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1 Introduction

This paper outlines the construction of invariants of Hamiltonian group actions on sym-
plectic manifolds. The invariants are derived from the solutions of a nonlinear first-order
elliptic partial differential equation involving the Cauchy-Riemann operator, the curva-
ture, and the moment map(see (17)). They are related to the Gromov invariants of the
reduced spaces.

Our motivation arises from the proof of the Atiyah-Floer conjecture in [17], [18],
and [19], which deals with the relation between holomorphic curves © — Ms in the mod-
uli space Mg of flat connections over a Riemann surface S and anti-self-dual instantons
over the 4-manifold X x S. In [3] Atiyah and Bott interpret the space Ms as a symplectic
quotient of the space As of connections on S by the action of the group Gs of gauge trans-
formations. The various terms in the anti-self-duality equations over X x S (see (64)) can
be interpreted symplectically. Hence they should give rise to meaningful equations in a
context where the space Ag is replaced by a finite-dimensional symplectic manifold M
and the gauge group Gs by a compact Lie group G with a Hamiltonian action on M. In this
paper we show how the resulting equations give rise to invariants of Hamiltonian group
actions. The same adiabatic limit argument as in [19] then leads to a correspondence
between these invariants and the Gromov-Witten invariants of the quotient M /G (see
Conjecture 3.6). This correspondence is the subject of the Ph.D. thesis [27] of the second
author.

In Section 2 we review the relevant background material about Hamiltonian
groupactions, gauge theory, equivariant cohomology, and holomorthic curves in sym-
plectic quotients. The heart of this paper is Section 3, where we discuss the equations
and their properties, outline the construction of the invariants, and indicate several
potential applications. One interesting point is a result about the compactness of the
moduli spaces (see Proposition 3.5) which has no analogue for moduli spaces of holo-
morphic curves. Hence the invariants should lead in many cases to a definition of the
Gromov-Witten invariants over the integers. Via the adiabatic limits and wall-crossing
arguments, the invariants should also give rise to relations between the Gromov-Witten
invariants of symplectic quotients at different values of the moment map. This is remi-

niscent of the work of Martin [47],[48], [49] about the ordinary cohomology of symplectic
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quotients. Section 4 deals with the corresponding Floer theory, and Section 5 discusses
several examples.

Recently, Ignasi Mundet discovered the equations (17) independently, starting
from a different angle, and in his thesis [55] developed a program along similar lines, as
outlined in this paper. For M = C™ the equations also appeared in the physics literature

(starting from Witten's work in [80]), where they are known as gauged sigma models.

2 Background
2.1 Hamiltonian groupactions

Let (M, w) be a symplectic manifold, and let G be a compact connected Lie group that
acts on M by symplectomorphisms. Let g = Lie(G) denote the Lie algebra of G, and, for
every & € g, denote by Xg : M — TM the vector field whose flow is given by the action of
the 1-parameter subgroup generated by &. We assume throughout that the Lie algebra
g carries an invariant inner product (-, -). The action of G on M is called Hamiltonian if

there exists an equivariant function u: M — g such that, for every & € g,

d(p, &) = u(Xe)w. (1)

This means that X; is the Hamiltonian vector field of the function (i, £). The function p
is called a moment map.

Suppose that T is a regular value of u and that the isotropy subgroup
Gr={geGlt=gtg '}
acts freely on p~! (). Then the Marsden-Weinstein quotient

p(7)
G

M//G(T) =

is a smooth manifold and it inherits the symplectic structure from M. To be more precise,

for x € w1 (1), there is a chain complex
0—ge 25 TM 20 0 o, 2)

where L, : g — TyM is defined by L& = Xg(x), and

gr ={tL gt 1 =0}
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is the Lie algebra of G.. The image of L, is the symplectic complement of the kernel of
dp(x). Moreover, the formula

du() L& = [&, n(x)]

shows that im L, Nker du(x) = Lyg.. Thus the quotient ker du(x)/Lyg. inherits the sym-
plectic structure of T,M, and it can be identified with the tangent space of M /G(7) at

[x].

Remark 2.1. (i) Anorbit O C gunderthe adjoint action admits a natural Kéhler structure.

The tangent space of O at tis

T.0={[§,1|E€g} =07,

and the symplectic form is given by

o< ([&, 1), M, 7]) = (T, [E,M]).

An explicit formula for the complex structure uses the decomposition of T.0O into the

eigenspaces

Vo = {Ev €9 | [T> [T, E']] = _OLZE'}

for « > 0. Let g — Vy : & — &4 denote the orthogonal projection onto V,, and define
Ar:g—gby

AE =) aka,

where the sum runs over all « > 0 such that —a? is an eigenvalue of ad(t)%. Then the

complex structure on T.0O is given by

1
]TE = ; &[T» E;oc]) ]T[En T] = ATE-
The adjoint action of G on O is Hamiltonian, and one checks easily that the inclusion
O < g is a moment mapfor this action.
(ii) If T € O, then the quotient M//G(T) can be naturally identified with the sym-
plectic quotient of M x O at the zero value of the moment map. Here the product M x O is

equipped with the symplectic form w — o, and the moment map py : M x O — g is given
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by po(x,T) = p(x) — 7. Hence (M x 0)/G = pn 1(0)/G = p ' (1)/G: = M//G(1) for T € O.
If u(x) = 1, then

{(vyn) € M x T0 | du(x)v =n}
{(Leg [E1) | £ € g}

T,y (M < 0)/G =

Equivalently, this tangent space can be identified with the space of all pairs (v,n) €
TyM x T O that satisfy

dp(x)v=mn, LIv+]Jm=0, (3)

where the adjoint operator L, * is understood with respect to a G-invariant inner product
that arises from a G-invariant almost complex structure ] on M that is compatible with
w. On the other hand,

ker dp(x)
{L& | [E, =0}

Ty M/G(T) =
The “harmonic” representative of a tangent vector v € ker du(x) is given by

mv) = (v+ L& [E1),  LLE+HAL+LIv=0. (4)

The formula w(v,w) = w(v + L& w+ Lyn) — (1, [E,1]) for v,w € ker du(x) shows that the
symplectic forms agree.

(iii) Assume that (M, w, ]) is a Kdhler manifold and that the action of G preserves
the Kéhler structure. Then the G-action extends to an action of the complexified group
G¢ that preserves the complex structure (cf. [33]). The extended action does not preserve
the Kéhler form. Suppose that T € g is a central element, and denote

MT = {x € M |dg € G° s.t. u(gx) = T}.

Then the complex quotient M™/G¢ can be naturally identified with M //G(t). This means
that if p(gx) = pu(x) = Tt for g € G¢ and x € M, then gx lies in the G-orbit of x. The
proof of this observation relies on the fact that any g € G can be written in the form
g = exp(in)h, where h € G andn € g. Now consider the path [0, 1] — M : x(t) = exp(itn)hx
running from x(0) = hx to x(1) = gx. This path satisfies

x(t) = TXq (x(t)),
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and hence

S (0), ) = (@)X (), ) = [Xa (x(6)

The last identity follows from the definition of the moment map. Since T is a central
element, we have n(x(0)) = n(x(1)); hence x(t) is independent of t, and hence gx = hx € Gx.

(iv) The study of complex quotients of the form MT/G¢ and their relation to
the Marsden-Weinstein quotients is the subject of geometric invariant theory (cf. [54],
[11], [14], and [15]). In his beautiful recent paper [14], Donaldson treats the infinite-
dimensional case, where G is replaced by the group of volume-preserving diffeomor-
phisms of a manifold S and where M is replaced by the space of maps from S to M. In
[15] Donaldson discusses another interesting case, where G is the groupof symgecto-
morphisms and M is the manifold of almost complex structures compatible with the
given symplectic form.

(v) The condition that G. act freely on u~! (t) is rather strong. In general, if Tis a
regular value of p, then the action of G, on pu~! (1) has finite-isotropy subgroups and the
quotient M /G(t) is a symplectic orbifold. Much of the dicussion in this paper extends

to that case.

2.2 Connections and curvature

Let X be a compact-oriented smooth manifold, and let P — X be a principal G-bundle.
We think of G as acting on P on the right and denote the infinitesimal action by p& € T,P
forp € P and & € g. A connection on P is an equivariant horizontal subbundle of TP. Any
such subbundle determines an equivariant 1-form A € Q! (P, g) whose kernels are the

horizontal subspaces and which identifies the vertical subspaces with g. Thus
Aph(\)h) = h_lAP (\))h., Ap (pa) =g

forpeP,veT,P,heG, and§ € g. A 1-form A € Q' (P, g) that satisfies these conditions
is called a connection 1-form, and the space of connection 1-forms is denoted by A(P).
A gauge transformation of P is a smooth function g : P — G that is equivariant with
respect to the adjoint action of G on itself; that is, g(ph) = h~!g(p)hforp € Pand h € G.
The groupof gauge transformations is denoted by § = G(P). It acts on the left on A(P) by

9:A =—(dg)g ' +9gAg .

Thus g.A is the pushforward of A under the automorphism P — P : p — pg(p). Let
QF,(P, g) denote the space of equivariant and horizontal k-forms on P with values in g.
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Any such form descends to a k-form on X with values in the adjoint bundle gp := P X,q g-
Every connection A € A(P) gives rise to a covariant derivative operator d : QX (P, g) —
QX1 (P, g) given by

daoe=doa+ [AAA.

It is interesting to note that Q2,(P, g) is the Lie algebra of the gauge group, Q. (P, g) is
the tangent space of the space of connections, and the infinitesimal action of Lie(G(P))
on A(P) is given by minus the covariant derivative.

Now suppose that X = X is a compact Riemann surface. Then the space A(P)

carries a natural symplectic form

Qe B) = L«m B).

Atiyah and Bott [3] noted that the action of §(P) on A(P) is Hamiltonian and that a

moment mapis given by the curvature
1
Fa = dA + E[A/\A] € Q2,(P,g).

Thus the Marsden-Weinstein quotient is the moduli space of gauge equivalence classes
of flat connections on P. The analogue of the chain complex (2) for T = 0 in gauge theory

is given by
a a
0 — Q(P,g) = QL4(Pg) = Q%(P,g) — 0. (5)

Here da : Q; — Ql; is the infinitesimal action of the gauge group, and da : Ql, — Q2
is the differential of the function A(P) — Q2, : A > Fa. The formula dadat = [FA AT]

shows that da o da = 0 whenever A is flat.

2.3 Equivariant cohomology
Let EG be a contractible space on which the group G acts freely. The equivariant
(co)homology of a G-space M is defined by

H& (M;R) = H*(M x ¢ EG;R),

HS (M;R) = H,(M x¢ EG;R).

Since there is a natural projection M xg EG — EG /G =: BG, H§ (M;R) is a module over
H*(BG;R). Explicit representatives of equivariant homology classes can be constructed
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as follows. Let X be a compact-oriented smooth k-manifold (without boundary), and
let m: P — X be a principal G-bundle. An equivariant map u : P — M determines an
equivariant homology class

[u] = uf (n€) " [X] € HE(M;2).
Here uS : HS(P;Z) — HE(M;Z) and =€ : HE(P;Z) — H.(X;Z) denote the induced homo-
morphisms on equivariant homology, and [X] € Hy(X;Z) denotes the fundamental class.

Since G acts freely on P, 7€ is an isomorphism.

Remark 2.2. For every principal bundle P — X, there exists an equivariant map ¢ : P —
EG. The map P - M x EG : p — (u(p), d(p)) is equivariant and descends to a function
f: X — M xg EG that satisfies

. [X] = [u].

To see this, consider the maps ¢S : X — PxgEGandt® : PxgEG — X, given by ¢ € (n(p)) =
[p, d(p)] and 7€ ([p, e]) = 7(p). Since EG is contractible, € is a homotopy inverse of 7€,
Hence ¢ is the inverse of €. Moreover, f = u® o ¢S, where u® : P xg EG — M xg EG
is given by u®([p, €]) = [u(p), e]. Hence f.[X] = uSpE[X] = [u].

Proposition 2.1. Let M be a finite-dimensional smooth manifold, and let G be a compact
Lie groupthat acts smoothly on M.

(i) For every 2-dimensional equivariant homology class B € HS (M;Z), there ex-
ists a compact-oriented Riemann surface X, a principal bundle P — X, and an equivariant
map u: P — M, such that [u] = B.

(ii) Suppose that G is connected. Let P — X and P’ — X be principal G-bundles
over £, and letu: P — M, u' : P’ — M be equivariant maps such that [u] = [u'] €
H$ (M;Z). Then P is isomorphic to P’. O

Proof. Given B, choose a compact-oriented Riemann surface X andamapf: X — MxgEG
such that f.[X] = B. Note that M x EG is a principal G-bundle over M x ¢ EG, and denote
by P — X the pullback bundle of f. Thus

P={(z,x,e) e Zx M X EG | [x, €] = f(2)}.

There are two equivariant maps u: P — M and ¢ : P — EG, given by

u(z, x, e) = x, b(z,x,e) =e.
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By definition, the map (u,¢) : P - M x EG descends to f. Hence, by Remark 2.2, [u] =
f«[Z] = B. This proves (i).

To prove (ii), choose two equivariant maps ¢ : P — EG and ¢’ : P’ — EG. Define
f,f’: L - M xgEG as themaps induced by (1, $) : P - MxEGand (u',¢’) : P’ - M xEG.
Then, by Remark 2.2,

(2] = [u] = '] = f[Z].

Consider the induced maps ¢ : £ — BG and ¢’ : £ — BG. They can be expressed in the
form ¢ =mofand ¢’ =mo f', where m: M xg EG — BG denotes the obvious projection.
Hence ¢ and ¢’ are homologous; that is, ¢.[Z] = ¢/ [Z]. Since G is connected, BG is simply
connected. Hence two maps £ — BG are homologous if and only if they are homotopic.
(To see this, note that every mapfrom X to a simply connected space factors, up to
homotopy, through a map of degree 1 from X to S2.) This shows that our maps ¢ and ¢’

are homotopic. Hence P and P’ are isomorphic. This proves the proposition. |

Assertion (ii) in Proposition 2.1 can be restated as follows. An equivariant ho-
mology class B € HS (M;Z) descends to a homology class b € H,(BG;Z), and the latter
determines an isomorphism class of principal G-bundles P — X (over any orientable
Riemann surface).

The de Rham model of equivariant cohomology is defined as follows. Let Q¢ (M)
denote the space of equivariant polynomials from g to Q*(M). To be more explicit, choose
abasis e,...,en of g and write § = Y ", &'e; € g. Then any « € Q% (M) can be written

in the form

a(E) =) Elay,

1
where I = (i,...,1im), &L = ()1 --- (™) and «; € Q%2I1(M). The equivariance of the

function «: g — Q*(M) can be expressed in the form

Da(&)[E,n] = Lx, x(&)

for &, m € g. Here the linear operator Dx(£) : g — Q*(M) denotes the differential of the
function g — Q*(M) : § — «(&) at the point &. The differential dg : QK (M) — Q& (M)
is given by

(dgo)(£) = d(x(8)) + uXe)a(E) = Y & (dor + U(Xg)oxr).

I
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Cartan's formula asserts that dg o dg = 0. The equivariant version of de Rham'’s theorem
asserts that, for every smooth manifold M with a smooth G-action, there is a natural

isomorphism (see [39]):

HE (MiR) = kerdg : Q& (M) — QE“(M)'
imdg : QF (M) — QE(M)

Next we describe the pairing between an equivariant cohomology class, represented by
a G-closed k-form « € QF (M), and an equivariant homology class, represented by an
equivariant map u: P — M defined on the total space of a principal G-bundle : P — X
over a compact-oriented smooth k-manifold X. An explicit formula for this pairing relies
on a G-connection A € A(P) and on the covariant derivative of u determined by A. This

covariant derivative is defined as follows. Think of 1 as a section of the associated bundle
M =P XgM — X

with fibres diffeomorphic to M. The connection A on P determines a connection on this

bundle. More precisely, the tangent space of M at [p, x] is the quotient

—~ T,Px T, M
T M = L x ,
P T T pe, X () £ € 0}

the vertical space consists of equivalence classes of the form [0, w] with w € T,M, and the
horizontal space consists of those equivalence classes [v,w], wherev € T,P andw € TM
satisfy w + Xa, (v) (x) = 0.! The covariant derivative of a section u: P — M with respect

to the connection A is the 1-form dau: TP — u*TM given by

dau(p)v = du(p)v + Xa, ) (u(p)) (6)

(the vertical part of the vector [v, du(p)v] € Ty, ) P X M). This 1-form is obviously
G-equivariant, and it satisfies dau(p)pé = O for every & € g. Hence dau descends to a
1-form on X with values in the bundle uw*TM/G.

Given a basis e;, ..., em of g and an equivariant k-form &« =} ; tlag € Q'é (M) as
above, we define a(u, A) € Q¥(P) by

a(u,A) = ((daw)*a)(Fa) = ) w' A(dau) o
1

In the terminology of [51, Chapter 6] the connection form on Mis induced by the 2-form w—d(p, A) on Px M
whenever (M, w, p) is a symplectic manifold with a Hamiltonian group action.
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Here Fa = Y ; w'e; and w! = (w!') A+ A (w™)™. Since a(u, A) € Q¥(P) is equivariant
and horizontal (see Proposition 2.2), it descends to a k-form on X, still denoted by a(u, A).
The pairing between the equivariant cohomology class of « and the equivariant homology

class of u is given by

([od, [u]) = L x(u, A).

That this numberis well defined and depends only on the equivariant cohomology class of

o and on the homotopy class of the pair (u, A) is the content of the following proposition.

Proposition 2.2. Let M be a smooth G-manifold, and let w : P — X be a principal G-
bundle over a compact smooth manifold X. Let « € Q% (M) and B € Q5™ (M).

(i) Let A € A(P) and suppose that u: P — M is an equivariant smooth function.
Then o(u,A) € QY(P) is equivariant and horizontal.

(ii) If dgx = B, then da(u, A) = B(u, A).

(iii) Let Ag, A; € A(P) and suppose that ug,u; : P - M are equivariantly homo-

topic. Then a(u;,A;) — «(ug, Ag) is an exact £-form on X. O

Proof. The form «(u, A) is obviously horizontal. We prove that it is equivariant. Denote
by c the structure constants of g. This means that

lei, e Z Cijek.

Then the equivariance of « can be expressed in the form
Z cljElon(8) = Lx., x(&),

where oy == dxoc: g — Q*(M). Hence, with Fa =w =3, wte; € Q?(P,g), it follows that
Z cKwt Ao (u,A) = (Lx., o) (u, A). (7)
ik

Moreover, with A = } ate; € Q'(P,g), the Bianchi identity daFa = O takes the form
= Z ckwt Ad (8)
= X .
i,j

Forj =1,...,m, denote by v; € Vect(P) the vector field p + pe;. Then al(v;) = 6} Hence,
by (8),

Ly, w* = ((v;)dw™ Zcuw
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and hence, by (7),

Z (Lyv; ") A age(u, A) = (Lx., o) (u,A) = — Z W' ALy, ((dau) o).
K 1

Here we have used the identity (dAu.)*Lxei op = Ly, ((dauw)* o). It follows that

Ly, a(u, A) = Z(LVi WX A o (1, A) + Z WALy, ((dau)* o) =0,
k I
and hence «(u, A) is equivariant. This proves (i).

The proof of (ii) relies on the following identity, for « € Q%(M),

d((dau)*«) — (dau)*da
= Zwi/\(dAu)*L(Xe.‘)cx—Zai/\(dAu)*LXeicx. 9)

For k = 0,1, the proof of (9) is a computation using w** + 3, ;cKa* A’ and

U(Xey)Lxe, 0 — UXe ) ox, o0 — do(Xey, Xe) = o([Xe,, Xe, ).

For general k, (9) follows easily by induction. With this understood, we obtain

da(u,A) = Z dw® A o (u, A) + Z wiAd((daw)* o)
k I

=) W' A A(daw) Lx, o+ ) w'Ad((dau) )
1, I

— Z w! AW A (daw)*uXe, o + Z Wl A (daw)*dog
1

Lj

= B(u,A).

Here the second identity follows from (7) and (8), the third identity from (9), and the
last identity from dg = B; that is, Y ; &' (det; + ((Xe)ar) = Y ; E'B1. This proves (ii).

We prove (iii). Let R — A(P) : t — A be a smooth family of connections, and let
RxP — M:(t,p) — ut(p) be a smooth family of equivariant functions. Think of the path
t — Ay as a connection A on the bundle P =R x P over X = R x X, and think of the path
t — u, as a function i : P — M. Given a G-closed {-form « € Q% (M), write

a(T,A) =& = o + B Adt € QY(P),

where o, = o(ug, Ay) € QY(P) and B, € Q' 1 (P). By (i), « is horizontal, equivariant, and
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closed. Hence «; and (3, are equivariant and horizontal, «, is closed, and 9, = d3, for
every t. Hence

1

(i, Ay) — or(uto, Ag) = dL B, dt.

Since (3; descends to X for every t, this proves the proposition. |

2.4 J-holomorphic curves

Suppose that (M, w, 1) is a symplectic manifold with a Hamiltonian group action. Denote
by J(M, w, ) the space of all almost complex structures ] on TM which are invariant
under the G-action and compatible with w; that is, w(-,]-) is a Riemannian metric on
M. It follows from [51, Proposition 2.50] that the space J(M, w, 1) is nonempty and
contractible. Namely, there is a natural homotopy equivalence from the (contractible)
space of G-invariant Riemannian metrics on M to the space J(M, w, 1).

An almost complex structure ] € J(M, w, p) determines an almost complex struc-

ture on the quotient

po! ©)

M//G = c

The tangent space of this quotient is given by
T M/G = ker du(x) Nker L.,

and the identity
du(x)] = Lc*

shows that this space is invariant under J. Hence a map u : C — p~!(0) represents a
J-holomorphic curve in M /G if and only if there exist functions ®,¥ : C — g such that

dsu+ X (u) 4 J (9 + Xy(u)) = 0. (10)

Here we denote by s + it the coordinate on C. This equation implies that the vectors
Osu+ Xo (u) and 9:u+ Xy(u) are the unique harmonic representatives of the derivatives

with respect to s and t. Thus they are uniquely determined by the equations

Lo Lu® + Ly *dsu = 0,
Lo Lo¥ + Ly *dqu = 0.
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There is a natural gauge groupof mags g¢:C — G. It acts on triples (u, ®,V¥) by

g*(u, ®,¥) = (g7 'u, g 'dsg + g ' Pg,g ' 3g + g ' Wg).

This action preserves the space of solutions of (10). Note that the action on the space
of 1-forms @ ds + ¥ dt coincides with the action of the gauge groupon the spce of
connections.

The global version of (10) involves principal bundles. Let X be a compact-oriented
Riemann surface with a fixed complex structure Jy. Then a smooth function ¥ — M//G
need not lift to a smooth function into the ambient space M. However, it does lift to
an equivariant function from the total space of a principal G-bundle : P — X into M.
Hence let (u, A) be a pair consisting of an equivariant smooth function u: P — M and a
connection A € A(P). Recall that dau: TP — u*TM is defined by

dau=du+L,A.
Think of dau as a 1-form on X with values in the bundle u*TM/G. This is a complex
vector bundle, and we denote by 9 A (u) € Q%! (Z,u*TM/G) the complex antilinear part

of the 1-form dau. Thus

(dau+Jodauo]y) € Q% (L, u*TM/G).

N| —

dau) =

In local coordinates this is the left-hand side of (10). To make sense of this expression
in the global form, note that Jx acts on the tangent space of £ but not on that of P. The
linear map dau(p) o Js : T,P — Ty) M is defined as follows. Project a vector v € T,P
onto T,y L and then apply Js. Now lift Jxdn(p)v € Ty) Z to a vector in T,P and apply
dau(p). Since dau is horizontal, the resulting vector in T,,) M is independent of the
choice of the lift. To understand the (0, 1)-form 9j A (u) in a different way, consider the
fibre bundle M = P xg M — X, with fibres diffeomorphic to M, and define u: ¥ — M
by w(7(p)) = [p, u(p)]. Now J5z, ], and A determine an almost complex structure JA on K/I,
and 1 is a ] o-holomorphic curve if and only if 9; o (1) = 0. In any case, the global form
of (10) is

opa(w) =0,  p(u)=0. (11)

It follows that A € A(P) is the pullback under u of the connection on the principal bundle
u 1(0) —» M//G that is determined by the metric w(:,J-). Fix an equivariant homology
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class B € HY (M;Z), and denote by

{(w,A)|(11), [u] =B}
S(P)

MY 5 (M, 1)) =

the moduli space of gauge equivalence classes of solutions of (11) which represent the
class B. If B is the image of a class B € H,(M//G;Z) under the natural homomorphism
Hy(M//G;Z) — HS (M;Z), then the solutions of (11) correspond to J-holomorphic curves
in the quotient M //G representing the class B.

Remark 2.3. (i) If T € g is a central element, then we can replace the moment map p by

p — 7. The solutions of

AW =0, R -t (12)

correspond to J-holomorphic curves in the quotient M/ G(7).
(ii) Let O C g be an orbit under the adjoint action, and consider the product M x O
with the moment map pp : M x O — g given by po(x,T) = p(x) — 1. Then (11) takes the

form
6],A(u‘) = 0» 6A(T) = 0\ p’(u) =T, (13)
where u: P —- M and 7: P — O are equivariant maps and

(dAT—]TOdATolz), dAT:dT+[A,T].

N =

oa(T) =

The solutions of (13) again correspond to J-holomorphic curves in the quotient M /G(T).
Note that (13) is equivalent to (12) whenever O is a single point (necessarily contained

in the centre of g). In local holomorphic coordinates, (13) has the form

dsu+ X (u) + J(9¢u+ Xy(u)) =0,
AT+ [@,7] — J (0T + [¥,7]) =0, (14)
p(u) —t=0.

As before, these equations imply that the pairs (0su + Xo (1), 057 + [@, T]) and (d:u +

Xy (u), 04 1+[¥, 1]) are the unique harmonic representatives of the derivatives with respect

to s and t. Thus, by Remark 2.1(ii), the function ® : C — g is determined by the equation

LLu® + A0+ L, "0su+ J0,T =0,
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and similarly for V. Note that in this local form the quadruple (u, T, ®,¥) can be gauge-
transformed to one where T is constant. The second equation in (14) then takes the form
[@, 7] = J:[¥, 1] and can be viewed as a constraint on the connection A. The gauge group
now consists of maps C — G-.

(iii) If one removes the assumption that G acts freely on u!(0), then M /G is an
orbifold and (13) describes J-holomorphic curves in this space. Since every symplectic
orbifold can be expressed in this form (cf. [49]), one might be tempted to use (11) to give

a rigorous definition of the Gromov-Witten invariants of orbifolds.

3 Invariants of Hamiltonian group actions
3.1 An action functional

Let (M, w, 1) be a symplectic manifold with a Hamiltonian G-action, and let t: P — X
be a principle G-bundle over a compact Riemann surface (Z, 5 ). Denote by C¥ (P, M) the
space of equivariant smooth functions u : P — M, and consider the action functional
E:C¥(P,M) x A(P) — R, defined by

1
E(u,A) = EL (]d;w[z + ]FA]2 + |u(u)|2> dvoly .

This functional is invariant under the action of the gauge group §(P). The Euler equations

have the form
Vatdau+ du(u)*u(u) =0, dA*FA-f—Lu*dALL:O. (15)

Here Va : C*°(Z,uw*TM/G) — Q! (Z,u*TM/G) denotes the covariant derivative operator
induced by A and by the Levi-Civita connection V of the metric w(,J-) on M. It is de-
fined by

VAE =VE+ VXA (16)

for £ € C*(X,u*TM/G). Think of & as an equivariant function from P to u*TM. Then
VA& is a 1-form on P with values in u*TM. This form is obviously equivariant, and,
since Vi, &(p) + Vep) Xn(u(p)) = 0, it is horizontal. Hence it descends to a 1-form on X
with values in w*TM/G, still denoted by Va&. The symbol V4™ in (15) denotes the 12-
adjoint of V.
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There are first-order equations that give rise to special solutions of (15). They
have the form

5],A(u) =0, *Fa + p(u) = 0. (17)

Here * denotes the Hodge *-operator on X, and so these equations depend explicitly on
the metric on X. The study of their solutions is the main purpose of this paper. The next
proposition shows that the solutions of (17), if they exist, are the absolute minima of
E in a fixed equivariant homology class and hence also solve the Euler equations. The
moment mapcondition asserts that the plynomial

g— Q"M): & — w—(1,§)

is G-closed and hence defines an equivariant cohomology class that we denote by [w—p] €

HZ% (M;R). Hence, by Proposition 2.2, the last term in (18) is a topological invariant.

Proposition 3.1. For every A € A(P) and every u € CZ (P, M),

E(u,A) = L <5]>A(u)2 + %‘ *Fa + u(u)‘2> dvoly +([w — ], [u]), (18)

where

([w — ], [u]) = L ((daw)*w — (u(u),Fa)) = L (Ww — d(u(u), A)). O

Proof. Choose a holomorphic coordinate chart ¢ : U — X, where U C Cis an open set,and
let (T) : U — P be alift of ¢;that is, wo (TJ = ¢.Then the function u and the connection A are
in local coordinates given by ul°® = wod and Al°¢ = $*A = O ds+¥ dt, where ®,¥: U — g.
The pullback volume form on U is A% ds A dt for some function A : U — (0, 00), and the

metric is A%(ds? + dt?). Hence

G Fa = (0¥ — 0D + [@,W]) ds A dt,

d*dau = (9,u'°° + Xo) ds + (9:u'° + Xy) dt,

B0 () = 5(Eds —JEAY, £ =0 4+ Xo + (00 4 Xu).

Here X¢, Xy, and ] are evaluated at 1!°°. In the following we drop the superscript “loc.”

Then equations (17) have the form

dsu+ X (u) 4+ J (9 + Xy(u)) =0,

(19)
W — 0, + [@,¥] + A*u(u) = 0.
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The pullback of the energy integrand under ¢ : U — X is given by

1 1 A2 A2
e:= §|asu+X<D|2 + §|atu+ XW|2 + T|asq]_ 0D + [(D,‘i’”z + 7|}l(u)|2
= %\asu+x® + @+ X))
A2, 2
+ ?p\ (0¥ — 0D + [@,¥]) + p(u)|
+ w(0su+ X, et + Xy) — (0¥ — 0@ + [0, W], u(u)).

This proves (18). The identity (dau)*w — (u(u),Fa) = u*w — d{pn(u), A) can, in local coor-
dinates, be expressed in the form
w(0su + Xo, 0w+ Xy) — (3s¥ — 3, @ + [@, V], p(u))
= w(dsu, d¢u) — ds{p(u), ¥) 4+ 3¢ (u(u), @).

This follows directly from the definitions and the fact that w(Xe, Xy) = (1, [@,¥]). This
proves the proposition. |

3.2 Symplectic reduction
Denote C¥ (P,M;B) :={u € C¥(P,M) | [u] = B} and consider the space
B := C¥ (P,M;B) x A(P).
This space carries a natural symplectic form. To see this, note that the tangent space of
B at (u,A)is
Tu,a)B=C% (Z,u*TM/G) @ Q! (%, gp),

where C* (X, u*TM/G) = CZ (P,u*TM) is the space of G-equivariant sections of the bun-
dle u*TM — P and where Q! (X, gp) = Q1 (P, g) is the space of equivariant and horizontal

Lie algebra-valued 1-forms on P. The symplectic form on T, a) B is given by
Q((&,), (€)= | w(e,e) dvols + | (@A) (20)
b3 b3

for £,& € C®(Z,u*TM/G) and «, &’ € Q!(Z, gp) (see Section 2.2). Consider the group
G = §(P) of all automorphisms of P that descend to Hamiltonian symplectomorphisms

of X. There is an exact sequence

1—g— § — Ham(ZX, dvoly) — 1,
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and the Lie algebra of § consists of all equivariant vector fields v € Vectg(P) such that
the 1-form ((rt,v) dvoly € Q!(£) is exact. Thus, for every v € Lie(§), there exists a unique
function h, : £ — R such that

() dvoly = dh,, J h, dvols = 0. (21)
T

The group § acts on B by (1, A) — (wo 1 f,A) for f € §, and the infinitesimal action is
given by the vector fields

B—TB:(u,A) — (—duov,—L,A)

for v € Lie(9). It follows from the work of Atiyah and Bott [3] and Donaldson [14] that
this action is Hamiltonian. Define fi : B — Lie(§)* by

(fi(u, A),v) = L ((+Fa + (W), AW)) dvols —hy (u'@ — d(u(w), A))). (22)

Here (xFa + p(uw), A(v)) € Q°(P) and u*w — d{p(u), A) € Q?(P). But they both descend to

¥, and we do not distinguish the descendents in notation from the original forms on P.

Proposition 3.2. The function t: B — Lie(g)* is a moment mapfor the action of G on B.
O

Proof. Let R — B : t — (ut,A) be any smooth path in B, and denote its derivative by
(&t, %) € T A, B. Then, by Cartan'’s formula,

d
a(ut*w — d(u(ut),/\t>) = dUt,

o = w(&, da,uy) — (puy), o) € QH(E).
Moreover, for every v € Lie(G),
J h,doy = J o Adh, :J o A t(m,v) dvoly = —J o¢(m.v) dvoly .
z b3 b3 b3
Hence

%(ﬁ(ut,At),v> = J (w(&e, da,ug ov) + {dp(uy) &y, Ag(v))) dvols
s

i J}: (<At(v)» dAto‘t> + <FA“ “t(v)>)
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=| w(—duov,&;)dvols —k—L ((—da,(Acov) —L(V)Fa,)ox)

z
Q(( - dut oV, _LVA’()» (at» Oét))

The last equality uses the formula £, A = da (A ov) +(v)Fa. This proves the proposition.
|

Remark 3.1. (i) Consider the action of the gauge group § = §(P) on B. The infinitesimal
action of Q°(Z, gp) = Lie(§) is given by the vector fields

(W, A) — (I—uTh _dAT])

form € Q°(Z, gp). By Proposition 3.2, these vector fields are Hamiltonian, and a moment

mapfor the action is given by
B — Q%Z,gp) : (u,A) — *Fa + p(u).

Hence the zero set of the moment mapis the smace of solutions of the second equation
in (17).
(ii) If M is Ké&hler, then, under suitable regularity hypotheses, the space

X ={(u,A) €B|da(u)=0}

is a complex, and hence symplectic, submanifold of B. This submanifold is invariant
under G, and hence the space of gauge equivalence classes of solutions of (17) can be
interpreted as the symplectic quotient X//§. In this case one can consider the action of
the complexified group §¢ on X and study the quotient X*/G¢, where X* C X is a suitable
subspace of stable pairs (u, A). It turns out that, as in the finite-dimensional case, there
is a natural correspondence
s

]
This programme was carried out by Mundet in his recent thesis [55].

(iii) The zero set of the moment map fi : B — Lie(G)* consists of all pairs (u, A) € B
that satisfy «Fa + p(u) = 0 and

[w _ H]aB>

ww—d{p(u),A) = < Vol(z) dvoly,

where the left-hand side is understood as a 2-form on X. However, the action of § is not

compatible with the condition dj A (u) = 0.
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In the case
y =52

with the standard metric and complex structure, it is interesting to consider the group
G C §Gofall automorphisms of P which descend to isometries of S%. There is an exact

sequence
1-—G6-—6-—80(38) 1,

and the action of G on B preserves the submanifold X. The moment map
i:B— Lie(9)"

for this action is given by the restriction of pi(u,A) to Lie(§). Hence the zero set of
consists of all pairs (u, A) € B that satisfy «Fa + p(u) = 0 and

LZ he (W'w — d(p(u),A)) =0 (23)

for every & € s0(3), where hg : S2 — R denotes the Hamiltonian function generating the
infinitesimal action of &. Thus h; is the restriction of a linear functional on R® to S2. It is
interesting to consider all solutions of (17) and (23) and divide by the action of the group
G. This is the analogue of the quotient of the space of J-holomorphic spheres v: $> — M
by the reparametrization group PSL(2,C). Namely, PSL(2,C) is the complexification of
SO(3). It acts on the Riemann sphere C U {oo} by fractional linear transformations of the

form

az+b

o) = o,

where a, b, ¢, and d are complex numbers such that ad —bc = 1. The subgroupof isome-
tries is SO(3) = SU(2)/{x1}. The next proposition shows that, instead of dividing the
space of J-holomorphic curves from the Riemann sphere into a symplectic manifold by
PSL(2,C), one can consider J-holomorphic spheres that satisfy (23) (without the connec-
tion term) and only divide by SO(3). This is another analogue of the relation between the
complex quotient M* /G and the Marsden-Weinstein quotient M //G.

Proposition 3.3. Let o € Q2(S?) such that

LZ o # 0.
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Then there exists a fractional linear transformation ¢ : S> — S? such that

J hedp o =0 (24)
SZ

for every & € s0(3). If ¢o € PSL(2,C) and ¢; € PSL(2,C) both satisfy (24), and if o is a
volume form, then ¢y ' o ¢; € SO(3). O
Proof. We identify the Riemann sphere C U {co} with the unit sphere S? C R® via stereo-

graphic projection. Explicitly, this diffeomorphism is given by

X1 + in

§2 — CU{oo}:x — )
1—X3

Under this correspondence the quotient PSL(2, C)/SO(3) can be identified with the open
unit ball B® ¢ R? via the map B® — PSL(2,C) : 1 — ¢, that assigns ton € B? the
diffeomorphism ¢, : S> — S? given by

On(x) = —;1;"1'; (= (i )l ) + —<X"1”'__ <2?ﬂ; Uiy 1,

If n € B® converges to ¢ € $?, then ¢,, ' (x) converges to { uniformly in compact subsets
of $2 \ {—{}. Hence

lim ,Lz (& vy o= %Lﬂ% J;z <E,, Lo (bn_l>o' =(§,0) Jsz o

n—¢

for every ¢ € S? and every & € R®, where ¢ : $2 — R® denotes the obvious inclusion and

(-,-) denotes the standard inner product on R®. Hence

limJ Ld)n*O‘ZCJ o
n—< Jg2 52

for every ¢ € $?, and the convergence is uniform in ¢. It follows from a standard argument

in degree theory (see [53]) that there exists ann € B® such that

J by "o =0.
S2

This identity is equivalent to (24).
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Now suppose that o € Q?(S?) is a volume form and ¢ € PSL(2, C) such that

LZ W o = LZ o =0. (25)

Then the same argument as in Remark 2.1(iii) shows that ¢ € SO(3). Namely, there exists
anm € B® and a matrix ¥ € SO(3) such that

d(x) = dn(¥x)

for every x € S?. Hence, for every & € R?,

| cuonto=] enero=o
S2 S2

Denote A(t) = m| ! tanh(n/t), choose T > 0 such that A(T) = 1, and consider the flow

i (x) = bdagyn (%)

for 0 < t < T. It satisfies ¢ = id, &1 = ¢, and, since A = 1 — n?A?,

d, - . B
T == (b T 00)be (o).
Hence

d . d _ 102

ELZ M ydi o= ELZ <ﬂ7l0 (o} 1>U: Lz (|ﬂ|2 - <mo o}t 1> )G'

The last expression is nonnegative. Integrating from t = 0 to t = T, we obtain from
(25) that it is equal to zero for all t. It follows that n = O; hence ¢,, = id, and hence

¢ =¥ € SO(3), as claimed. This proves the proposition. |

3.3 Hamiltonian perturbations

We consider the following perturbations of (17). Let C¥ (M) denote the space of G-
invariant smooth functions on M, and let Vects (M, w) denote the space of G-invariant
Hamiltonian vector fields. Choose a G-invariant horizontal 1-form o € Q!(P,C¥ (M)).
One can think of o either as a 1-form on X with values in C¥ (M) or as a 1-form on P x M
which is invariant under the separate action of G on both P and M and which vanishes

on all vectors of the form (p&,w) € T,,P x TuM, where & € g. Consider the 1-form

X : TP — Vectg (M, w), (Xo, (v )W = d(op (v)).
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For every equivariant function u : P — M, the 1-form X,(u) € Q! (P,u*TM), defined by
TpP = TypyM v = X vy (u(p)), is equivariant and horizontal. Hence it descends to
a 1-form on X with values in u*TM/G which is still denoted by Xs(u). The perturbed
equations have the form

0ra() + (Xo(u)®' =0, *Fa +u(u) =0. (26)

The space of solutions of (26) is invariant under the action of the gauge group.

Remark 3.2. (i) In local holomorphic coordinates, (26) has the form

deu+ Xo (1) + Xp(w) + (3w + Xy (u) + X (w)) =0,

(27)
W — 0D + [, W] + A%u(u) =0,

whereu: U —- M, d,¥V:U — g, and F,G: U — C¥(M). The local coordinate representa-
tives of Aand o0 are A = ®ds +¥Ydt and o =Fds + G dt.

(ii) Let o0 € Q! (P x M) be as above. Then o descends to a 1-form on P xg M and
w — d(p, Ay — do is a connection 2-form as in [51, Chapter 6]. The covariant derivative of

a function u: P — M with respect to this connection is given by
da,ott = dau+ Xe(u) € Q' (Z,u*TM/G).

The first equation in (26) can now be written in the form 9; A »(u) = 0, where 3j A (1)
is the J-antilinear part of the 1-form da su.

(iii) The energy identity (18) continues to hold with d;  (u) replaced by 0j A o (1)
and dau replaced by da su (in the definition of E(u, A)).

3.4 Moduli spaces

Fix an integer k > 0, a compact Riemann surface (%, ]s, dvoly), and an equivariant ho-
mology class B € HS (M;Z) such that

([~ 1], B) > 0. (28)

By Proposition 3.1 and Remark 3.2, this condition is necessary for the existence of so-
lutions of (17) or (26). Consider the space

Mg.r =M s (M, 1], 0)
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of all tuples (u,A,p1,...,px), where u and A satisfy (26), u represents the class B, and
P1,...,Pk are points in P with distinct base points 7n(p;) € L. The gauge group §(P) acts
on this space by

g*(u» A»Pl PR rpk) = (gilu) g*A»pl g(pl)71 g v‘pkg(pk)il))
and the quotient is denoted by

M M, 5], o
Mgz x =Mps k(M 15],0) = B‘z‘ké(P)”] )

If k = 0, we write Mg,y = Mg r,o. Our goal is to use these moduli spaces to define
invariants of (M, w, n). Note that the symplectic form enters into the definition of the
moduli spaces only indirectly through the compatibility condition on the almost complex

structure J.

3.5 Fredholm theory

Let B be as in Section 3.2, and consider the vector bundle £ — B whose fibre over a pair
(u,A) € Bis given by &, o = &, = Q%1 (Z,w*TM/G) ® Q°(Z, gp). The gauge group § acts
on &, the projection & — B is §G-equivariant, and the almost complex structure J and the

perturbation ¢ determine a §-equivariant section
B—¢: (LL, A) — (5I,A,O'(u)v *Fa + },L(U.)) (29)

Evidently, the zero set of this section is the space Jv[B, s . The vertical differential of the

section (29) at a zero (u, A) gives rise to an operator

Q% (£, u*TM/G)

C* (L, w*TM/G) .
D ® — Q°%(Z, gp)
Q'(Z, gp) @
Q°%(Z, gp)

given by

= L —da"a : (30)

DOy A,c(WE+ (Lyo)?
N
Qu A
dp(w)g + *dax
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Here DOy A o(u) : C®°(Z,u*TM/G) — Q%! (Z,u*TM/G) is the Cauchy-Riemann operator
obtained by differentiating the first equation in (26). In explicit terms this operator is
given by

D3} A o (W)E = (Va,o8) — ZI(VeN)21 A 0(w)

for & € C* (X, u*TM/G), where V denotes the Levi-Civita connection of the metric w(-, J-)
on M and Va ¢& € Q' (Z,u*TM/G) is given by

VA o& = VE + Ve Xa + Ve Xo. (31)

Remark 3.3. A tangent vector (£, «) € T, A) B is [*-orthogonal to the gauge orbit of (u, A)
if and only if

L & —da*a=0. (32)

This is the local slice condition, and the tangent space of the quotient B/S at [u, A] can
be identified with the space of solutions of (32). Note also that the left-hand side of (32)

agrees with the second coordinate of Dy, A (&, «) in (30).

The operator D, o (between suitable Sobolev completions) is a compact pertur-

bation of the direct sum of the first-order operators Ddj a »(u) and
QN (Z,gp) — Q°Z,gp) D Q°(E, gp) t x — (— da* o, *da ).
Hence it is Fredholm and, by the Riemann-Roch theorem,
index Dy, Ao = (2 —2g)(n — dim G) + 2(cf, [u]). (33)

Here g is the genus of ¥ and cf = c$(TM,]) € H%(M;Z) denotes the equivariant first
Chern class of the tangent bundle. It is defined as the first Chern class of the vector
bundle TM x ¢ EG — M x g EG with the complex structure given by ] € §(M, w, n). If D, A
is surjective for every (u,A) € J\~/[B, s, then it follows from the implicit function theorem

(in an infinite-dimensional setting) that Mg y i is a smooth manifold of dimension
dimMsp 5 = (2 —29)(n — dim G) + 2(c®,B) + k(2 + dim G). (34)

To obtain smooth moduli spaces it remains to prove that, for a suitable perturbation, the

Fredholm operator D, A is surjective for every solution (u, A) of (26). This means that the
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section (29) of the vector bundle & — B is transverse to the zero section. In some cases
transversality can be expected to hold for a generic volume form on X or a generic almost
complex structure on M. In other cases more general perturbations of the equations may
be required. In [55] Mundet established transversality for the so-called simple (i.e., not
multiply covered) solutions in the case G = S! by choosing a generic almost complex
structure ] € J(M, w, ). Alternatively, denote by M3 y C Mg s the subset of all those
gauge equivalence classes of solutions of (26) that satisfy

g-u(p) =ulp) =g9g=1 (35)

for every p in a dense open subset of P. The next proposition asserts that, for a generic
perturbation o, this subset is a manifold of the predicted dimension. The proof appears

elsewhere.

Proposition 3.4. Let § = Q!(X, C¥(M)), and denote by 8¢y C S the subset of all pertur-
bations o € § such that the operator D,, A is surjective for every solution (u, A) of (26)

that satisfies (35). Then 8¢ is a countable intersection of dense open subsets of 8. [

3.6 Compactness

The moduli space Mg 5 is, in general, not compact. The energy identity (18) asserts that
E(u,A) = <[w - u],B>

for every pair (u,A) € J%B,z. Hence the [%2-norms of da ,u and p(u) are uniformly
bounded. As in the case of J-holomorphic curves and anti-self-dual Yang-Mills instan-
tons, this is a Sobolev borderline case. Combining the techniques for J-holomorphic
curves (Gromov compactness [32]) with those for connections (Uhlenbeck compactness
[76]), one can show that, for every sequence (uY,AY) € 3\7[13»; that satisfies a uniform
L?-bound of the form

sup J (Jda~ o™ P + Je(u)[?) dvoly < oo (36)
PN

v

for some constant p > 2, there exists a sequence of gauge transformations g¥ € G(P)
such that ((g¥)!'uY,(g¥)*A") has a C*-convergent subsequence. However, the energy
identity only guarantees (36) for p = 2, and, in general, this does not suffice to prove
compactness of the quotient space Mz 5.

If (36) does not hold, then there must be a sequence of points p¥ € P such that
either |[da~v su™ (pY)| or [u(u™(p"))| diverges to infinity. If the sequence pou" is uniformly
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bounded, one can use the standard rescaling argument in Gromov compactness (cf. [50,
Section 4.3]) to prove that, for some sequence of maps

1
¢VZ{ZEC||Z|<E—V}—>P

with holomorphic projections 7o ¢V, the sequence u” o ¢~ converges to a nonconstant
J-holomorphic curve v : C — M that has finite energy. The removable singularity the-
orem for J-holomorphic curves (cf. [50, Theorem 4.2.1]) then asserts that v extends to
a nonconstant J-holomorphic 2-sphere in M. Any such 2-sphere must be topologically

nontrivial since

E(v) = J viw = J |dv]? > 0.
s? s?

Thus, if there are no J-holomorphic spheres in M (e.g., if m; (M) = 0), the only obstruction
to compactness is the divergence of i ou”. Now there are some interesting cases where

the manifold M is noncompact, but all solutions of (17) satisfy a uniform bound on u.

Proposition 3.5. Assume the following.

(i) (M, w,]) is a Hermitian vector space.

(ii) The group G acts on M by unitary automorphisms.

(iii) The moment map u: M — g is proper.
Then there exists a constant ¢ > 0 such that every solution (u,A) of (17) (over any
compact Riemann surface X) satisfies

[ufre <ec. (37)

In particular, the moduli space Mg 5 (M, 1;], 0) is compact for every compact Riemann
surface (£, ]y, dvoly), every equivariant homology class B € HS (M;Z), and every com-
pactly supported perturbation o. O

Proof. Write V := M, denote by (-,-) = w(-,]-) the real inner product on V, denote by
U(V) the groupof unitary automorthisms of V, and denote by u(V) its Lie algebra. By
assumption, the action of G on V is given by a homomorphism p : G — U(V), and we
denote by p : g — u(V) the corresponding Lie algebra homomorphism. We prove that

there exists a central element T € g such that

(x, p(n())x) = 2(u(x), u(x) — 1) (38)

for x € V. To see this, suppose without loss of generality that M = C™ with its standard
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Hermitian structure, and consider the inner product
(A,B) =tr(A*B)
on the Lie algebra u(n) of skew-symmetric matrices. The moment mapis given by
u(z) = 71( — %zz*) +7T

for z € C™, where T € g is a central element and 7t : u(n) — g denotes the adjoint of the

Lie algebra homomorphism p : g — u(n). Hence

(2 6((2)iz) = tr (p(n(@))izz’) = ((z), n(~izz")) = 2((2), u(z) ).

This proves (38).

Now fix a Riemann surface (I, 5, dvoly) and suppose that (u, A) is a solution of
(17). Consider equations (19) in local holomorphic coordinates, where the metric has the
form A?(ds? + dt?). In our situation

Xe(u) = p(&)u,
and we abbreviate Viu := 0su + p(®)u and Viu := 3w + p(¥)u. Since
VeVit — ViVew = (0¥ — 3, D + [@, ¥])u
and, by (19),
Viu+ JViu=0, 3¥—9,® + [D,¥] + A p(uw) =0,
we obtain
Ve Veu + Vi Viu = A p(n(w)) Ju.

Hence, with A = 3% + 9,2,

A|;|Z = 05 (u, Vsu) + 0¢(u, Viu)
= [Voul* + [Viu[* + (u, ViV + Vi Vi)
= [Veu[* + [V 2% (u, p(n(w) Tu)

— |Vou? + [Veu|® + 202 (p(w), p(u) — 1)

> 202 p(w)|(Jp(u)| — ).
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Now let (so,to) be a point at which the function (s,t) — |u(s,t)| attains its maximum.
Since ¥ is compact, such a point exists in some coordinate chart, and we have Ajul?> < 0

at (sp, to). Hence

(u(so, to))| < Il

Since p is proper, there exists a constant ¢ > 0 such that

[u(x)| <t =[xl <c.

Hence [u(so, to)| < c, and it follows that sup,,cp [u(p)| < c for every solution (u, A) of (17).
To prove the last assertion just note that the same estimate holds for solutions of the
perturbed equation (26) whenever the support of the perturbation is contained in the
ball {|x| < c}. This proves the proposition. |

Remark 3.4. (i) The proof of Proposition 3.5 is reminiscent of the compactness proof for
the Seiberg-Witten equations in Kronheimer and Mrowka [42].

(ii) In Proposition 3.5 the assumption that the moment map be properis essential.
But one would expect that conditions (i) and (ii) can be removed or replaced by weaker
assumptions.

(iii) If 712 (M) # 0, then, in general, there may be J-holomorphic spheres in M. In
this case the compactification of the moduli space Mg 5 (M, ; ], o) should include stable
maps, as introduced by Kontsevich [40]. To see this think of the solutions of the first
equation in (26) as TA'G—holomorphic curves from ¥ to M — P X M (see Section 2.4 for
the case 0 = 0). In the stable maps that appear in the limit, the main component is a
solution of (26), and all other components are J-holomorphic spheres in the fibres.

(iv) It is often interesting to allow the complex structure on X to vary. Then one
has to deal with a suitable compactification of Teichmiiller space. This again leads to
Kontsevich's stable maps.

(v) Similar techniques, as in the proof of Proposition 3.5, can be used to prove

the following unique continuation theorem.

Continuation theorem. Let (u, A) be a solution of (26). If the pair (da ou, pou) vanishes
to infinite order at some point p € P, then da ;u =0 and p(u) =0.

3.7 Invariants

The moduli space JV[B,z,k(M, u;J, o) carries a natural right action of GX = G x --- x G on

the k-marked points. This action commutes with the action of the gauge group and hence
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descends to an action on the quotient space Mg sz x = Mg .z x(M, 1;], 0). Now there is an
evaluation mapev = (evy,...,evy) : Mg x x — MK given by evi([u,A,p1,...,px]) = u(pi)
and a projection 7t : Mg 5 « — A(P)/G(P) given by 7t([u, A, p1,. .., pk]) = [A]. The evaluation
mapis G*-equivariant, and the projection 7 is G*-invariant:

ev
Mg,z x >~ MK

|

A/S.

One can use these maps to produce certain natural G*-equivariant cohomology classes
on the moduli space Mg s x. Integrating these over the quotient Mg y 1 /G* gives rise to
the invariants.

To be more precise choose equivariant cohomology classes «; € HE(M) for i =
1,...,k and a cohomology class € H*(A/G) such that

k
deg(p) + Z deg(ei) = dimMg 5 x — kdim G. (39)

i=1
Then the pullback 7*3 — ev;*a; — -+ — ev*ay is an equivariant cohomology class
on Mg,y x. Let us pretend, for a moment, that Mg 5 x is a compact smooth manifold of
the predicted dimension and that G* acts freely on this space. Then our equivariant
cohomology class on Mg s x descends to a top-dimensional cohomology class on the
quotient Mg 5 1 /G* that we can evaluate on the fundamental cycle. This gives rise to an

integer

M, .
®B>Z*fk([3,oc1,...,ock) .—J TR — evi oy — - — eVt oy (40)
Mg, 5,k /G¥

In general, only the subspace My y |, of all solutions that satisfy (35) for almost every
p € P and for p = p; is a smooth manifold for a generic perturbation ¢ and carries a free
action of G¥. Even under the hypotheses of Proposition 3.5 this space will not be com-
pact. However, in many cases we expect that this space can be compactified by adding
strata of strictly lower dimensions and that (40) can be defined by integrating differ-
ential forms whose pullbacks are supported in My y ;. Alternatively, one can consider
intersection numbers of cycles in M x g EG. This requires the choice of an equivariant
function My, y . — EG, and the easiest way to get such a function is by composition of

the evaluation mapwith an equivariant function ¢ : M* — EG, where

M ={xeM|gx=x=g=1}.
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Here we assume that EG has been replaced by a suitable finite-dimensional approxima-
tion. Now represent the Poincaré duals of «; and 3 by submanifolds Y; C M xg EG and
Z C A/S. Integrating the differential form then corresponds to counting the solutions

(WA, p1,. .., Pr| € My 5\ that satisfy

[u(ps), b(u(pi))] €Yy, [AleZ (41)

Since ¢ is defined only on M*, one has to check that the reducible solutions of (26), if
they exist, do not obstruct compactness. With standard cobordism techniques, similar
to the ones used in the definition of the Donaldson invariants [12], the Gromov-Witten
invariants in [50] and [61], or the Seiberg-Witten invariants in [67], one should then be
able to prove that the invariants (40) are independent of the choice of the perturbation
o and the almost complex structure ] used to define them. To work this out in detail
requires a considerable amount of analysis, which will be carried out elsewhere. Some

cases were treated by Mundet [55].

Remark 3.5. In the above discussion the complex structure on the Riemann surface X
is fixed. Even in this case there is an interesting moduli space My i of stable Riemann
surfaces with k-marked points, where one of the components of the stable surface is
Y itself. Correspondingly, one might wish to extend the definition of the invariants to
include, as a base for the bundle P, stable Riemann surfaces, where the main component
is X and all other components are spheres. With this modification in place there is a

projection
Mgz k — Mz,

and one could consider pullbacks of cohomology classes from My i to get further invari-
ants. Similar observations apply to the case where the complex structure on X is allowed

to vary.

3.8 Adiabatic limits

In her Ph.D. thesis [27], the second author studied the adiabatic limit ¢ — 0 in the

equations
a(w)=0, *Fa+e 2p(u)=0. (42)

For ¢ = 0, these equations degenerate into (11), and the solutions of those equations cor-

respond to J-holomorphic curves in the Marsden-Weinstein quotient M //G (see Section
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2.4). Under suitable conditions on M and for sufficiently small ¢ > 0, there should be
a one-to-one correspondence between the solutions of (42) and those of (11). The argu-
ments are reminiscent of the proof of the Atiyah-Floer conjecture in [19] and [66]. Gaio
proves that regular solutions of (11) give rise to solutions of (42) for ¢ sufficiently small
and makes substantial progress towards establishing that, in many cases, all solutions
of (42) can be obtained in this way. When completed, this work should lead to a proof
of the following conjecture, at least in the case where the quotient M //G is semipositive

(or weakly monotone in the terminology of [36] and [50]).

Conjecture 3.6. Suppose that : M — g is proper, that zero is a regular value of y, that
1 1(0) is nonempty, and that G acts freely on p !(0). Then, for B € Hy(M//G;Z) and
o, ..., 0 € HE (M Z),

(Dgtgtk(l,(xl,...,(xk):ngfé/yi(&l,...,&k). (43)

Here 1 € H%(A/S), B € H$ (M;Z) is the image of B under the homomorphism H, (M //G;Z)
— H$ (M;Z) induced by the inclusion p=!(0) — M, and & € H*(M//G;Z) is the image
of «; under the homomorphism H§ (M;Z) — H*(M//G;Z) induced by the same inclusion.

g

Remark 3.6. (i) Kirwan [54] proved that the homomorphism H§ (M;Z) — H*(M//G;Z) is
surjective.

(ii) Consider the case

M//G = {pt}.

Then n = dimG = dim M/2, and the only class in the image of the homomorphism
Hz(M//G;Z) — HS (M;Z) is B = 0. Moreover, the invariant @g{*{fk(l, ®q,...,0) can only

be nonzero if dim Mz 5 i = 0. Hence assume
n =dimG, B =0, k=0.

Then Conjecture 3.6 asserts that, if zero is a regular value of p and G acts freely on p—!(0),
then

In this case the bundle P is trivial, and, for any ¢ > 0, there are obvious solutions of (42)
that satisfy pou = 0, dau = 0, and Fo = 0. They are all gauge-equivalent. The energy
identity (18) shows that there is no other solution of (42).
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(iii) Conjecture 3.6 does not allow for the pullback of classes in My x or for
variations of the complex structure on X (see Remark 3.5). But there should be analogous
results for those cases.

(iv) The examples in Sections 5.1 and 5.2 show that the invariants @g’fgﬁk can be
nontrivial in cases where the symplectic quotient M //G is a point or the empty set (and
B does not descend to a homology class in the quotient).

(v) If G does not act freely on n~!(0), then Conjecture 3.6 suggests that the solu-

tions of (26) can be used to define the Gromov-Witten invariants of symplectic orbifolds.

3.9 Wall crossing and localization

One should be able to use the formula (43) to find relations between the Gromov-Witten
invariants of the quotients M//G(t) for different values of t. Namely, choose a generic

path [0,1] — g: s — T, in the center of g, and consider the cobordism

Wg s = U {s} x Mp,z(p—1s)

0<s<1

with boundary

OWg x = Mgp,s (L —To) UMp,x (H—T1).

In some cases the critical parameters should be the singular values of the moment map
(e.g., when G = S!). However, the examples in Sections 5.2 and 5.5 show that the moduli
space Mg s (1 — 7) may also have singularities when T is a regular value of the moment
map, and the effect of these on the definition of the invariants remains yet to be fully un-
derstood. If the path s — T, passes through such critical parameters, then the difference
of the invariants for 7y and t; should be computable in terms of the reducible solutions
of (26).

Remark 3.7. (i) For the ordinary cohomology of symplectic quotients, wall-crossing for-
mulae were discovered by Martin [46], [47], [48]. These should correspond to the present
case when B = 0. In [47] Martin developed techniques for computing the cohomology
of symplectic quotients via a reduction argument to the action of the maximal torus.
We expect that his ideas can be adapted to our situation and lead to formulae for the
computation of the invariants ®g 5 .

(ii) Guillemin and Sternberg [34] showed that passing through a critical value of
the moment mapcorrespnds to blowing upand down. The resulting formulae should

thus lead to an alternative proof of Ruan's results in [63].
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(iii) We expect that the wall-crossing relations correspond, under suitable as-
sumptions, to the fixed-point localization formulae of Kontsevich [40] and Givental [29].
In [30] and [31] Givental used localization to compute Gromov-Witten invariants for
many examples and, in particular, to prove the mirror conjecture for the quintic in CP*.

(iv) It should be interesting to relate the wall-crossing formulae for the invariants

®g 5 k to the gluing formulae in contact homology (cf. Eliashberg [20]).

4 Floer homology
4.1 Relative fixed points

Let (M, w, ) be a symplectic manifold with a Hamiltonian G-action. Fix a time-dependent
Hamiltonian function R x M — R : (t,x) — H¢(x) such that H; = Hyy; and H, : M — R is

G-invariant for every t. Consider the Hamiltonian differential equation

() = Xn, (x(1)), (44)

and denote by f : M — M the time-1 map. It is defined by f(x(0)) = x(1) for all solutions
of (44). Note that

pof=n,

A pair (xg, go) € M x G is called a relative fixed point of f if

f(xo0) = goxo-

Equivalently, the unique solution x : R — M of (44) with initial condition x(0) = x¢
satisfies x(t + 1) = gox(t) for every t € R. Note that the set of relative fixed points is
invariant under the action of G on M x G by (xg,do) — (gx0,9gog !). A relative fixed
point (xo, go) is called regular if gxg = xo implies g = 1. It is called nondegenerate if
the linear map df(xg) — go : Tx, M = Tg,x, M induces an isomorphism from the quotient
ker du(xo) /Ly, g+ to ker dpu(goxo)/Lg, x, 9v, Where T = u(xo). This means that

dp(xo)v =0, df(xg)v—gov €imlg,x, = v €iml,, (45)

for every v € T,, M. Relative fixed points (xq, go) € p~!(0) x G appear as the critical points

of an equivariant symplectic action functional.
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4.2 Equivariant symplectic action

Denoteby D C Ctheclosed unit disc,and denote by L = L(M xg) the space of contractible
loops in M x g. The universal cover of this space consists of all equivalence classes of
triples (x,n,v),wherex : R/Z — M,n : R/Z — g,andv: D — M satisfy v(e?™') = x(t). Two
such triples (x;,n1,v1) and (x2,mn2,Vv2) are equivalent if and only if x; = x2, 11 =12, and

v; is homotopic to v, with fixed boundary. The space of equivalence classes is denoted by

L=L(M xg).
This space carries an action of the group G = Map(D, G) by
g' v =[g 'x,9 'dg+g 'ng,g '],
where d,g = 9/0tg(e?™t). There is a G-invariant action functional

AH)HZZ(MXQ) — R

given by

A (om,v) = — jD vt jo (((e(8),(8)) — He(x()) dt.

A 1-periodic family of almost complex structures J; € J(M, w, 1) determines an [2-inner

product on the tangent space
T £ = C®(SH,x*TM) x C*(S', g),

and the gradient of A, 1 with respect to this inner product is given by

x + X —X
grad A (o) = <Jt (% + X () = Xn, (x>)> , (46)
H(x)
Hence the critical points of A, 1 are the loops (x,1) : R/Z — M x g that satisfy
%Xy (x) = Xp (x),  R(x) = 0. (47)

Let us denote by Per(y, H) the set of solutions of (47). The loopgroup

LG = Map(S!, G)
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acts on this space and the quotient is denoted by

Per(p, H)

This quotient space can be naturally identified with the set of G-orbits of relative fixed
points of f in u=!(0) x G. Moreover, a relative fixed point (xq, go) is nondegenerate if
and only if the corresponding critical point of A, 1 is nondegenerate. The proof of this

observation is a precise analogue of [18, proof of Proposition 4.4].

Remark 4.1. A closer look at the equivariant symplectic action should reveal interesting
relations to the geometry of the loopgroup(cf. [60] and [10]).

4.3 Floer homology

One can construct Floer homology groups HF*(M, w, u;J, H), as in the standard case, by
considering the gradient flow lines of the action functional A, 1; with respect to the L2-
metric determined by J:. The formula (46) shows that the gradient flow lines are pairs
(u,¥), where u: R?> - M and ¥ : R? — g satisfy

dsu+ Je (Ogu + Xy (u) — Xp, (u) =0,  3,¥+ p(u) =0, (48)
and
u(s,t+1)=u(s,t), VY(s,t+1)=Y(s,t). (49)

The energy of such a flow line is defined by

1 poo
E(u,¥) =J J ([osuf” + [05w|*) ds dt.
0 J—oo
If this energy is finite and the critical points of A, y are all nondegenerate, then one can

show with standard techniques in gauge theory that the limits
xt(t) = lim u(s,t), nE@t)= lim W(s,t) (50)
s—+o0 s— Foo

exist and are critical points of A, 1. The strategy now is to proceed as in the standard
case and define a chain complex generated by the critical points of A, y and define a
boundary operator by counting the solutions of (48) and (49) with given limits (50) in the
case where the Floer relative Morse index is 1. To carry this out in detail one has to deal
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with the usual transversality and compactness questions. Additional difficulties arise
from the presence of nontrivial isotropy subgroups of critical points of A, 1, and this
requires an equivariant version of Floer homology (cf. Viterbo [78]). The resulting Floer
homology theory is related to the solutions of (17) in the same way that instanton Floer
homology [21] is related to the Donaldson invariants, symplectic Floer homology [24] is
related to the Gromov-Witten invariants, and Seiberg-Witten Floer homology is related
to the Seiberg-Witten invariants. To see this compare (48) with (27). In particular, one
should get relative invariants, for Riemann surfaces with cylindrical ends, with values

in the Floer homology groups (cf. [59] for the standard case).

4.4 The Arnold conjecture for regular quotients

Suppose that w is proper, zero is a regular value of 1, and G acts freely on = (0). Then one
hopes to obtain transversality for the solutions of (48) by choosing a generic G-invariant
Hamiltonian H. At first glance one might not expect to get anything new because the crit-
ical points are the periodic solutions of a Hamiltonian system in M /G, and one could get
an equivalent theory from Floer homology in the reduced space. However, the compact-
ness result of Proposition 3.5 suggests that in many cases the present approach might
be simpler than the standard theory and lead to a proof of the Arnold conjecture over
the integers.? The key point is that the presence of holomorphic spheres with negative
Chern number in the quotient M //G leads to complications in the standard theory, but
not in our approach, provided that they do not lift to holomorphic spheres in M.

4.5 Relation with Morse theory

If zero is not a regular value of u or G does not act freely on pw=!(0), then the Floer ho-
mology theory outlined in Section 4.3 should lead to new existence theorems for relative
fixed points of G-equivariant Hamiltonian symplectomorphisms. In the standard theory
one can, in many cases, identify the Floer homology groups with Morse homology by
considering the case where H is independent of t (and sufficiently small). The analogue
of this argument in the present case leads to equivariant Morse homology on M x g for

the function

M x g — R:(x,n) — (u(x),m) — H(x),

2A quite different approach to Floer homology over the integers for general symplectic manifolds has recently
been proposed by Fukaya [25]. Other approaches to Floer homology for general symplectic manifolds (cf.
Fukaya and Ono [26] and Liu and Tian [45]) have so far been established only over the rationals.
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where H: M — R is G-invariant. The critical points of this function satisfy
VH(x) = JX; (%), pn(x) =0

and so correspond to critical points of the induced function H : M//G — R whenever the

quotient is smooth. The gradient flow equations have the form
w4 JXy(uw) — VHu) =0, ¥+ pu(u) =0. (51)

They are equivalent to (48) whenever H, J, u, and ¥ are independent of t.

4.6 Equivariant symplectomorphisms

One might wish to define the Floer homology groups of general equivariant symplecto-
morphisms, not just Hamiltonian ones. For this theory one would consider symplecto-
morphisms f: M — M that satisfy

f(gx) = p(g)x,  W(f(x)) = p(n(x)) (52)

for all x € M and some isomorphism p : G — G. Here p : g — g denotes the corresponding
Lie algebra isomorphism. The Hamiltonian perturbation H; € C¥ (M) and the almost
complex structures J; € J(M, w, n) should satisfy the periodicity condition

Hy=Heprof,  Je =1,
and (49) should be replaced by
u(s, t+1) =f(us, 1)),  ¥(s,t+1) =p(¥(s, 1)) (53)

The resulting solutions of (48) and (53) should give rise to Floer homology groups
HF*(M, w, 1, f) that are independent of H and J. One might hope that these invariants
can be used to distinguish equivariant Hamiltonian isotopy classes. In the standard case
such results were established by Seidel [69].

4.7 Boundary value problems

It is interesting to consider boundary value problems for the equations (26) or (48). The

relevant boundary data would then involve G-invariant Lagrangian submanifolds. In
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particular, this should lead to Floer homology groups HF*(M, w, i, Lo, L), where [ and
L, are G-invariant Lagrangian submanifolds of w~!(0), the critical points are G-orbits
of intersections of [ and L, and the connecting orbits are solutions of (48) on the strip

R x [0, 1] that satisfy the boundary condition
u(s,0) € Lo, u(s,1) € L;. (54)

(See Floer [22], [23], Oh [57], and Lazzarini [43] for the standard case.)

Lemma 4.1. Let L C M be a connected G-invariant Lagrangian submanifold. Then there

exists a central element T € g such that L C p=! (7). O

Proof. For every x € L, we have
imL, C TL C kerdu(x).

The last inclusion follows from the fact that T, L is a Lagrangian subspace of T,M and
the kernel of du(x) is the symplectic complement of the image of L. The inclusion T, L C

ker dp(x) shows that p is constant on L. The inclusion im L, C ker du(x) shows that

[, 1(9)] = dp(x)LLE =0
for £ € gand x € L. Hence p(x) is in the center of g for every x € L. |

If zero is a regular value of u, then the equivariant diagonal
A* = {(x,gx) |xeM, g € G, u(x) =0}

is a Lagrangian submanifold of M = M x M, with the symplectic form & = (—w) x
w, and is invariant under the action of G = G x G. The Floer homology groups of a
symplectomorphism f : M — M that satisfies (52) should be isomorphic to the Floer
homology groups of the Lagrangian pair (A", T*(f)) in M, where ¥ (f) is the equivariant
graph of f, that is, the image of A" under id xf.

4.8 Adiabatic limits

That the present theory is, for regular quotients, equivalent to the standard theory in

M//G follows from an adiabatic limit argument involving the equations

osu+ ](atu + Xy (u) — Xn, (u)) =0, AW +e? p(u) =0. (55)



871

In the limit ¢ — 0, the solutions of (55) degenerate to Floer gradient lines in the quo-
tient M //G. The details are analogous to the proof of the Atiyah-Floer conjecture in [18],
[19], and [66], and to [27, proof of Conjecture 3.6]. The resulting theorem should be the

existence of a natural isomorphism
HF*(Mv w, W, f) = HF" (M//G> (I)v .F)

whenever zero is a regular value of p and G acts freely on u=!(0). Here @ denotes the
induced symplectic form, and f denotes the induced symplectomorphism on M//G. In

the Lagrangian case there should be a natural isomorphism
HF~ (M» W, W, LO) Ll) = HF" (M//G) @, I_—O) I_-1)»

where I__i =L/GcM/Gfori= 0,1.

5 Examples
5.1 Vortex equations

Consider the standard action of G = S! on M = C. Then a moment mapis given by

(z) = —%lzlz, (56)

and the quotient space is a point. Nevertheless, the space of solutions of (17) is inter-
esting. Let (X, J5, dvols) be a compact Riemann surface, and let P — X be a circle bundle
of degree d. An equivariant function © : P — C can then be interpreted as a section of
the line bundle E = P x5: C — X, a connection A € A(P) determines a Cauchy-Riemann

operator
3a: CO(Z,E) — QO (T, ),

and the equations (17), with p replaced by p + it for some T € R, have the form

= . Cl§
0A0 =0, *1FaA + - = T. (57)

These are the vortexequations . The necessary condition (28) for the existence of solu-

tions has the form

s 2nd
Vol(X)"



872

In this case the moduli space is smooth and, by Proposition 3.5, it is compact. These
observations are well known (see [28]), as is the fact that the moduli space

{(©,A)(57)}

Ma(Z) = Map(Z, S1)

can be identified with the symmetric product S4Z = £ x --- x £/S, (via the zeros of ©).
Hence the invariants (40) should be expressible in terms of the cohomology of SZ. Note
that the adiabatic limit argument of Section 3.8 can, in this case, be rephrased in the
form T — oo (by rescaling ©), and this limit corresponds precisely to the argument of

Taubes in [71] for the Seiberg-Witten equations.

5.2 Bradlow pairs

Another example with a trivial quotient is the action of G = U(2) on M = C?. A moment
mapis given by p(z) = —izz*/2. Hence the quotient at any nonzero central element of
u(2) is the empty set. Let P — X be a principal U(2)-bundle of degree d = {c; (E), [X]), and
consider the Hermitian rank-2 bundle E = P xyy) C? — %.Fix a constant T > 7td,/Vol(Z),
and replace the moment map by p + itl. Then (17) takes the form

= 1
0AO@=0,  xiFa+ ;00" =1l, (58)
where A € A(E) and © € C* (X, E). The moduli spaces

(@A) 1(58))
Me=""5®

were studied in detail by Bradlow and others in [7], [8], and [74]. The invariants (40)
and the wall-crossing numbers should, in this case, be related to the work of Thaddeus
[74]. He studied the cohomology of the moduli space of flat U(2)-connections over X via
Bradlow pairs. For T close to 7td/Vol(X) and for large d, M. is a bundle over the moduli
space of flat U(2)-connections with projective spaces as fibres, M. = () fort > 2ntd/Vol(L),
and M. can be identified with a complex projective space for Tt = 2nd/Vol(X)—e whenever

¢ > 0 is sufficiently small (see [7]). The critical parameters are

ok d
s Cok<a

T Vol(x)' 2

For T = Ty, there are reducible solutions of (58); that is, M- is not smooth and its singular

part can be identified with the symmetric product S¢ *X. In the context of this paper
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it is useful to recall the following construction (see [9]). Fix a point zg € X, and denote
by Go C Map(Z,S?) the codimension-1 subgroupof all mays of the form g = ggexp(&),
where go : & — S! satisfies d*(go~'dgo) = 0, go(z0) = 1, and & : £ — iR has mean value
zero. Then the quotient space

{(@,A) |3t > Voq—?z) s.t. (58) holds}

M= 59
{gES(E)ldetogESo} (59)
is a smooth manifold. It carries a Hamiltonian S!-action with moment map
M —iR: (6,A) — —%J |©[% dvols . (60)
ba

Hence M. can be identified with the quotient M /S (i(27td — 2TVol(X))).

5.3 Holomorphic curves in projective space

Consider the standard action of G = S! on C™"!. Then a moment mapis again given by
(56), and (17) has the form

: Lol
0AB, =0, *LFA—f—VgOT =T, (61)

where E — X is a Hermitian line bundle, A € A(E), and @y, ...,0, € C* (X, E). By Proposi-
tion 3.5, the moduli space of solutions of (61) is compact and transversality can be easily
achieved. By Conjecture 3.6, the resulting invariants (40) agree with the Gromov-Witten
invariants of CP™. However, in contrast to those, they are defined in terms of compact

smooth moduli spaces.

5.4 Toric varieties

The situation is similar for Kdhler manifolds that arise as quotients of CN by a subgroup

G C U(N). Here a moment mapis given by

wz) = 71( - %zz*),

where 7w : u(N) — g denotes the adjoint of the inclusion g < u(N).Let P — X be a principal
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G-bundle, and denote by
E=PxgCN

the associated vector bundle. Then the equations (17) can be interpreted as equations
for a p air(©,A) € C*(X,E) x A(E), and they have the form

9,0 =0, *FA—I—TE<—%@@*> =1 (62)

for some central element 1 € g. Again, Proposition 3.5 guarantees that the moduli space
is compact whenever the moment map is proper. One gets integer invariants that should
correspond to the Gromov-Witten invariants of the quotient X = CN /G(t). This is in-
teresting because there are many examples where X contains holomorphic spheres with
negative Chern number, and in these cases the direct definition of the Gromov-Witten

invariants of X has so far been established only over the rationals (see [26], [44],and [62]).

5.5 The Grassmannian and the Verlinde algebra

In [79] Witten conjectured a relation between the Gromov-Witten invariants of the
Grassmannian (see [5]) and the Verlinde algebra (see [77] and [6]). For the quantum
cohomology (3-punctured spheres) this conjecture was confirmed by Agnihotri [1]. The

Grassmannian can be expressed as a symplectic quotient
Gr(k,n) = C*™/U(k).
Think of ® € C**" as a k-frame in C". If ® has rank-k, then the orthogonal complement

of its kernel is a k-dimensional subspace of C™. The groupU (k) acts on C¥*™ on the left,
and the function p: C**™ — u(k) given by

w(©) = —%@@*
is a moment map. Thus p~!(—i/2) is the space of unitary k-frames in C™ and its quotient
by U(k) is the Grassmannian. Now let P — X be a principal U(k)-bundle of degree d, and

denote by

E:PXU(k) (Ck—>z
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the associated complex rank-k bundle. Fix a real number T > 27d/kVol(X), and replace
u by p+ itl. Then (17) takes the form

. 1 ¢ .
07Oy =0,  #iFr+ ; 0,0,* =11, (63)
where A € A(E) and ©,,...,0,, € C®(Z,E). In this case (63) has reducible solutions

whenever

27‘((10

ko
— T gk <k 0g<dy<d
T Vol(z)y S fesl pdsdes

Thus the moduli space is regular for T > 2nd/Vol(X) and, for these values of T, Conjecture
3.6 asserts that the invariants obtained from the solutions of (63) can be identified
with the Gromov-Witten invariants of the Grassmanian. On the other hand, the opposite
adiabatic limit ¢ — oo in (42) should give rise to an identification with the invariants of
moduli spaces of flat connections that appear as the structure constants in the Verlinde
algebra (cf. Thaddeus [74]). Thus the solutions of (63) might give rise to a geometric

approach for the proof of Witten’s conjecture.

5.6 Anti-self-dual Yang-Mills equations

There are interesting cases where the solutions of (17) give rise to finite-dimensional
moduli spaces even though the symplectic manifold (M, w) is infinite-dimensional. As
an example consider the case of a principal bundle Q — S over a compact-oriented
Riemann surface S with structure groupSU (2) or SO(3). In Section 2.2 we have seen
that the space M = A(Q) of connections on Q carries a natural symplectic structure
and that the action of the identity component of the gauge group G = 55(Q) C §(Q) is
Hamiltonian with moment map A(Q) — Lie(S0(Q)) : A — *Fa. Hence equations (19), in
local holomorphic coordinates on X, have the form

0sA —da® + #(0¢A — da¥) =0,
(64)
AW — 0@+ [D, W]+ A2 %Fp =0,
where A(s,t) € A(Q) and ®(s,t),¥(s,t) € C*(S,ad(Q)), and the metric on X is A%(ds? +
dt?). These are the anti-self-dual Yang-Mills equations over the product £ x S. The func-
tion C — A(Q) : s+it — A(s, t) plays the role of the map u: C — M in (19). The symplectic
quotient
_ Aﬂat(Q)

Mo TG ME
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is the moduli space of flat connections on Q. It is a symplectic manifold of dimension
6g — 6, where g is the genus of S. If Q is an SO(3)-bundle with nonzero second Stiefel-
Whitney class, then the moduli space Mg is smooth. The adiabatic limit argument of
Conjecture 3.6 here gives rise to a correspondence between anti-self-dual instantons
over ¥ x S and holomorphic curves ~ — Mq. This is the basic idea of the proof of the
Atiyah-Floer conjecture in [17], [18], [19], and [65]. Another reference for this adiabatic
limit is the recent thesis by Handfield [35].

Remark 5.1. (i) An automorphism f : Q — Q (that descends to a diffeomorphism of S)

determines an equivariant symplectomorphism

A(Q) — A(Q) : A — f*A.

The corresponding isomorphism of the gauge group is given by

50(Q) — S0(Q): g gof.

That the symplectic Floer homology groups of the induced symplectomorphism of Mq are
isomorphic to the instanton Floer homology groups of the corresponding 3-dimensional
mapping torus was proved in [19].

(ii) There are interesting Lagrangian submanifolds of A(Q) whenever S is the
boundary of a compact 3-manifold Y and Q admits a trivialization. Then the bundle
extends over Y and the flat connections on Y determine a §(Q)-invariant Lagrangian
submanifold of A(Q) (that is contained in the subset of flat connections). The general
Atiyah-Floer conjecture [2] relates the Floer homology groups of Lagrangian intersec-
tions in Mq, corresponding to two bordisms Y and Y;, to the instanton Floer homology

groups of the closed 3-manifold Y = Yy Us Y; whenever the latter is a homology 3-sphere.

5.7 Seiberg-Witten equations

Another infinite-dimensional example is the space
M= {(©,A) € C¥(S,E) x A(E) | 0A© =0},

where E — S is a Hermitian line bundle of degree d = (c; (E), [S]) over a compact-oriented
Riemann surface S. The symplectic form is given by (20), and Proposition 3.2 asserts that
the action of the gauge group G = Map(S, S!) on this space is Hamiltonian with moment

map

(©,A) — +Fa — %|@\2.
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The symplectic quotient M /G(—it) is the moduli space M4(S) of solutions to the vortex
equations (57) and hence can be identified with the d-fold symmetric product of S. The

equations (19) have the form

020 =0,

9,0 + DO +1(;0 + ¥O) = 0,

3sA — dO + %(9: A — d¥) = 0, (65)

as‘l’—atCD—H\z(*FA— %|@|2 +iT) —0,

where A(s,t) € A(E), B(s,t) € C*(S,E), and (s, t),¥(s,t) € C*(S,iR). These are the
Seiberg-Witten equations over the product X x S, so long as the complex structure on S
is independent of s and t (the integrable case). More precisely, the first two equations
in (65) correspond to the Dirac equation and the last two to the curvature equation. The
spinor bundle is a rank-2 bundle over ¥ x S which naturally splits into a direct sum
of two line bundles. In the integrable case one of the two components of the spinor
vanishes (see [79]), and this leads to the simpler form of the Seiberg-Witten equations
stated above.

The adiabatic limit argument of Conjecture 3.6 now gives rise to a correspondence
between the Seiberg-Witten equations over the product X x S and holomorphic curves
from X into the d-fold symmetric product of S (see [66]). There is a somewhat more
complicated version of this argument which also applies to the case where the complex
structure on S depends on s and t. Then the moduli spaces of solutions of the vortex
equations form a bundle over the Teichmiiller space of S, this bundle carries a natural
connection, and this connection is related in an interesting way to the full version of the
Seiberg-Witten equations in the nonintegrable case whenever the 4-manifold in question
is a fibration with fibre S. This is discussed in detail in [66]. The correspondence between
holomorphic curves and Seiberg-Witten equations indicated here is different from the
one in the work of Taubes [70], [71], [72], [73] where he directly compares the Seiberg-
Witten monopoles over a general symplectic 4-manifold X with holomorphic curves in X.
It is likely that the two approaches are related via the work of Donaldson [13] on symplec-
tic Lefschetz fibrations (see also Auroux [4]). Donaldson proved that every symplectic

4-manifold, after blow-up, admits the structure of a symplectic Lefschetz fibration
X —§?

with generic fibre S. Cutting out the singular fibres one obtains a 4-manifold W, fibred
over the punctured sphere, with cylindrical ends corresponding to the mapping tori of
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Dehn twists. The adiabatic limit argument of Conjecture 3.6 now relates the Seiberg-
Witten monopoles over X to holomorphic sections of the bundle X(¢) | where the fibres
are replaced by the d-fold symmetric products of S. The latter correspond to multivalued
sections of the bundle X — S2. That these in turn should correspond to holomorphic
curves in X itself is the subject of a current research project by Donaldson and Ivan Smith.
The adiabatic limit argument for W(9) is the Seiberg-Witten analogue of the Atiyah-Floer
conjecture (see [65] and [66]). In the 3-dimensional case this is related to the work of
Meng and Taubes [52], Hutchings and Lee [37], [38], Turaev [75], and Donaldson [16].

Remark 5.2. Since there is a correspondence between Donaldson invariants and holo-
morphic curves in the moduli space M2 (S) of flat SO(3)-connections over S on the one
hand, and between the Seiberg-Witten invariants and holomorphic curves in the sym-
metric product M4(S) on the other hand, it would be interesting to compare the Gromov-
Witten invariants of M4(S) with those of M2(S). Such a comparison should be related
to the picture of Thaddeus [74] for the ordinary cohomology of these spaces and hence to
the study of holomorphic curves in the moduli spaces of Bradlow pairs. Results in this
direction might provide an alternative approach (to the one by Pidstrigach and Tyurin
[58]) for the comparison of the Donaldson and the Seiberg-Witten invariants in the sym-
plectic case. The discussion of Section 5.2 shows that this fits into the framework of the
invariants (40). To be more precise, equations (19) with target space M given by (59) and

moment map(60) take the form

020 =0,

3,0 + DO +1(3;0 + ¥O) =0,

9.A — da® + (3 A — daW) = O, (66)

«Fa — 100*

(2Vol(s)) ! J tr(d,¥ — 0,®) dvols +A? < 5
S

+‘i."f> =0,

where E — S is a Hermitian rank-2 bundle, A(s, t) € A(E), O(s,t) € C*(S,E), and (s, t),
W(s,t) € C*®(S,End(E)). Working with (66), instead of holomorphic curves in M. (see

Section 5.2), eliminates the problems arising from holomorphic spheres with negative
Chern number, which exist in M. but not in M. On the other hand, care must be taken
with the solutions of (66) that satisfy © = 0.
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