¢9 and 7,7/ = 1,...,m. Then the map
T2 = R*™ 729 — AJG : [t] = Ao+ D tijau;
i,j
is a homotopy equivalence and identifies the cohomology class of the 1-form
dt;; with MA/g(cwj,fyi). O

8. Relative periodic orbits.

Let G be a compact Lie group and (M, w, 1) be a symplectic manifold with
a Hamiltonian G-action. Let R x M — R : (t,z) — Hy(z) = Hy11(x) be
a G-invariant Hamiltonian. A relative periodic orbit is a pair (z, go),
where gg € G and xp : R — M is a smooth function such that

(45) do(t) + Xn (20(t) =0, w0t +1) = gozo(t):

It follows from the G-invariance of H; that the function t — p(zo(t)) is
constant for every relative periodic orbit (zg, gg). The group G acts on the
space of relative periodic orbits by

9* (%0, 90) := (¢ w0, 9 g0g)

If go belongs to the identity component of G then there exists a smooth
function g : R — G such that

(46) g9(t+1) = gog(t)-
Definez: R— M and £ : R — g by
2(t) = g(t)"two(t),  E(t) = g() T g(t).
Then
(47) () + Xy (2(t)) + Xp, (2(2) =0, z(t+1) =z(t), &£(E+1) =£(1).

A solution (z,€) of (47) is called contractible if the loop z : R/Z — M is
contractible. A solution (o, go) of (45) is called contractible if there exists
a smooth path g : R — G satisfying (46) such that the loop g~ 'z¢: R/Z —
M is contractible.



Remark 8.1. The loop group LG := C>®(R/Z,G) acts on the space of
solutions of (47) by

g (2,8 == (972,97 g+ 97 "¢g).

If M is compact then this action preserves the space of contractible loops.
The proof uses Floer homology (see for example [24, Chapter 10]).

Remark 8.2. If (z,£) is a solution of (47) then

%/‘(‘”(t)) + [(t), w(z(t))] = 0.

In particular, if p(z(t)) € Z(g) for some t € R then the function ¢ — u(x(t))
is constant.

Theorem 8.3. Assume (H1 — 3) and suppose that T € Z(g) is a regular
value of p such that u=1(7) # 0. Then, for every time dependent G-invariant
Hamiltonian Hy = Hyy1 : M — R, there exists a contractible relative peri-
odic orbit in u (7).

Corollary 8.4 (Gromov). Let (M,w) be a compact symplectic manifold
such that ([w], ma(M)) = 0. Then every time-dependent 1-periodic Hamilto-
nian system on M has a contractible periodic orbit.

Proof. Theorem 8.3 with G = {1}. O

Corollary 8.5. Assume (H1—3) and suppose that G is abelian. Then, for
every time dependent G-invariant Hamiltonian Hy := Hyyq : M — R and
every T € g such that =1 (1) # 0, there exists a contractible relative periodic
orbit in u~ (7).

Proof. We may assume without loss of generality that G = T is a torus and
M is connected. Then there exists a subgroup H C G, called the principal
orbit type, such that H = G, for every x in an open dense subset of M (see
Audin [1]). Since H C G, for every z it follows that (du(z)v,n) = 0 for all
v € Ty M and all n € h := Lie(H). Since M is connected this shows that
the image of y is contained in an affine subspace go C g parallel to h. The
assertion about the principal orbit type now shows that u(M) is equal to
the closure of its interior relative to go. Hence, for every 7 € u(M), there



exists a sequence 7, € u(M) converging to 7 such that 7, is a regular value
of the composition pg : M — go of the moment map with the projection
onto go. Now apply Theorem 8.3 to the action of G/H on M to obtain, for
every v, a contractible relative periodic orbit (z,, g,) in u~1(7,). Every such
sequence has a convergent subsequence. O

Example 8.6. Consider a Hamiltonian action of U(2) on (M, w) which fac-
tors through the determinant U(2) — S'. Then the moment map has no
central regular values.

Conjecture 8.7. Assume (H1). Then, for every time dependent G-invari-
ant Hamiltonian H; := H; 1 : M — R and every 7 € g such that u~'(7) # 0,
there exists a contractible relative periodic orbit in p=1(7).

Example 8.8. Hypothesis (H1) cannot be removed in Conjecture 8.7. For
example, consider the case G = {1} and M = T? x R? with the Hamiltonian
function H(x,y) = a1y1 + a2y, where a1 and as are rationally independent.
Then there are no (relative) periodic orbits and the moment map is not
proper.

Remark 8.9. It should be possible to extend the techniques developed in
this paper to the case where (H3) is not satisfied, however, the moduli
spaces will then no longer be compact. Such an extension should give rise
to a proof of Conjecture 8.7 under hypotheses (H1) and (H2).

Remark 8.10. The proof of Theorem 8.3 shows that the result continues
to hold if hypothesis (H3) is replaced by the condition

! 1
(max Hy —min Hy)dt < -  min viw.
0 consi:;é’u:SQ—}M S2
dj(v)=0

Proof of Theorem 8.3. The proof is the analogue of Gromov’s argument,
with pseudoholomorphic curves replaced by the solutions of the perturbed
symplectic vortex equations.

Let P := S? x G be the trivial bundle and B := 0 € Hyo(M xg EG;Z).
We prove that

48 PME=T (o :/ «
) EE N T



for every a € QImM-2dmGpr o EG). To see this note that, by
Lemma 2.3, every solution (u, A) € C*°(S%, M) x Q(S2,g) of the unper-
turbed equation (1) over S? is horizontal. Since every flat G-connection
on the trivial bundle over S? is gauge equivalent to the zero connection, it
follows that every solution of (1) is gauge equivalent to a solution of the
form

u(z) = x, A=0.

For any such solution and any almost complex structure J € Jg(M,w) it
follows from Remark 4.5 (with H = 0) that the Cauchy-Riemann operator
Dy, 4 : C®(S%,u*TM) — QUY(S?,u*T M) is complex linear. Moreover, the
bundle v*TM — S? is a direct sum of complex line bundles of degree zero.
Hence it follows from the Riemann-Roch theorem that D, 4 is surjective.
Combining these observations with Proposition 4.7 we find that the operator
Dy, a, defined by (23), is surjective. Now consider the setup of Section 7 and
let (B,&,S) be the G-moduli problem defined by (39), (40), and (41). Let
(B, E, S) be the finite dimensional G-moduli problem defined by

B:=E:=p (1), S=0.

Since Dy 4 is surjective for every [u, A] € S71(0), the obvious inclusions
B — B and E — & define a morphism from (B, E, S) to (B,£,S) in the
sense of Definition 6.2. Hence (48) follows from the (Functoriality) and
(Transversality) axioms of the Euler class.

By Kirwan’s theorem [19], the homomorphism

HE(M) — Hg(p= (1))

is surjective for every 7 € Z(G). Since p~!(7) is nonempty and G acts
with finite isotropy, there exists a G-invariant horizontal volume form on
p~1(7). This implies that there exists a G-closed equivariant differential
form a € ngM_Q dmG(Af) such that

/ a#0.
pi(r)/G

Hence, by Lemma 7.1 and Theorem 7.3, there exists a constant § > 0 such
that, for every metric on S2?, every J € Ja(M,w), and every compactly
supported Hamiltonian perturbation H € Q'(S2, C& (M),

(49) Q5] < OVOl(S?) =  Mqg(r;J, H) #0.



For T > 0 choose a metric on $? = C U {cco} such that the map [T, T] x
R/Z — C: (s,t) = >3+ is an isometric embedding. Let py : [-T,T] —
[0,1] be a smooth cutoff function sucht that +pp(s) > 0 for s > 0 and
pr(s) =1 for |s| <T —1. Fix a compactly supported 1-periodic G-invariant
Hamiltonian function R/Z x M — R : (t,z) = Hy(z). On the cylinder
[—T,T] x R/Z consider the Hamiltonian perturbation Hr := pr(s)H:(z) dt

and extend it by zero to all of S2. The Hofer norm of the curvature of Hyp
is given by

1
195,11 = 2[1H], | H|| ::/ (max Hy — min Hy) dt.
0

Hence it follows from (49), that
Mos2(75.J, Hr) # 0

for T sufficiently large. This implies that for T' > Ty there exist functions
u=wuyp: [-T,T] xR/Z - M and & = &p, ¥ = Uy : [-T,T] x R/Z — ¢
such that

(50) Osu + Xg(u) + J (Gpu + Xu(u) + pr(s)Xn,(v)) =0,
0¥ — 0@+ [2,¥] + p(u) —7=0,

and

1 ,pT-1
(51) / / (190 + L 4+ X, () + a(w) — 712 dsdt < 2] H].
0 J-T+1

The inequality (51) follows from the energy identity in Proposition 2.2.
Choose st € [-T + 1,T — 1] such that

1
| (00 29+ X ) + ) = o) (o) < L
0 _
Gauge transforming the solution at s = sy we may assume, without loss of
generality, that

‘IJT(STat) = éTa |€T| S C,

where c is the diameter of G with respect to our biinvariant metric. Namely,
choose g : R/Z — G such that

Og(t) + ¥(st,t)g(t) =0,  ¢(0)=1.



Then write g(1)~! = exp(ér), where |é7| < ¢, and gauge transform uz and
U by the product g(t) exp(tér). Now (i.e. after gauge transforming) define
xr : R/Z — M by

xr(t) := ur(sr,t).

Then
1
Tlgr;o/O (‘i’T(t) + Lopér + X, (zr () [* + |u(zr(t)) - T|2> dt =0.

This shows that the L? norm of 47 is bounded and so zp is bounded and
equicontinuous. Hence, by the Arzela-Ascoli theorem, there exists a se-
quence T; — oo such that x7, converges uniformly, &7, converges weakly in
L%, and &7, converges in g. The limit (, &) is the required solution of (47).
Since xr is contractible for every T, so is x. This proves the theorem for
compactly supported Hamiltonian functions. The general case follows by
cutting off the Hamiltonian function outside of p=!(7). O

9. Weighted projective space.

Consider the symplectic manifold M = C" with the standard symplectic
form and the S'-action

Az =Nz, ..., Aney,),

where /1, ..., ¢, are positive integers. Then a moment map is given by
/L. n
(52) ,UE(:E) = _§2£u|xu|2'
v=

Suppose that ¥ has genus g and let P — ¥ be an S'-bundle of degree d.
Consider the complex line bundle

L:=Pxg C—%,
where S acts on P x C by
A* (pa C) = (p)‘a /\714)'

Then the symplectic vortex equations (1) with p = py given by (52) can be
written in the form

Ly, |?
(53) Oauy =0,  *iFq+ ) % =T,
v=1



where u,, is a section of L& for v =1,...,n and A € A(L) is a Hermitian
connection on L. Let us denote by My, the space of gauge equivalence

classes of solutions (u1,...,u,, A) of (53). The moduli space is nonempty
only if
S 2nd
T .
Vol(%)

Moreover, Mg 4 has virtual dimension

dim Mg, =2 (di:@,, —(n—1)(g— 1)) =:2m.

v=1

For d sufficiently large the dimension is positive. We write @SZ’” ¢

@%né” M7 for the invariant in the nontrivial chamber. Let ¢ € H2,(C*;7z) =
H?(BS';7Z) = 7 denote the positive generator.

Theorem 9.1. Assume

m:=Z(d€y—g+1)+g—120.

v=1

Then, for « =0, g =c™, and v = pt, the invariant is

n 9 n
@7 (0,¢™; pt) = (Z ey> [Te et
v=1 v=1

In the case ¢, =1 and d > 2g — 2 Theorem 9.1 was proved by Bertram—
Daskalopoulos—Wentworth [2]. In this case the invariant @S:]’“ (0, c™; pt)
corresponds to the Gromov—Witten invariant given by counting holomorphic
maps u : ¥ — CP"! of degree d (with a fixed complex structure on X
and a generic Hamiltonian perturbation) that pass at m distinct specified
points on ¥ through m specified hyperplanes in CP™~!. For a proof of this
correspondence in the case ¥ = S? see [15]. We emphasize that in the higher
genus case the Hamiltonian perturbation is needed in order to destroy the
constant holomorphic maps ¥ — CP"~! which are not regular. If one wants
to work with the unperturbed Cauchy—Riemann equations one has to work
with stable maps.

Proof of Theorem 9.1. We simplify (53) and consider instead the equations

_ ) 2md d 2
(54) Oau, = 0, *x 'y = Vol(z)’ Vz_:léu lluy|lze =1



for u, € Q%(X, L®%) and A € A(L). There are two ways to establish the
correspondence between equations (53) and (54). One can use the action of
the complexified gauge group and the Kazdan—Warner equation, or one can
show that the corresponding S'-moduli problems are homotopic. We use
the latter approach. Consider the 1-parameter family of equations

- , 2nd e 1 < 9
(55) BA’U,U = O, *’LFA — W(E) = 5 <W(E) — ;fyhl,yl )

for 0 < e < 1. For ¢ = 0 this equation is equivalent to (54) and for ¢ =1
it is equivalent to (53) with 7 = (27nd + 1/2)/Vol(X). Note, in particular,
that >, € ||luy|[2, = 1 for every € > 0 and every solution of (55). Thus
we may formulate the S'-moduli problems as follows. We shall not bother
with Sobolev completions and formulate the problems in terms of smooth
sections.

Fix a point zy € ¥ and consider the based gauge group

Go := {g S COO(E,SI) |g(z0) = 1} .
Define B by

B:= {(A,ul,...,un)|A€A(L),

n
Uy, € QO(E,L(@E"), ZEV ||U,,||%2 = 1}/g0
v=1

The bundle H — B has fibres
Haw = QO L) @ - 0 VYT, L%) @ Q)(2)

over [A,u] = [A,u1,...,u,] € B, where Q8(X) denotes the space of smooth
real valued functions of mean value zero. The section S, : B — H is given
by

_ _ ) 2md
Sg(A, U) = ((9AU1, e ,8Aun, *’LFA - W(E)

€ 1 "
— = == - L 2 .
2 (Vol(E) D bl ) )
v=1
With appropriate Sobolev completions this gives rise to a homotopy of reg-
ular S*-moduli problems (B, H,S.). In fact, if df, > 2g—2 for every v then,



by Serre duality, S; is transverse to the zero section for every e and so the
zero sets of S; give rise to a (trivial) cobordism from the moduli space of
solutions of (54) to the moduli space of solutions of (53). In any case (even
without d¢, > 2g — 2) it follows from the (Homotopy) axiom for the Euler
class that our invariant is given by

(56) (I)S’;,M (Cm) _ XB,’H,Sl (W*Cm) _ XB,’H,SO (W*Cm),

where 7 : B x g1 EST — BS! denotes the obvious projection. We shall now
compute the last term in (56) using a localization formula for circle actions
and the index theorem for families.

Fix a reference connection Ay € A(L) and consider the space

2wd

o 2md
A Yoy

Acoul .= {A € A(L)

d*(A— Agy) = 0}
of projectively flat connections in Coulomb gauge relative to Ag. The group
gl = {g e C™(2,8") |d* (g7 dg) = 0}

of harmonic gauge transformations acts on A" and the quotient
Acoul /geoul i diffeomorphic to the torus T29 (the Jacobian of degree d line
bundles over ¥). An explicit diffeomorphism can be constructed as follows.
Choose 2g embedded loops 71, ...,724 in X such that

Vi Vgti =1

and v; - vj» = 0 for j' # j £ g. Choose a dual basis a; :== PD(y;) € H'(X)
of the space of harmonic 1-forms so that

/aj=%"% /Oéj/\agﬂ':l-
0 3

Let Z%9 — G : ks g be a group homomorphism such that

1 1

— “1go — k.

i 'y‘gk 9k 5
j

for every k € 7?9 and every j € {1,...,2g}. Then the map R?9 — AUl .
t — Ay, defined by
29
Ay = Ag + Z 27ritjaj,
j=1



descends to a diffeomorphism T29 — 4coul / Geoul Note that
(57) Appp = QZAt
for t € R29 and k € 7Z?9. Now consider the action of 729 on R% x L via

k- (t,[p,¢]) = (t + &, [p, gr(p)~'C).

This action gives rise to a universal line bundle

_R¥xL

7 — T x 5.

L:

For any integer k € Z we denote by L* = L®--- ®L the kth tensor power of
L. From now on we denote by ¢ an equivalence class in T?9 = R?9/729. For
t € T29 denote by Lf — ¥ the restriction of L* to t x X. By (57), the bundle
Lf is equipped with a connection Af and hence with a Cauchy—Riemann
operator

FQO(z,LEy — QOL(z, 1),

Denote the topological index (as a K-theory class) of this family of Cauchy-
Riemann operators by

INDF = U{t} x ker OF & cokerdf € K(T29).
¢

Now consider the vector bundle
E=1%@¢ - oL - T% x =
For ¢ € T?9 denote by E; the restriction of E to {t} x ¥ and by
O : (S, E) — QM(Z,Ey)

the corresponding Cauchy-Riemann operator. The L2-norm of a section
u € Q%(X, E,) is given by

[l 2 =

n
>ty [luy|l72,
v=1

where the sections u, € Q°(%, L) denote the components of u. This gives
rise to an S'-moduli problem as follows. Define

B:= {(t,u)|t € T%, u, € Q°(Z,E,), |jul|;2 = 1}.



The circle S acts on B by
Nt ug, .. un) o= (A O, ATy,
for A € S'. The bundle H — B has fibres
Hio = QONE, L @ - @ QOL(Z, L) = QOY( Ey)

and the section S : B — H is given by

S(t, u) := Ou.

The obvious embeddings define a morphism from (B, H, S) to (B, H,Sy) and
so, by the (Functoriality) axiom for S'-moduli problems and (56), we have

cn,
B () = XPES (mem),

where 7 : B xg1 ES! — BS! is the projection. Here the action of S' on
B x ES! is given by A*(t,u,e) = (£, \"Oug,..., A" u,, A7 le).

Now the S'-moduli problem (B,H,S) satisfies the hypotheses of the lo-
calization formula for circle actions in [7, Theorem 11.1] and we get

1
12 [['_; c(ZND™ 4,

(58) Byt (™) =

Here ¢(ZN'D,-) denotes the Chern series of the K-theory class ZN'D €
K(T?9). Tt is defined by

c(IND(D),n) = Y _ ™), (IND(D)),
j>0

where index(D) := dim ker D — dim coker D is the Fredholm index.
The right hand side of (58) can be computed by means of the Atiyah—
Singer index theorem for families (see [31]). It asserts that

ch(ZNDF) = / td(TX)ch(L*) € H*(T29).
P

Here the Todd class and the Chern character of a line bundle L with first
Chern class ¢i(L) = x are defined as

x
1—e ¢’

td(L) == ch(L) := €".



The Todd class of T'X. is given by
td(TE) =1+ (1 - g)o,

where 0 € H 2(E; Z) denotes the positive generator, represented by a volume
form with respect to which ¥ has volume one. By Lemma 7.9, the first Chern
class of L* is given by

2g
a(l®) =k Zaj ATj+do

i=1
where a; = PD(v;) € HY(Z) and 7; := [dt;] € H(T?9;Z). Let us denote by
g
Q:= Z Tj N\ Tgtj
j=1

the cohomology class of the standard symplectic form on T?9. Then the
Chern character of L* is given by

k\2
ch(T*) = 1+01(Lk)+$
2g
= 1+dko— Ko AQ+kY aj ATy,
j=1
Hence
29
td(T)ch(LF) =1+ (dk+1—g)o — Ko AQ+k Y o A,
j=1

and integration over the fibre gives

ch(ZN'D*) = / td(TS)ch(L¥) = dk +1 — g — k2Q.
)
This implies (cf. [31])
1 j
E _ 12 ‘ AN k
o (IND ) — K, ¢ <I/\/'D ) o (I/\/D ) ,
and so the Chern series of ZND* is given by

c (INDk, 77) = n*+1=9 exp(—n1E2Q).



Since the integral of 29/g! over T29 is one, we obtain from (58) that

1
s [P, c(ZND¥,1,)

(C’IL
Qd,g,lM (Cm) =

n
— H g_dgu“‘g_l 1
11t s T, exp(—6, %)

_ - —dly+g—1 -

= Vl;[léy 9 /Wy Vl;[lexp(EVQ)
_ —dly+g—1 -

= yl;[lf,/ 9 /Pg exp <V§::1 E,,Q)

) <Z €”>g T bt
v=1

v=1

n

This proves the theorem. O
10. Seiberg—Witten invariants.

In this section we explain how the Seiberg—Witten invariants of a product
X=¥YxS

are related to our invariants is the case where either S or X is a sphere. The
relation will be established by considering the symplectic vortex equations
over X with a suitable target manifold Mg. The space Mg is a symplectic
manifold with a circle action and the quotient Mg/ S is the d-fold symmetric
product of S. In fact, the space Mg itself consists of (gauge equivalence
classes of) solutions to the vortex equations over S. It is a special case of
the socalled master space for the vortex equations constructed in [5]. Here
is how this works.

Let (S, Jg,dvolg) be a compact Riemann surface of genus gg and L — S
be a complex Hermitian line bundle of degree

deg(L) =d > 295 — 2.

For a Hermitian connection A4 € A(L) and a section © € Q°(S, L) consider
the vortex equations

5 _ |02 1 / 9 2rd
= Fyu+ = — dvolg = .
(59) 940 =0, wiFa+ T = oy [ 1817 dvols = o



The gauge group Gg := C°°(S, S) acts on the space of solutions of (59) and
the action is free whenever © # 0. Fix a point zg € S and consider the
homomorphism pg : Gg — S* defined by

po(g) = exp(~€(wo))g(wo),  d*de = d*(g\dg), /3 £dvols = 0.

Its kernel is the subgroup Ggo C Gg of all smooth maps g : S — S! of the
form g = goexp(¢), where go : S — S! is a harmonic map that vanishes at
zo and £ : S — R has mean value zero. Thus the Lie algebra of Ggg is the
space of imaginary valued functions of mean value zero:

Lie(Gso) = Q3(S, iR) := {g € Q%(s,iR) | /S gdvolg = 0} .
Let us denote the space of solutions of (59) by

Mg = {(A, ©) € A(L) x Q°(S, L) ] A and © satisfy (59)}
and the quotient by the action of Gso by

Mg := Ms/Gso.

The tangent space of Mg at a pair (A4, ©) can be identified with the space
of all pairs (o, §) € Q1(S,iR) x Q°(S, L) that satisfy the linearized equation

(60) 40 + %0 =0,

1
. L le —
*ida + (0, 0) Vol(S) /5(9, 6)dvolg = 0,
Yy 1 »
—d'a +Z<Z@,0> - m/gl<l@,9>dV015 =0.

Here the last equation asserts that the pair («, ) belongs to the local slice
of the Ggo-action, i.e. it is L? orthogonal to the Ggg-orbit of the pair
(A,0). The left hand side of (60) defines a surjective Fredholm operator
from Q°(S, L) @ Q1(S,iR) to Q*1(S, L) & Q3(S,C) whenever © # 0. The
condition d > 2gg — 2 guarantees surjectivity also in the case ® = 0. So
in this case Mg is a manifold of dimension 2d + 2. Unfortunately, the case
d > 2gg — 2 is only interesting when S has genus zero (see Remark 10.5
below). If d < 2gg — 2 the space Mg has singularities at the points where
© = 0. In the case d < 2gg — 2 and gg > 0 the space Mg can be desingular-
ized by a blowup construction, however this leads to holomorphic spheres in
the ambient space Mg and so our theory does not apply in its present form.



A symplectic form wg on Mg is given by

(61) ws((a, 8), (o, 0")) = —/ aha + /(iG,O')dvolS

s s
for two solutions («, ) and (o, ') of (60). One can think of Mg as the
symplectic quotient of the space of all pairs (4, ©) that satisfy 940 = 0 by
the (Hamiltonian) Ggp-action. The linear map

(a,0) — (*a,i6)

on the space of solutions of (60) defines a complex structure Jg on Mg that
is compatible with wg. Thus (Mg,ws, Jg) is a K hler manifold.

Now the circle S acts on Mg through the constant gauge transforma-
tions. This action is Hamiltonian with moment map

L 2
us(A,0) = ~3Vol(3) /S|G)| dvolg.
The factor 1/Vol(.S) arises from the fact that we identify the circle with the
subgroup of Gg of constant gauge transformations and use the standard L?
metric on Lie(Gg) = Q°(S, iR) to define the moment map as a function with
values in the Lie algebra, and not its dual.

Let us recall some standard facts about the space Mg (see [3, 16]). There
is a one-to-one correspondence between Hermitian connections A € A(L)
and holomorphic structures on L via A — 04. Moreover, the Kazdan—
Warner equation shows that every pair (4,0) € A(L) x C*(S,L) such
that 940 = 0 is complex gauge equivalent to a solution of (59) by a gauge
transformation of the form g = e/ where f : § — R has mean value zero
(see Proposition A.3). Hence the space Mg can be identified with the space
of G&,-gauge equivalence classes of the space of pairs (A4,©) that satisfy
040 = 0. For d > 2gg — 2 it follows from Serre duality that this is a vector
bundle over the Picard variety of holomorphic bundles of degree d over S,
Pic?(S) = T2, with fibre C¢+1~95. The circle acts trivially on the base and
by the standard action on the fibres.

This shows that the triple (Mg, ws, pg) satisfies hypotheses (H1 — 3),
namely, pg is proper, the moment map is convex at infinity, and w2 (Mg) = 0.
Moreover every nonzero imaginary number is a regular value of pug and S!
acts freely on the preimage under pg. The quotient is nonempty if and only
if the imaginary part is negative.

Remark 10.1. The symplectic quotient
Mg := Mg)/S* (—i/2Vol(S))



is a bundle over T29 with fibre CP4~95. On the other hand, this quotient
is the space of effective divisors of degree d on S, so Mg = Sym?(S) is the
d-fold symmetric product of S.

The next theorem states that the invariants of the triple (Mg, wsg, ps)
for a Riemann surface ¥ agree with the Seiberg—Witten invariants of the
product ¥ x S. We denote by ¢ € H?(BS';Z) the positive generator and by
ng : Mg x g1 ES' — BS! the obvious projection. For a nonnegative integer

k € Z denote by

Mg,us . _ MS»NS"“i/Q
(I)k,E T q)k,E

the invariant in the nontrivial chamber. Let
Ek,d =X xS

be the complex line bundle which has degree k over ¥ and degree d over S,
and denote by 7 ¢ € Spin®(X x S) the spin® structure obtained by twisting
the standard spin® structure 7y (associated to the complex structure) by
Eyq. If both ¥ and S have positive genus the four-manifold ¥ x S has
b™ > 1 and carries a well-defined Seiberg—Witten invariant

SWyss : Spin(X x §) — Z.

If ¥ or S is the sphere then b* = 1, so there are two chambers for the
Seiberg-Witten invariants. In this case we denote by SWyx g the Seiberg-
Witten invariant in the positive chamber, where “positive” is defined in the
proof of Theorem 10.2 below. A result similar to the next theorem was
proved in [27].

Theorem 10.2. Let S and X be a compact Riemann surfaces of genera gs
and gy, respectively, and k, d be nonnegative integers such that
m:=d(l—gs)+k(1—gs)+dk >0, d>2gg — 2.

Then
<I>ﬁ,4§”‘s(0,7r§cm;pt) = SWyxyus(k,d)-

If m < 0 then both invariants are zero.

Corollary 10.3 ([21, 28]). Let S be the Riemann sphere, ¥ a compact
Riemann surface of genus gs and k, d be nonnegative integers such that

m:=d(1-gs)+ (d+1)k > 0.

Then
SWsss(Yk,a) = (d+ 1),



Proof. Since S is the Riemann sphere the manifold Mg is diffeomorphic to
C4t1 as a K"hler manifold with an S' action. Hence the result follows from
Theorem 10.2 and Theorem 9.1 withn=d+land {1 =---=¥¢,=1. O

Corollary 10.4. Let S and ¥ be a compact Riemann surfaces of genera gs
and gx,, respectively, and k, d be nonnegative integers such that

m:=d(1—gs)+k(l—gs)+dk>0, d>2gs5—2,  k>2g5 2.

Then
@2{;’”5 (0, mgc™;pt) = CDS%’”E (0, m5c™; pt),

where Mg 1is associated to a bundle of degree d over S via (59) and My, is
defined analogously, with S and d replaced by > and k.

Proof. Interchange the roles of ¥ and S in the proof of Theorem 10.2. O

Remark 10.5. The statements of Theorem 10.2 and Corollary 10.4 are
only interesting when one of the two surfaces has genus zero. Otherwise
both invariants are zero. To see this, suppose that both genera are posi-
tive. Then ¥ x S is a minimal K “hler surface with b+ > 1. It follows (see
for example [31]) that the Seiberg-Witten invariant is nonzero only for the
canonical spin® structure and its dual, i.e. ford =k =0 or d = 295 — 2 and
k = 2gy — 2. These cases are excluded by our hypotheses.

Proof of Theorem 10.2. Our proof follows the argument outlined in [6]. The
Seiberg-Witten equations for the spin® structure vy, 4 on X := ¥ x S have
the form

(62) 53@0 + 5%@2 =0, Fg’2 — (B, @2) =0,

2 2
(63) i(Fg)a + D10
where 7 is a real number, B € A(E) is a connection on E := Ej 4, Og €
Q%(X, E), and O3 € Q%(X, E). Here we denote by (-, -) a Hermitian inner
product on E, i.e. the inner product takes values in C, it is complex anti-
linear in the first variable and complex linear in the second variable. In the
last term the function Q2(X,iR) — Q°(X,iR), n + nq is defined by

na = *(n A Q),



where py : X — ¥ and pg : X — S denote the projections,
Q := phdvoly + pidvolg € Q*(X)

denotes the symplectic form, and * denotes the Hodge *-operator on X.

In the K hler case it follows from (62) that either ©g or ©2 vanishes.
The positive chamber for the Seiberg—Witten invariants corresponds to the
condition

;s 27k N 27d
Vol(£) = Vol(S)

(64)

In the K" hler case this condition implies O = 0.

The S'-moduli problem associated to equations (62) and (63) is defined
as follows. As in the proof of Theorem 9.1 we shall not explain the (obvious)
Sobolev completions and describe the problem in terms of smooth data. Fix
a point (zp,x0) € ¥ x S and denote by Gxo the based gauge group of all
smooth functions g : X — S! such that the restriction of g to {29} x S
belongs to the subgroup Gsg C Gg determined by the point xg:

Gxo:={9€ C®(E % 5,5 gltzg1xs € Gso} -

Then the base BSW is the quotient

B . {(B,00,02) € A(E) x Q% X, E) x Q®*(X,E) | (63)}

= s

Gxo

the bundle £5W — BSW is given by

gsw . B x (Q%(X, B) @ 0%%(X))
o Gxo

and the section S5V : BSW — £5W is given by
S5V (B, 00, 02) i= (9500 + 0505, F}” ~ (60,0)) .

With appropriate Sobolev completions this is a regular S'-moduli problem in
the sense of Definition 6.1 and the Seiberg—Witten invariant can be expressed
in the form

SWyxs(ya) =X € (whye™),
where m = d(1 — gs) + k(1 — gs) + dk, wsw : BSW x g1 ES! — BS! denotes
the projection, and ¢ € H2(B5’1; Z) is the positive generator.



Now let us examine the symplectic vortex equations with values in Mg.
Let P — ¥ be a principal S'-bundle of degree k. Consider the associated
bundle

Lp:=P><51(C—>E

and denote by

Ep:=pxLp ®@psL

the corresponding bundle over X = X x S, where py, : X — X and pg :
X — S denote the projections. In explicit terms it can be represented as
the quotient

P x L

EP = g1 )

)\*((Z,p), (177 U)) = ((Z,p)\), (177 )‘_LU))'

This vector bundle has degree k over ¥ and degree d over S and hence
is isomorphic to E. Henceforth we shall drop the subscript P and write
FE .= Ep.

The space A(P) x C3% (P, Mg) embeds into the space A(E) x Q%(X, E)
as follows. A connection Ay, on P determines a connection p}, As; on p§,Lp.
An S'-equivariant function u : P — Mg consists of an S'-invariant function
A: P — A(L) and an S'-equivariant function © : P — Q9(S,L). The
latter can be interpreted as a section of E and the two connections together
determine a connection

PAr ®1+1@psA e A(E).

To understand this correspondence better let us choose holomorphic local co-
ordinates s+it € U C C on X and a trivialization of P along this coordinate
chart. In such a trivialization the connection Ay, has the form ®1ds+ ¥y dt
where ®1,¥; : U — iR. The function u is a map U — A(L) x Q°(S, L)
denoted by

U— A(L) : (s,t) — A(s,t), U — Q%S,L): (s,t) — O(s,t).

The corresponding connection on E is given in this local frame by A(s,t) +
®q(s,t)ds+ Wq(s,t)dt. The pair (Ayx,u) satisfies equation (1) if and only if



there exist functions ®q, ¥g : U — QJ(S,iR) such that, for all s and ¢,

(65) 040 =0,
0,0 + ((I)o + (1)1)@ +1 ((9,5@ + (‘I’o + \111)@) =0,
agA - d(I)() + *S(atA - d‘Ilo) = 0,
1 9 _ 2nd
2Vol(S) /S|®| dvols = 175y

-2 _ o 2 =iy 2
A 20,0 — 0,51) 2%1(5)/5‘@’ dvolg = Z<T Vol(s)).

Here x5 denotes the Hodge *-operator on S and A : U — (0, c0) represents
the volume form A% ds Adt on ¥. The factor A\=? in the last term arises from
the Hodge *-operator on ¥. The functions &y and ¥, are needed to project
the terms in the second and third equation onto the quotient by the gauge
group Ggo. Let us abbreviate

. 1
*giFq + §|®|2 -

D= Py + Py, U =Ty + Uy,
Then (65) can be written in the form

(66) 040 =0,
8,0 + 30 4 (8,0 + TO) =0,
Oy A — d® + +5(8,A — dT) = 0,

, 1, 1 o _ 2nd

xg1F4 + 2|®| 3Vol(S) /S |©]* dvolg = VoIS’
iAT2 1 2rd
— [ (8,7 — 8,®) dvolg + ——— 2dvolg = 7 — ———
Vol(S)/S(a %®) dvols + o53178) /S|®| dvols =7 = Foi(sy

(cf. [6]). Now consider the connection
B := A(s,t) + ®(s,t)ds + ¥(s,t) dt

on E and think of © as a section of E. Then the first two equations in (66)
are equivalent to 9g© = 0. The curvature of B is the 2-form

Fp=Fy+dsA(9sA—d®)+dt A (A —d¥)+ (0:T — 0,P)ds A dt.
The third equation in (66) asserts that Fg’Q = 0. The last two equations
can be written in the form

iA 2

. 1, 5
W(S)/S(BS\II—@CD) dVOlS+*SZFA+§’®’ =T,



or in terms of the connection B,
| 2

G}
(67) VO] S) / *iF'g + *Z FB A dVOlE) + T =T.

Here the integral denotes integration over the fibre. Hence a pair (Ax,u) €

A(P) x CFE (P, Ms) satisfies the symplectic vortex equation (1) if and only
if the correspondmg pair (B, 0) € A(E) x Q°(X, E) satisfies equation (67)
and

(68) 90 =0, Fp*=0.

Integration of equation (67) over ¥ yields

2k 2wd
O|2dvoly =
Vol(z) T Vol(s) T 2Vo 1(2 / (O dvolg = 7.

If (64) holds then © # 0 for every solution of (67). Hence equations (67)
and (68) give rise to an S'-moduli problem as follows. The space B° is the
quotient

{(B,0©) € A(E) x Q°(X,E)|(67)}
Gxo

BY =

)

the bundle £° — B is given by

B x Q%(X, E)

&Y=
Gxo

and the section 8? : B — £9 is
SO(B,Q) = 0p0O.

Since © # 0 the first equation in (67) implies the second equation. Hence
the zero set of S” is the space of gauge equivalence classes of solutions (B, ©)
of (67) and (68).

At first glance S® doesn’t look like a Fredholm section. Note, however,
that SY is a two-dimensional Cauchy—Riemann operator in disguise. The
condition dp© = 0 assserts, at the same time, that the restriction of (B, ©) €
B to every slice {z} x S belongs to the finite dimensional manifold Mg and
that, as a function P — Mg, this map is a solution of the (two dimensional)
symplectic vortex equations. Hence, with appropriate Sobolev completions,
the triple (B%,£9,89) is a regular S'-moduli problem and

@M (0, m5c™; pt) = X

)

B9,£0,80 (ﬂgcm)



where 7 : B x g1 EST — BS! is the projection.

A morphism from (B°, £%,8%) to (BSW,&E5W SSW) can be defined as
follows. The group of complex gauge transformations g : X — C* acts on
the space of solutions of (67) via

g*(B,©):=(B+g 'd9—g 99,9 '0).

Given a pair (B,0) € B, we look for a complex gauge transformation of
the form g = ef, where f : X — R, such that the triple (Bf,04,0) :=
(e/)*(B,©,0), given by

By =B+0f-0f. ©;=c 0y,
satisfies equation (63):

. CH
z(FBf)Q-i-—’ 2f’ =7

A short computation yields
2i00f = —d%dy f dvoly — dds f dvolg,

where dgs : Q°(S) — Q(S) and dy : Q%(Z) — Q}(X) are the respective
differentials and d¥ and d3, their L?-adjoints. Therefore (2i00f)q = —d*df,
and equation (63) for (B, ©f,0) is equivalent to the Kazdan- Warner equa-

tion
* |C_')|2 —2f .
—d*df + ¢ =T 1(FB)q-

It follows from the theorem of Kazdan and Warner ([18], see also Ap-
pendix A) that this equation has a unique solution f whenever

- 1 iFr AQL— 2k n 2wd
"7 Vol(Z)Vol(S) Jss 07T VoI(D) T Vol(S)

(see (64)). So we have constructed a map
BY — B5W . (B,0) — (B}, 0y,0).

We claim that the image of this map is the submanifold of all triples of the
form (B, ©,0) € B3W.

A left inverse BSW — B0 can be constructed as follows. Given a triple
(B,©,0) € BSW we must find a complex gauge transformation of the form
g =ef, where f: X — R, such that the pair (Bf,05), given by

Bf:=B+3f -0f, ©;:=e70,



satisfies (67):

%(S)/S*ZFBJ‘ + *i(Fp, A dvoly) + % =7
This translates into the equation
: \ I U S S
—dyds fs, —dsdsf +e =T Vol(9) /S*zFB — xi(Fp A dvoly),
where )
fe = W(S)/Sfdvolszﬁl—)R.

By Theorem A.1 of the appendix, this equation has a unique solution f €
CO%(%, W%P(S)). If B and © are smooth one checks easily that f is smooth.
This shows that for every pair (B, 0,0) € B5W there exists a unique complex
gauge transformation of the form g = e/ such that ¢*(B,0) € B That
this map is a left inverse of the map B® — B5W follows from the uniqueness
statement in Theorem A.1: Let (B, 0) € B and g = ef be a complex gauge
transformation such that ¢g*(B,0) € B°. Then f satisfies the equation

108 _ |OF

—dydsfy —dgdsf +e 5 5

and f = 0 by uniqueness.

It follows that the map B® — BSW defines an embedding of Fréchet man-
ifolds and lifts naturally to an embedding of £° into £SW which intertwines
the two sections and idenitifies the kernels and cokernels of the linearized
operators along the zero set of S°. The proof of [7, Theorem 7.4] shows that
there exists a finite dimensional reduction (B, E9, S%) of (B, £9,8%) in the
smooth category (not involving Sobolev completions). The composition of
the inclusion B® — B° with the inclusion B® — BSW (and of their lifts to the
vector bundles) now defines a morphism of S'-moduli problems as in Defi-
nition 6.2. With this established, the result follows from the (Functoriality)
axiom for the Euler class. O

Remark 10.6. There should be an analogue of Theorem 10.2 in the case
where the product ¥ x S is replaced by a topological Lefschetz fibration
X — S? on a symplectic manifold [8, 9]. Here ¥ should be replaced by
S? and S by the generic fibre of X. To carry this out one has to over-
come several major technical difficulties. The interesting case is where the
degree d of the bundle over the fibre satisfies d < 29g — 2, and so the



space Mg has singularities. Moroever, one has to deal with the singular-
ities of the fibration as in [10]. In addition, the complex techniques with
the Kazdan—Warner equation only work in the K hler case. In the noninte-
grable case the correspondence between the Seiberg—Witten equations (62),
(63) and the symplectic vortex equations (67), (68) is much more subtle and
requires a hard adiabatic limit analysis as in the proof of the Atiyah—Floer
conjecture [11] or as in [15] (see [30] for an outline of the Seiberg—Witten
analogue). If this program can be carried out then, combined with the work
of Donaldson—Smith in [10], it might lead to an alternative proof of Taubes’
theorem [33, 34, 35] about the relation between the Seiberg—Witten and the
Gromov invariants.

Appendix.

A. The coupled Kazdan—Warner equation.

Let (X, Jy,dvoly) and (S, Jg,dvolg) be compact connected Riemann sur-
faces. Fix a constant p > 1. Given a function u € LP(X x S) we define
uy, € LP(X) by

un(z) == V.%(S)/Su(zp)dvols

for z € ¥. In the following we shall denote by dg : Q°(S) — Q(S) and
ds; : Q%) — QY(Z) the respective differentials and by d¥ and d% their
L?-adjoint operators.

Theorem A.1. Letp > 1 and f,h € C°(X x S) such that

h >0, / h >0, f>0.
YxS ¥xS

Then there exists a unique function u € CO(X, W?P(S)) such that ux €
W?2P(X) and

(69) dy.dyuy, + dsdsu + e*h = f.
Moreover, if h and f are smooth then so is the unique solution u of (69).

The proof of the theorem is based on a lemma and two propositions.



Lemma A.2. Let S be a compact Riemann surface. Then there exists a
constant cg > 0 such that the following holds. Let p > 1, C > 0, and
0<a<A. IfheC%S) and u € W?P(S) satisfy

1
h>0 ho := hdvolg > 0

and

(70) a—e'h < dsdsu < A— f~H(e")h

almost everywhere, where f(r) := reC", then

a A A
log (—2 Y <u<log(Z) + 2 (Cteslhl ).
g(nhnm)— = g<h0) o (C s ] <)

Proof. Assume first that u and h are smooth. Choose ¢g > 0 such that
/Svdvols =0 = 2|v]lpe < csllddsll e
for every v € C*°(S). Let v € C*°(S) be the unique solution of the equation
dgdsv = h — hy, /Svdvols =0.
Since [[h — ho|| oo < ||P|| o it follows that
maxv — mgnv <es ||l e -

Now fix a constant € > 0 and denote

A+e
We 1= e

v+ u.

Choose z. € S such that w.(x.) = supg we. Then

0 < dgdswe(xe)

Ade .
= T dsdsv(ze) + dgdsu(z.)
< S (h(a2) — ho) + A= hlwe) f (e4)
0

= —e+h(z) (Afj; S (e"(“))) .



It follows that h(z.) > 0 and f~! (e“(”s)) < (A+¢€)/hg. Since f is strictly
monotone, this implies

A A A
u(x5)<10g<f< h—ze))zlog< h—zg>+0 h—zg'

Since we(z) < we(ze) for all z € S it follows that

u@) < ules)+ 55 ) - o)
0

A+e A+te .

< _

< log< o )—l— o <C—|—msaxv mbgnv)
A+e A+e

< tog (45) + S O res ).

This holds for every € > 0 and every = € S. Hence

A A
supu<log (70 + 70 (C + eslhll).
s ho ho
To prove the first inequality we choose zg € S such that u(zo) = infgu.
Then
0> didsu(zg) > a — e“®)h(zg) > a — e“®0) ||h| oo

and hence

a
infu = u(xzg) > log (—) .
g = uleo) = og {2

This proves the lemma in the smooth case.

Now suppose that h € C°(S) and u € W*P(S) satisfy the hypotheses
of the lemma. Then u is continuous and (70) shows that dgdsu € L>(S).
Choose sequences a, — a and A, — A such that

O<a,<a<A<A,.

Then there exist sequences of smooth functions wu,,h, € C°°(S) such that
h,, converges uniformly to h, u, converges to u in the W?P-norm, h, > 0,
and

a, —e"h, < dgdsu, < A, — f_l(e“”h,,).

To see this, we may first choose a sequence w,, € C*°(S) converging to dgdsu
in the LP norm and satisfying a, — e“h < w, < A, — f~(e*h). Then define
u, as the solution of the equation dgdgsu, = w, with fs(uu —u)dvolg =0
and choose any sequence h, € C*°(S) converging uniformly to h to obtain



the required estimate for u,, and h,. It then follows that u, and h, satisfy the
hypotheses of the lemma with a and A replaced by a, and A,, respectively.
Hence they satisfy the conclusion and so the required estimate for u and h
follows by taking the limit v — oo. O

Proposition A.3. Let p > 1. For every t € R and every h € C°(S) such
that h > 0 there exists a unique solution u € WP(S) of the equation

1 1
1 * Uh = ———— U 1 jugs 1 =t
(71) dgdsu +e"h Vol(S)/Se hdvolg, Vol(S)/SudVOS t

Moreover, if h € W*P(S) for some integer k > 1 then u € Wk+2P(S).
If kp > 2 then the map (h,t) — wu which assigns to each pair (h,t) €
WHP(S) x R that satisfies h > 0 the unique solution u € W*+%P(S) of (71)
extends to a smooth map between open subsets of Banach spaces.

Proof. The proof has three steps.

Step 1. For every p > 1 and every c > 0 there exists a constant ¢, > 0
such that, if h € CY(S) and t € R satisfy

1 1
2 > = 1 - ~ < ¢, <eg,
(72) h>0, ho Vol(S) /SthOS > 1Al e < ¢ [t] <e

then
||u||W27P < Cp
for every solution u € W2P(S) of (71).

Let u be a solution of (71) and denote

1
“h dvolg.
Vol(3) /56 vols

Then, by (72) and Lemma A.2 with C = 0 and A = a, we have

s () = e (i) + 5

Integrating the first inequality over S gives

a 1
<< — =t <
log<c>_vol(5)/sudvols t<c




and hence a < ce€. Moreover,
a 2 3 c
v < _6ccsa/h0 < ace® 5@ < 626666 cse’
0

Hence e" satisfies a uniform upper bound, depending only on S and c¢. Hence
there exists a constant ¢ = ¢/(c¢) > 0 such that |d§dsul|r~ < ¢’ for every
solution of (71). Since Vol(S)™! [ udvolg =t € [—c, ], Step 1 follows from
elliptic regularity for the Laplace operator on S.

Step 2. Consider the Banach spaces
X :=W>(S),  Y:=LhS) xR,

where LE(S) denotes the space of LP-functions on S with mean value zero.

For h € C°(S) define Fj,: X — Y by

Fn(u) := <dsdsu +e*h — Vol(S) /Se hdvolg, Vol(S) /Sudvols) .

If h > 0 then the differential dFy(u) : X — Y is a Banach space isomorphism
for every u € X.

The differential of F}, is given by

d}"h(u)f = < gdsf + 6uh§ - VO]l(S) /Seuh§ dVOls, w%(s)/sgdvolg) .

Hence dFp(u) : X — Y is a Fredholm operator of index zero. Multiplying
the first component of dFy(u)€ by £ and integrating over S we find that the
kernel of dF,(u) consists of all functions ¢ € W2P(S) that satisfy

/ |dsé|* dvolg + / e“h |€]* dvolg = 0, /gdvols =0.
S S S

Hence dFy(u) is bijective whenever h > 0.
Step 3. We prove the proposition.

If h = 0 then every solution of (71) is constant and hence u = ¢ is the only
solution. Now assume h = 1 and let u € W2P(S) be a solution of (71).
Then

1
dsd Y= “ dvol
sasu +e Vol(S)/Se volg

and hence, by Lemma A.2,

1
> “ dvolg.
e _Vol(S)/Se volg



This implies €* = constant and hence v = ¢t. Thus we have proved the
existence and uniqueness statament in the cases h = 0 and h = 1. Now let
h € C°(S) be any nonnegative function such that [ hdvolg > 0, and define

he :=(1—¢)h+e.

We prove that the number of solutions of (71) with h replaced by h. is
independent of ¢. To see this consider the set

M= {(e,u)|0< e <1, uc W(S), Fj,_(u) = (0,1) }.

By Step 2, this set is a smooth 1-manifold with boundary and the projection
M —[0,1] : (e,u) — € is a submersion. That M is compact follows from
the fact that, by Step 1, there exists a constant ¢, > 0 such that

(BueM = luly <

Hence every sequence (g;,u;) € M has a subsequence such that u; converges
in C%(9) and ¢; converges. Hence, for this subsequence, e“h., converges
in CO(S) and so, by elliptic regularity for the Laplace operator on S, u;
converges in W2P(S) (for any p > 1). Thus M is compact and so the number
#.7:,;1(0,75) is independent of € € [0,1]. For ¢ = 1 this number is one and
this proves the existence and uniqueness statement. That h € WP implies
u € Wk+2P follows from elliptic regularity for the Laplace operator. That
the map (h,t) — u is smooth follows from the implicit function theorem and
Step 2. O

Proposition A.4. Leta > 0 and H C C°(Ex S) be a compact set such that
h >0 for every h € H. Then there exists a constant 6 = 6(X,S5,H,a) >0
such that the following holds. If p > 1 and u € C°(X,W?P(S)) satisfies
us, € WP(X) and

(73) dy.dsus, +dgdsu + e*h =a
for some h € H then dy,dsus. is continuous and

Ohy < a —dydsus < 5 Lsuph, F<et<§ L.
S

Proof. The proof has three steps.
Step 1. Let cg be the constant of Lemma A.2 and choose ¢ > 0 such that

heH = |hl<c



Define f : [0,00) — [0,00) by f(r) :=re®s”. Then

f_l(e“)hg <a-—dydsuy < e"suph
S

for every h € H and every solution u of (73).
Integrating (73) over S we obtain

1
a — dydsuy, = W/Seuh dvolg > 0.

In particular, dy,dyuy is continuous. If hlr3.g = 0 then a = dydyux(z)
and hy(z) = 0. So the assertion of Step 1 holds trivially at the point 2.
If hlraixs # O then a — dy,dsus(z) > 0 and so the restrictions of h and u
to {z} x S satisfy the requirements of Lemma A.2 with C =0 and a = A
replaced by the constant a — dy,dsusx(z). Hence

_ * _ % _ %
log a — dydsuy, <u<log a — dydsuy, n ceg (a — dydsuy)
supg h hs. hs,

This implies the assertion of Step 1 in the case hx(z) # 0.
Step 2. There exists a constant 6 = §(X,S,H,a) > 0 such that

§<e¥® <§t

for every h € H and every solution u of (73).
By the proof of Step 1, we have

log <a — dzngz) < ug < log <a — dzdguE) N ces (a — dydsusy)

c hy. hs;
whenever hy(z) > 0 and hence
a— ce's < didyuy < a— f71(e"S)hy.

Hence uy, € W?P(X) satisfies the second inequality in (70) with 4 = a,
C = ccg, and h replaced by hy. It satisfies the first inequality with h
replaced by c. Hence, by Lemma A.2,

log (3) < us < log ( aVol(X) ) c(es+cx) aVol(E)‘

J5 hs dvoly [ hiss dvoly

This proves Step 2.



Step 3. We prove the proposition.

For h € H and z € X denote by h, : S — R the function h,(z) := h(z,z)
and let T, : R — W2P(S) be the map which assigns to every t € R the
unique solution u = Tj,_(t) € W2P(S) of (71) with h replaced by h,. Then
every solution u : ¥ x S — R of (73) satisfies

w(z,-) = Th. (us(2))-
By Proposition A.3, the map H x & x R — W?2P(S) : (h,z,t) — Tp,(t) is

continuous. Since H is compact it follows that there exists an € > 0 such
that

heH, z€%, §<e <ot = [ The ()] oo sy < log(e)]-

This implies ¢ < ¥ < ¢! for every h € H and every solution u of (73). The
inequality for a — d5,dsus now follows from Step 1. O

Proof of Theorem A.1. The proof has four steps.
Step 1. It suffices to prove the theorem if f is constant.

Let vy € W2P(X) be a solution of the equation
ds,d f ! / fs dvol
v =fu—a Q= ——c0 o
and let v € C9(%, W?2P(S)) be the unique solution of the equation

1
dsdgv = f — fx, —_— dvolg = vy.
sdsv=f—fs VOI(S)/SU volg = vy
This equation is understood pointwise for z € 3. Then v is continuous and
d*gdzvz + dgdsv =f—a.

Note that if f is smooth then so is v. Moreover, u is a solution of (73) with
h replaced by eVh if and only if u + v is a solution of (69).

Step 2. Let h € C°(S) such that h > 0 and define fr, : R = R by

1

fu(t) = —VOI(S) /Seuhdvols,



where u € WP(S) is the unique solution of (71). Then fi(t) > 0 for every
t € R with equality if and only if h = 0.

Let u € W?2P(S) be the unique solution of (71) and & € W2P(S) be the
unique solution of the equation

1 1
< d uhe = —— [ e*hedvol —— [ tdvolg =1,
sds& +ethe Vol(S)/S6 ¢ dvols, Vol(S)/Sé VoS

Then

fa(t) = !

1 , ,
’ 1s = Fei(s) “ g > 0.
Vol(5) /Se h dvols = gy /S (1ds¢[? +evh |¢[2) dvols > 0

Equality implies that £ = 1 and h = 0.

Step 3. Given a nonzero continuous function h : ¥ x S — [0,00) define
Fp: WEP(E) — LP(X) by

Fu(us)(2) = dydsus(2) + fa, (us(2))
for z € B, where h, := h(z,) € C%(S). Then dFy(ux) : WHP() — LP(%)
is a Banach space isomorphism for every uy € W2P(X).
This follows directly from Step 2.
Step 4. We prove the theorem.

By Step 1 we may assume f = a. Assume first that h = 1. We claim that
in this case u = log(a) is the only solution of (73). To see this, note that, by
Proposition A.3, the restriction of u to each fibre {2} x S is constant, hence
u = uy, and dydyuy + e* = a, and hence, again by Proposition A.3, u =
ux, = log(a). Now let h € C%(Z x S) be any nonzero nonnegative function.
Note that Fj,(uy) = a iff u is a solution of (73). Define h. € C°(Z x S) by
he := (1 — €)h + ¢ and consider the set M C [0,1] x W?P(X) given by

M= {(g,up)|0< e <1, uy € WHP(S), Fp(ux) =a}.

By Step 3, this is a 1-manifold with boundary and the projection M —
[0,1] : (e,ux) + € is a submersion. To prove that M is compact note that,
by Proposition A.4, there exists a constant ¢ > 0 such that

”uZHW?m <c

for every (e,ux) € M. Hence every sequence (¢;,u;) € M has a subsequence
such that ¢; converges and u; converges in C9(X). The equation

d3dsui(2) + fr, . (ui(2)) = a



now shows that u; converges in W?P?(%). Hence M is compact and so the
number #F;- '(a) is independent of . For ¢ = 1 we have seen that this
number is one. This proves the existence and uniqueness statement.

Now suppose that h is smooth. Then the function ¥ x R — R : (2,1) —
fn.(t) is smooth and hence, by a standard elliptic bootstrapping argument,
the unique solution uy; : ¥ — R of the equation

ddsus(2) + fa, (us(z)) = a

is smooth. Hence, by Lemma A.2, the unique solution u : ¥ x S — R of the
equation

1 1
d&d “h = ——— “h dvol —_— dvolg =
sasu +e Vol(S)/Se volg, Vol(S)/Su volg = uy,

is smooth. This proves the theorem. O
B. The local slice theorem.

Let G be a compact Lie group and P — X be a principal G-bundle over
a compact n-manifold X. For p > n/2 denote by GFt1P = GE+LP(P) the
space of all W¥tlP-gections of the bundle P x,q G — X. Fix a smooth
reference connection A € A(P) and denote by

A2 (P)i={A+alae WX, T"X @ gp)}

the space of W'P-connections. This space is independent of the connec-
tion A.

Theorem B.1. Let p,q be positive real number such that

np

(74) q2p>ﬁ, q>n, ifp<n then g < ——.
n—p

2

Then, for every Ag € AYP(P) and every positive constant co, there erist
positive constants ¢ and § such that the following holds. If A € AYP(P)
satisfies

A= Aollwrr <co,  [[A— Aol <6
then there erists a gauge transformation g € G*P(P) such that

10(g"A—Ag) =0
and

lg"A = Alla < cllA=Aollar 9" A~ Alwio < cllA= Aol



Lemma B.2. Let p,q,r be positive real numbers such that

TSp’ T<q1 -+ -< -+
D
Then there exists a constant ¢ > 0 such that

Ifgllwrr < cllFllwre lgllwa -

for f,g € C(R™). In particular, this holds when p and q satisfy (74) and
r = p. It also holds when p=q =1 > n.

Proof. By H"tler’s inequality and the product rule, we have

“fg”Wlw < Hf“WLP ||g||L’"P/(P—T) + Hf”[,rq/(q—r) ”g”WLq .

If ¢ > n the Sobolev embedding theorem asserts that the L™/ (P~")-norm of
g can be estimated from above by the W1%-norm. The same holds for ¢ = n
since then it follows from the hypotheses that p > r. If ¢ < n we have r < p

and . .
rp (1 1Y\ < 1 1\ nq
p—r \r p ¢ n) n-gq

and hence the L™ (P=")-norm of g can again be estimated from above by
the W'%-norm. Similarly, the L"%/(¢=")-norm of f can again be estimated
from above by the W!1P-norm. O

Lemma B.3. If A ¢ AY(P) and p > n/2 then the following holds for
every r > 1.

(i) If p < n assume in addition r < np/(n — p). Then the operator d :
Wbh(X,gp) — L"(X,T*X @ gp) is a compact perturbation of d ;.
Similarly for d’.

(ii) For r < p the operator da : W>"(X,gp) — WI'(X,T*X @ gp) is a
compact perturbation of d ;. Similarly for d’y.

(iif) For r < p the operator d%da : W>"(X,gp) — L" (X, gp) is a compact
perturbation of d}d i

Proof. For ¢ € Q%(X,gp) and o € QY(X, gp) we have

A

dal —d;€ = [(A— A),¢], djo — dija = x[x(A — A) A al.



Assume first that p < n. Then r < np/(n — p) and hence there exists
a real number s > 1 such that 1/s + (n — p)/np = 1/r. Since 2p < n it
follows that s < nr/(n — r) whenever r < n. Hence the Sobolev embedding
theorem asserts that the inclusion W (X, gp) < L*(X, gp) is compact. It
also asserts that A — A € L""/("P)(X,T*X ® gp) and hence, by H tler’s
inequality, the operator L*(X, gp) — L' (X, T*X @ gp) : € — [(A — A), €] is
bounded. Hence the composition with the inclusion W < L# is compact.
If p > n choose any number s > 7 such that the inclusion W' (X, gp) —
L*(X, gp) is compact and use the fact that A — Ae LTS/(S_”)(X, T*X ®gp).
This proves (i).

We prove (ii). By Lemma B.2 the operator

Wh(X,gp) = W (X, T*X @ gp) : € = [(A - 4),¢]
is bounded whenever » < p, r < s,and 1/p+1/s < 1/n+1/r. If r > n then
p > n and we may choose s = r. If r < n then, since 2p > n, we have
1 n—r 1 1
+

p nr n o or

and hence may choose s such that » < s < nr/(n —r). In either case
the Sobolev embedding theorem asserts that the inclusion W2" (X, gp) <
Whs(X,gp) is compact. This proves (ii). Assertion (iii) follows directly
from (i) and (ii). O

Lemma B.4. Suppose p and q satisfy (74) and let A € AYP(P). Then
there exists a constant ¢ = ¢(A) = ¢(A,p,q) > 0 such that, for every a €
WLP(X,T*X ® gp), there exists a £ € W*P(X, gp) such that

(75) dhdaé = dha
and
(76) I€llw=r < clldaallrp [€llwra < clledlpq -

Proof. Let r :== q/(q¢ — 1) so that

q r
By Lemma B.3, the operator d4 : Wl’S(X, gr) — L*(X,T*X @ gp) is a
compact perturbation of d; for s = g and s = r. Let

WH(X, gp) == (W (X, gp))"



and denote by d* : LY(X,T*X ® gp) — W~19(X, gp) the dual operator of
da:WI(X,gp) — L"(X, T*X ® gp). Then

(77) dida: WH(X, gp) = W (X, gp)

is a compact perturbation of d*d; and hence is a Fredholm operator of
index zero. Likewise, it follows from Lemma B.3 that the operator

(78) dida: WHP(X,gp) — LP(X,gp)

is a compact perturbation of d*d; and hence is also a Fredholm operator
of index zero. The operator (77) is a natural extension of (78). Taking the
L2-inner product of d*%d ¢ with & for ¢ € W?P(X, gp) we see that the kernel
of (78) is the finite dimensional subspace

HO(X, A) :=ker dy C W*P(X,gp).

The operator (77) has the same kernel, because every ¢ € W4(X, gp) with
daé = 0 lies in W?P(X,gp). Choose a complement E’ of H%(X, A) in the
Sobolev space W19(X, gp). Then

E:=E NnW?*(X,gp)

is a complement of H%(X, A) in W2P(X,gp). Let F' denote the image of
the operator d% : LY(X,T*X ®gp) — W~19(X, gp) and F denote the image
of the operator d% : WHP(X,T*X ® gp) — LP(X,gp). Then H(X,A) C
WL (X, gp) annihilates F’ and is L?-orthogonal to F. Moreover F’ contains
the image of (77) and F' contains the image of (78). Hence, for dimensional
reasons, F” is equal to the image of (77) and F is equal to the image of (78).
Thus d%d, is a Banach space isomorphism from E to F and extends to a
Banach space isomorphism from E’ to F'

Now let o € WHP(X,T*X @ gp). Then d%« € F and hence there exists
a unique ¢ € E that satisfies (75). By the open mapping theorem, this
solution of (75) satisfies

1€lly2 < H(dj;dA)_l”a(F,E) el s -
Since £ € E’ it also satisfies

€llwea < 11 @3da) ™| g oy Naelly-sa-



Now

,d*a 1,r -1,
||df404||w—1,q — sup <77 A >W JW—la
n#0 Il
(dam, ) 1a
= sup——
n#£0 ”n”wﬂw
HdAn”LT Ha”Lq

n#£0 Hﬂ”wﬂw
< cllali,

VAN

where the constant ¢ depends only on A and r. Hence ¢ satisfies (76). O
Lemma B.5. Suppose p and q satisfy (74) and fix a constant cg > 0. Then
there exists a constant ¢ = c(co,p,q) > 0 such that the following holds. If
& € W2P(X,gp) satisfies ||€||y2p < co then, for every A € AYP(P), we have

lexp(€) A — A= datllyrn < e (14 A=A Vlhyra €z

lexp(€)" A = Allwip < (14 |[4=4|| ) lelwer

lexp(€) A= Al < e (1+|a=4 ) o

Proof. The function a(t) := exp(t€)* A — A satisfies the differential equation
a(t) = da& — [€, a(t)] and a(0) = 0. Hence

alt) = ;%m@%s,
and hence
(79) exp(€) A — A —dyf = ki:l (]i_j)llzlad(g)deg.
Now
ldagllze < ldzéllya + A= D.gl|
< fdséll. + ] A=A el
<

c(1+|

A=A ) el



and, by Lemma B.2,

ldaglyrs < gl + 1A~ Al
< gl +¢ A=A el
< (1ra-4] ) Ml
Hence the assertion follows from (79) and Lemma B.2. O

Proof of Theorem B.1. The proof is by Newton’s iteration.

Step 1. Fiz a connection Ay € AYP(P) and a constant co > 0. Let c(Ao)
be the constant of Lemma B.4 with A replaced by Ag. Then there exists a
constant ¢ = c1(Aq,co) such that the following holds. If A € AYP(P) such
that

1A = Aol < co

and £ € W?P(X, gp) is a solution of the equation
d*AodAOé' = djﬂo (AO - A)

such that
(80)
[€llwzs < c(Ao) [[diag (A= A0)][ s €llwra < c(Ao) |14 = Aoll 4,
then g := exp(§) and Ay := g* A satisfy
(81) |41 = Aol o + ||, (A1 = Ao)|| L, < c1 (1A = Aol
(82) [ A1 = Aollyrr < c1[|A = Aollyrs -

By Lemma B.3 and (80), we have

”§||W2’P < ¢ ||A - A0||W1,p < cpca.

for some constant ca = ca(Ap) > 0. Now let c¢3 be the constant of
Lemma B.5, with A replaced by Ay and ¢ replaced by c¢gce. Then

[A1 — Allyrs = [lg"A — Ally1s
TR
< caes (1 +eo+ HAO - Ale,p> 1A = Aollys
< cal|A— Aollyrs



for some constant ¢4 = c4( Ao, co). This proves (82). Similarly,
A1 = Al < e51|A = Aol -

for some constant c5 = ¢5( Ao, co).
Now consider the identity

&, (A — Ag) = *A — Ag)

109
—dAo( TA—A) +d (A - Ao)
=dy, (9"A — A —da€)

=dy,(g"A — A—da&) + dj, [(A — Ao) NE].

‘We have
dy,[(A— Ag) NE] = [dy, (A — Ag) NE] 4 *[da,& A *(A — Ag)].

Let r := gp/(q — p) so that

If p < n then r < np/(n — p) and hence there is a Sobolev embedding
W2P — WLT. For p > n such an embedding exists as well. Hence, in either
case,

44, [(4 = Ao) A €]
< o (4 = A0 e+ 14 = Aol il
< C7<||df40(x4 = Ao)| 1 I€llwra + 114 = Aol| g ||€||w2m)
< esl|A = Aollyrp |14 = Aolla -

Moreover, it follows from Lemma B.5 that

[ (9" A = A= da€)| 1, < eollg™A — A= dallyrn

<ew (1+]A=4] ) Il Il
<ecn [[A = Aollyip |14 = Aol -

These two estimates imply

(|, (A1 — Ao)||;, < coles + c1) [|A — Aol 1q



and this proves (81).
Step 2. Define the sequence Ag, As, ... inductively by

Avi1=g,4, g =-exp(&),
where &, € W P(X, gp) is chosen such that
da,"dagby = da," (Ao — Av)
and, with ¢ = ¢(Ap),
83)  Névllwen < cldhg(A — A0)| o N€ullwra < cllAv — Aol -

There exist constants § > 0 and c12 > 0 such that the following holds. If

|A— Aol <6
then, for everyv > 1,
(84) ([, (Av = Ao)|| p < 2" e | A = Aol
(85) 14y = Aollyre < 2coc1,
(86) (|40 (A1 — Ao)|| 1 < 12 [[ Ay — Aol a ldae™ (A — Ao)l| o -

For v = 1 the inequalities (84) and (85) were established in Step 1. Let
v > 1 and assume, by induction, that (84) and (85) have been established
with v replaced by j € {1,...,v}. We prove first that (86) holds under these
assumptions. As in the proof of Step 1, we have

B (Aver — A0) = & (g3 Ay — Ay — da &) + ' [(Ay — Ao) A&,
and
[, [(A — A0) A&
< [ (s = A0)| s [6elhwna + 1w = Aol 16,
< cra |4y = Aoll o | diss (A — Ao)| 1, -
It follows from (83), the induction hypothesis, and Lemma B.3, that

(87) 1€llyar < c(Ao) ||, (A5 — A0)]| 1
< (Ao 145 — Aol
< 2c¢perc(Ao)



for j = 1,...,v. Now we can apply Lemma B.5, with ¢y replaced by
2¢pc1c' (Ag), to obtain, for some positive constant c15 = c15(Ao, o),

Hd:kélo(gu*Au - AI/ - dAyé‘V)HLp

S W 1 L o <

< c16 || Ay — Aol ”df%(A - AO)“LP )

where ¢16 := ¢(Ao)?c15(1 + 2coct + ||Ao — Al|wrp). Hence (86) holds with
C12 = C14 + C16-
Now we prove that (85) holds with v replaced by v + 1. By (87), the

section ¢ = ; satisfies the hypotheses of Lemma B.5 for j = 1,...,v, with
co replaced by 2cge1c’ (Ag). Hence

451 = Ayllyns < (14 s = 4], ) 165w
< o(Ap)ers <1 + 45 - AHWLP) 5, (45 — 40)]|
for j =1,...,v. Hence, by (84),
(88) 141 = Ajllyre < 1727 |A = Aol 4 -
for j =1,...,v, where c17 := 2¢(Ag)es(1 + 2coer + || Ao — Allwrw)er. If
17 |4 = Aol e < cocn

then

14
[Avi1 = Aollywre < D IAj41 — Ajllyas + A1 — Aol

j=1
< arllA—Aollp + e [[A = Aollyrs
< 2c¢qeq.
This proves (85) with v replaced by v + 1.

Now we shall use (86) and the induction hypothesis to prove that (84)
holds with v replaced by v + 1. Since (88) holds for j = 1,...,v — 1, we



have

v—1
(89) |4y = Aoll e <D 14541 — Ajll L + [ A1 = Aol o
j=1
v—1
<> NAjr = Ajllyrs + 141 = Aol
=1

< (ci7cig + 1) ||A — Aol| 1 -

Here c;g is the constant in the Sobolev embedding WP < L9, If

1
cia(crrers +e1) [|[A — Aol < 3

then, by (86),
[, (Avs1 = Ao)| 1 < 21| Ay = Aol 1o ||, (Av — Ao)]|
< cra(errers + 1) |4 = Aoll a ||y (A — A0) | 1
< 2 3 (40 = 40)] -
This proves (84) with v replaced by v + 1.

Step 3. We prove the theorem.

By (88), the sequence A, converges strongly in the W!P-norm and the limit
connection

Ao = lim A, € AYP(P)

V—00

satisfies

o
Ao = Aollyre < > 14541 — Ajllyrs < (e1 4 crreis) [A = Aollyprs -
=0

Moreover, by (89),

[Ace = Aolla < (c1 + crrers) | A — Aol 1a
and, by (84),

diyy(Ase — Ag) = Vli_)rgo dy, (A, — Ag) = 0.

Write
Ay, = h A, hy, = 99192 9o



Consider the identity
(90) dh, = h, A, — Ah,

in a local frame. The right hand side of (90) is bounded in L9 and hence
h, is bounded in W14, Now the product inequality of Lemma B.2 with
r = p shows that h,A, — Ah, is bounded in WP and, by (90), h, is
bounded in W?P. Hence h, has a subsequence, still denoted by h,,, which
converges in the W1 %-norm. Since 4, converges in the WP-norm it follows
from Lemma B.2 with r = p that h, A, — Ah, converges in the W' P-norm.
By (90), h,, converges in the W2P-norm. The limit

heo := lim h, € G*P(P)

V—r00
satisfies
Ay = lim hjA = b A.
V—00
This proves the theorem. O
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