SYMPLECTIC BOUNDARIES: CREATING AND
DESTROYING CLOSED CHARACTERISTICS

K. CIELIEBAK

1 Introduction

A symplectic manifold (M,w) is a smooth manifold M of even dimension
2n equipped with a nondegenerate closed 2-form w. A map ¢ between
symplectic manifolds (M,w) and (M’,w') is called symplectic if ¢*w' = w.
A symplectic diffeomorphism is called symplectomorphism.

If a symplectic manifold (M,w) has nonempty boundary 0M, then

ker(wlonr )z == {v € T,0M | w(z)(v,w) = 0 for all w € T,0M}

is 1-dimensional for all x € OM, by the nondegeneracy of w. So we get a
line bundle
ker(w|anr) — OM

whose integral curves make up the characteristic foliation L. 1t is uniquely
determined by OM and w. Leaves of L, will be called characteristics.
The boundary 0 M has a natural orientation defined by the volume form

iv(W")]om
for an outward pointing vector field v along M. The line bundle ker(w|anr)
also has a natural orientation in which a vector v € ker(w|gns). is positive
if

w(v,v) >0
for some (and hence every) outward pointing vector v € T, M. We will
assume all characteristics to be positively oriented.

If two symplectic manifolds with boundaries are symplectomorphic,
then the characteristic foliations are conjugate, i.e. there exists a diffeo-
morphism of the boundaries (which is in this case just the restriction of the
symplectomorphism) mapping the leaves onto leaves.

(e}
Question. If we assume only that the interiors (]\OJ,w) and (M’ ') are
symplectomorphic, what can we conclude about the characteristic foliations
L, and L, of their boundaries?
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Y. Eliashberg and H. Hofer have examples which show that under this
assumption £, and £, need not be conjugate ([EHof2], see also [EHofl1]).
On the other hand, there is a surprising rigidity result for closed charac-
teristics due to A. Floer, H. Hofer and K. Wysocki usually referred to as
‘stability of the action spectrum’. To state this result we first need some
definitions.

A 1-form A on an oriented manifold N of odd dimension 2n — 1 is called
contact form if

AA (AN >0
with respect to the orientation. Following A. Weinstein ([W2]), we say that
the boundary of a symplectic manifold (M,w) is of contact type if there
exists a contact form A on M, where OM is equipped with the natural
orientation defined above, such that

d\ = w|3]\1 .

An exact symplectic manifold (M,dp) is a manifold with a 1-form pu
such that dp is symplectic. A map ¢ between exact symplectic manifolds
(M,dp) and (M',dy') is called exact symplectic if ¢*p/ — p is an exact
1-form.

In an exact symplectic manifold (M, ) we define the action A, of a
(positively parametrized) closed characteristic y : ST — M by

Au(y) :=/Sly Mo
and the action spectrum
A(OM, ) :=={k - A,(y) | y closed characteristic on oM, k € N} ,

where N denotes the natural numbers without zero.

Finally, we have to define what it means for a closed characteristic
x on the boundary dM of a symplectic manifold to be nondegenerate.
Choose a hypersurface S in M intersecting = transversally in some point
xo. Consider the Poincaré return map ¢ : S — S (which is defined near
xo) and its linearization

D(xg) : TyyS — Ty S -

The spectrum of D¢(xg) does not depend on the choice of S. We call =
nondegenerate if the spectrum does not contain 1, and strongly nondegen-
erate if it contains no root of unity. Strong nondegeneracy of x corresponds
to the nondegeneracy of all iterates of x.
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STABILITY OF THE ACTION SPECTRUM ([CFHW]). Let (M,du) and
(M',dy') be compact exact symplectic manifolds with boundaries such that
wlanr and p'|gpp are contact forms. Assume that all closed characteristics

on OM and OM' are strongly nondegenerate, and that the interiors ( ]\3[ ,dp)

(0]
and (M',dy') are exact symplectomorphic. Then the closed characteristics
on OM and OM' are in 1-1 correspondence, and

A(OM, p) = A(OM', 1)) .

In this paper we shall investigate what happens if one drops the assump-
tions that both boundaries be of contact type and all closed characteristics
be strongly nondegenerate.

The following results are entitled ‘corollaries’ because they all follow
from a single construction which will be described in section 2 (Theorems
1 and 2).

Background material about symplectic geometry can be found in the
monographs [HofZ] and [MS]. However, the present article requires no fa-
miliarity with symplectic geometry.

a) The first question that arises naturally is the following: If (M,w)
and (M',w'") are symplectic manifolds with boundaries whose interiors are
symplectomorphic, and if (OM,w) is of contact type, does this imply that
(OM',u") is also of contact type?

Let us call a 1-form X on an oriented (2n — 1)-dimensional manifold N
a confoliation form (this expression is due to Y. Eliashberg) if it has the
following properties:

1. A #0, i.e. A is nowhere vanishing.
2. d)\ is maximally nondegenerate, i.e. ker(d\) is everywhere 1-dimen-
sional.

3.
AA (AN >0
with respect to the orientation on N.
The boundary OM of a symplectic manifold (M,w) is said to be of
confoliation type if there exists a confoliation form A on 0M with
dX\ = w|aM .
COROLLARY A. For any symplectic manifold (M,w) of dimension > 4 with
contact type boundary (OM,w) there exists a symplectic form «' on M such
that (]\Of,w’) is symplectomorphic to (]\()I,w), and the boundary (OM,w') is
of confoliation type, but not of contact type.
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REMARK. Often the symplectic manifold (M,w) comes along with a
symplectic embedding
t(Mw) — (M, @)
into some symplectic manifold without boundary. In this case we can choose
the symplectic form o’ in Corollary A such that (M,w’) is also symplecti-
cally embedded into (M,w) (see section 2, Theorem 2 (iii)). This is also
true for all the other corollaries below.
ExamMpPLE. Let "
wan =Y dg; A dp
i=1
be the standard symplectic form on R?" with coordinates (g1, p1, - . . , Gn, Pn),

and let B#" be the closed unit ball. dB%" is of contact type with the contact
form

n
Ao = 1 (qidpi — pida;) -
i=1
By Corollary A and the remark following it, for n > 2 we find a compact
subset M C R?" with smooth boundary such that ( ]\(}[ ,wap) is symplecto-

(0]
morphic to (B, wsy,), and the boundary (9M, wa,,) is of confoliation type,
but not of contact type.

b) Inview of Corollary A one may ask whether the new boundary (OM, ')
will at least always be of confoliation type. Again the answer is ‘No’.

COROLLARY B. For any symplectic manifold (M, w) of dimension > 4 with
contact type boundary there exists a symplectic form w' on M such that
(]\(/)[,w') is symplectomorphic to (]\Oi,w), and the boundary (OM,w') is not
of confoliation type.

c) For the closed unit ball B#" in R?" we can make the statement of
Corollary B more explicit. Consider the foliation

B\ {0} = |J ™79
$€(0,1]
of B#"\ {0} by spheres of radii s € (0, 1].
COROLLARY C. For n > 2 there exists an embedding ¥ : B?" — R?" such
that the interior of (V(B3"),way,) is symplectomorphic to (B%",wgn), and

the foliation Ny := W(S5?"~1(s)), s € (0,1], has the following properties
(see Figure 1):
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RQn

s =1 : not confoliation type

s < 1: contact type

/ / s < % : round spheres

Figure 1.

(i) Ny = S*"1(s) for s € (0,3],
(ii) Ny is of contact type for s € (0,1),
(iii) Ny is not of confoliation type.
In particular this shows that there are hypersurfaces in R?"® which can
be smoothly approximated by contact type hypersurfaces but which are
not of confoliation type.

d) Now let us turn to the action spectrum. Recall that ‘stability of the
action spectrum’ holds under the condition that both boundaries are of con-
tact type. Such a result does not hold any more if for one of the boundaries
the condition ‘contact type’ is weakened to ‘confoliation type’.

COROLLARY D. Let (M, du) be an exact symplectic manifold of dimension
> 4 with boundary such that u|gps is a contact form, and assume that OM
carries only finitely many closed characteristics. Then there exists a 1-form
w' on M such that ( M ,du') is exact symplectomorphic to (]\04 cdu), 1onm
is a confoliation form, and

AOM, 1) = {0} .

REMARK. The proof will show that the characteristic foliation of (9M, du’)
has at least 2 closed characteristics of action zero which are degenerate. We
do not know if one can achieve that all closed characteristics of (OM, dy’)
are nondegenerate.
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ExAMPLE. For r = (r1,...,r,) € (R")™ define the ellipsoid
n
E(T) = {((J1tp17' . 7(1npn) € RQn ’ ZW < 1} .
i=1

The boundary (OF(r),way,) is of contact type with the contact form Ay,
from a). If 7= is irrational for all i # j, then OFE(r) carries precisely n closed
characteristics, and Corollary D can be applied.

e) What happens to the old action spectrum in Corollary D7 It turns out
that the set of numbers A(OM, ) is still present in (OM, '), but as the
actions of ‘heteroclinic chains’.

If (N, A) is a manifold with a confoliation form, then a heteroclinic chain
in (N, ) is an m~tuple (A1, ..., hy) with the following properties:

hi,...,hm : R — N are non-closed characteristics of (N, d\) (i.e. integral
curves of ker(d))), and there exist closed characteristics 1, ..., Z,, such
that

hi(t) — z; as t — —o0 ,
hi(t) — w41 as t — 400
for i =1,...,m, where we have set x,y1 := 2.

COROLLARY E. Under the hypotheses of Corollary D, to every action
value a € A(OM, ) there corresponds a heteroclinic chain (hy, ..., hy,)

in (OM, ') with action
m / ,
| W=a.
i=1"ha

OPEN QUESTION. Can one extend the definition of ‘action spectrum’ to
include, besides closed characteristics, more general invariant subsets such
as, for example, the heteroclinic chains above, such that the larger ‘action
spectrum’ is invariant under symplectomorphisms of the interior?

f) In Corollary D we have destroyed a finitely generated action spectrum,
creating only one new action value 0. If we drop the condition that the
new boundary be of confoliation type, then we can also create a prescribed
finitely generated action spectrum. However, since in this case the inte-
rior will in general not remain exact symplectomorphic, we shall consider
another situation in which we can define an action spectrum.

Let (M,w) be a symplectic manifold with boundary. We say that w
vanishes on mo (M) if

ffw=0
S2
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for all smooth maps f : S — M. Under this hypothesis we can define the
action of a closed characteristic y : S' — M which is contractible in M
unambiguously as

Au(y) == /B2 7w
1

for any smooth map 3 : B — M with gj|aB% = y. Define the contractible
action spectrum

A (OM, w) == {k - A,(y) | v closed characteristic on OM
contractible in M, k € N} .

In this situation we have again ‘stability of the action spectrum’ if both
boundaries are of contact type (see [CFHW]). Dropping the ‘contact type’
condition for one of the boundaries, we obtain the following result.

COROLLARY F. Let (M,w) be a symplectic manifold of dimension > 4
with boundary (which may or may not be of contact type) such that w
vanishes on mo(M). Assume that there are only finitely many closed char-
acteristics on OM, and let ay,...,a; be given real numbers. Then there

exists a symplectic form «' on M, vanishing on mo(M), such that ( M W)

o
is symplectomorphic to (M,w), and

Acontr(anw/) _ {k'ai | i€ {1,...,1}; kEN}U{O} .

g) Now let us go beyond closed characteristics and study what can happen
to invariant tori.

Let E(r) Cc R?" be an ellipsoid. The characteristic foliation of
(OE(r),way,) can easily be calculated explicitly. It is completely integrable in
the sense that up to a set of measure zero, dE(r) is foliated by smoothly em-
bedded invariant n-dimensional tori on which the characteristic foliation is
linear. Here we call a 1-dimensional foliation on the n-torus 7" = R"/Z"
linear if it is smoothly conjugate to a foliation by parallel straight lines.
Note that this definition of integrability is different from the integrability
in the sense of Liouville (via independent integrals of motion).

COROLLARY G. Let n = 2 and v = (r1,m3) € (RT)? with L irrational.

Then there exists a compact subset M C R* with smooth confoliation
(] [¢]

type boundary such that (M,ws) is symplectomorphic to (E(r),ws), and

the characteristic foliation on OM has no continuously embedded invariant

2-torus.
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REMARK. The familiar picture of the transition from an integrable to
a nonintegrable system, as described by KAM and Aubry-Mather theory
(in dimension 2), is that of certain invariant tori breaking up into cantori,
others following, until all invariant tori have disappeared. The proof of
Corollary G reveals a quite different picture: There exists a smooth family
(Ns)o<s<1 of embedded hypersurfaces starting from Ny = 0E(r) and end-
ing with Ny = 9M. All invariant tori persist for s € [0,1), breaking up
simultaneously at s = 1.

h) We may also have the opposite case to g), namely that the boundary
remains completely integrable, but the characteristic foliation is changed.

COROLLARY H. Let (M, w) be a symplectic manifold of dimension > 4 with
boundary, and suppose that the characteristic foliation £, on O M possesses
a smoothly embedded invariant 2-torus I' on which the foliation is linear.

Then there exists a symplectic form w’ on M such that ( M ,w') and ( M W)
are symplectomorphic, T is invariant for the new foliation L, and the
following holds:

(i) On OM \ T the foliations L, and L,, are conjugate.
(ii) The foliation L, |r has precisely 2 closed leaves, in particular it is not
linear.

The situation of Corollary H occurs, e.g., if dim M = 4 and the charac-
teristic foliation on OM is completely integrable in the sense defined in g).
In this case the foliation remains completely integrable and is altered on
precisely one invariant torus.

i) The next application is related to the Seifert conjecture on S3. H. Seifert
had asked in 1950 whether every nonsingular vector field on S2 has a peri-
odic orbit. The answer is now known to be ‘No’ due to the C! vector field
constructed by P.A. Schweitzer ([Sc]) in 1974 and the smooth vector field
constructed by K. Kuperberg ([Ku]) in 1994. But it remains an interesting
problem to pose the question for restricted classes of vector fields.

A vector field X on S? is called volume preserving if there exists a
smooth volume form Q on S3 such that

LxQ=d(ixQ) =0.

In 1994 G. Kuperberg produced a volume preserving C! vector field on S3
without periodic orbits ([K]). So in order to get a positive answer to Seifert’s
question we must impose further restrictions on the vector field X.
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Since the 2-form ix€ is closed and S® has trivial second cohomology,
there exists a 1-form A such that

(%) d\=ix) .

Here in the choice of A we have the freedom to add the differential of a
function. We call X a Reeb vector field if we can find a 1-form X satisfying
(%) such that

AMX)>0.

If there exists a nowhere vanishing 1-form A satisfying () such that
AX) 20,

we call X a confoliation vector field. Note that in these cases the form A
is a contact respectively confoliation form.

H. Hofer has proved in 1993 that every Reeb vector field on S? possesses
a periodic orbit ([Hof]). Moreover, there exists at least one periodic orbit
which is unknotted ([HofWyZ]). In contrast to this, for confoliation vector
fields we have the following result.

COROLLARY 1. Let ¢ be any prescribed oriented knot type in S3. Then
there exists a confoliation vector field X on S3 with precisely two periodic
orbits, and they have knot types +c.

Moreover, X can be chosen transversal to the standard contact structure
on S3.

Here the standard contact structure on S is the plane distribution
TS3 D ker(X\g) — 5%,

where ) is the contact form on S obtained by restricting the form A\ of
a) to the unit sphere in R*.

REMARKS. 1. By the result of [HofWyZ], for a nontrivial knot type ¢ the
flow of the vector field X in Corollary I is not C%-conjugate to the flow of
any Reeb vector field.

2. A contact vector field is a nonvanishing vector field Y with (Ly A) A
A = 0 for some contact form A. Combining Corollaries G and I we find
a confoliation vector field on S® whose flow possesses no invariant 2-torus
and no unknotted periodic orbit. The flow of this vector field is not C°-
conjugate to the flow of any contact vector field, which can be seen as
follows: Consider the set N := {z € S | A(Y)(z) = 0}. The condition
that Y is a contact vector field implies that d(A\(Y)) # 0 along N, and Y is
tangent to N. Hence N is either empty or a union of smoothly embedded
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invariant 2-tori. By the choice of Y, N must be empty. But then Y is a
Reeb vector field, and the statement follows from Remark 1.

j) A smooth hypersurface S C R?" has a characteristic foliation induced
by ker(wanl|s). It is an old question in Hamiltonian dynamics how many
closed characteristics there must exist on a compact hypersurface. In 1994
V. Ginzburg constructed examples of smooth compact hypersurfaces in
R?", n > 4, without closed characteristics ([G]). The same result has been
obtained independently by M. Herman, as well as examples of compact
hypersurfaces of class C3~¢ in RS without closed characteristics ([H]). On
the other hand, a result by C. Viterbo from 1987 states that every compact
hypersurface of contact type has at least one closed characteristic ([V]).
Here a hypersurface S is said to be of contact type (resp. confoliation
type) if there exists a contact form (resp. confoliation form) A on S with
d\ = w2n| S -
Our construction yields the following result.

COROLLARY J. For any n > 2 and k > 2 there exist compact smooth hyper-
surfaces in R?*" of confoliation type with precisely k closed characteristics.

For n = 2 this contrasts a result due to H. Hofer, K. Wysocki and
E. Zehnder that a hypersurface in R* bounding a strictly convex domain
always possesses precisely 2 or infinitely many closed characteristics. In
particular, for & > 2 the hypersurfaces in Corollary J cannot bound a
strictly convex domain in R?.

It is an open question whether a compact hypersurface in R* of contact
type can carry a finite number k # 2 of closed characteristics.

This paper is organized as follows: In section 2 we describe the construc-
tion to create and destroy closed characteristics. In section 3, Corollaries A,
D,E,G.,I and J are proved. In section 4 we slightly generalize the construc-
tion, and in section 5 we prove the remaining Corollaries B,C,F and H.

Acknowledgement. I wish to thank V. Ginzburg whose beautiful paper
[G] inspired this work.

I wish to thank H. Hofer for making me get the construction back out
of the waste-paper basket.

I wish to thank M. Kriener who fought his way through the waste-paper
basket version and helped to bring the article into the present form, as well
as E. Zehnder and H.J. Geiges for useful comments.
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2 The Construction

Let (N, )\) be an (oriented) manifold of odd dimension 2n — 1 > 3 with a
confoliation form. The line bundle ker(d\) generates a foliation which we
shall also call characteristic foliation. A tangent curve in (N, \) is a curve
which is everywhere tangent to ker(\). In dimension 3 such a curve is called
‘legendrian curve’. Closed curves will be called loops.

The construction is based on the following 3 results.

LEMMA 1. Let (N, A) be a manifold of dimension 2n—1 > 3 with a contact
form. Then every embedded smooth curve ¢ : [a,b] — N can be deformed
into an embedded curve tangent to ker()\) by a C°-small smooth isotopy of
embedded curves fixing any finite number of points on c.

Theorem 1. Let (N,\) be a manifold of dimension 2n — 1 > 3 with a
contact form, and let L C N be an embedded oriented loop tangent to
ker(\). Then there exists a 1-form N on N, agreeing with A\ outside a
neighborhood of L, with the following properties:

(i) The characteristic foliation generated by ker(d)\') has 2 additional
closed orbits L™ which are isotopic to +L. Here —L is the loop L
with the opposite orientation.

(ii) Every closed characteristic of ker(d\) intersecting L breaks up into
two characteristics of ker(d)\') heteroclinic to L* (see Figure 2).

Figure 2. Breaking up a closed characteristic

(i) Apart from (i) and (ii) no closed characteristics are created or de-
stroyed.
(iv) X is a confoliation form, and N' A (d\')"~! = 0 precisely on L~ U L".

Theorem 2. Let (M, w) be a symplectic manifold of dimension 2n > 4 with
contact type boundary (OM, \) such that w|py; = A, and let L C OM be an
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embedded oriented loop tangent to ker(\). Then there exists a symplectic
form w' on M, agreeing with w outside a neighborhood of L in M, with the
following properties:

(1) w'|gar = dN', where for X' on OM the statements of Theorem 1 hold
true. o o
(ii) The interiors (M,w) and (M,w") are symplectomorphic.
Moreover, the following holds:

(iii) If (M,w) is symplectically embedded in some symplectic manifold
(M, &) without boundary, then we can choose ' such that (M,w') is
also symplectically embedded in (M,®).

(iv) If w = dp is exact with u|spr = A, then there exists a 1-form ' on
M, agreeing with p outside a neighborhood of L in M, such that

wlon = N, and (]\c/il,du) and (]\3[ dy') are exact symplectomorphic.
These results will be applied as follows: Let a symplectic manifold
(M, w) of dimension > 4 with contact type boundary (9M, \) be given.

Step 1. Select a finite set {y1,...,y;} of closed characteristics on OM
you want to get rid of (this set may also be empty). Choose finitely many
isotopy classes cq, ..., ¢, of embedded oriented loops in which you want to
create closed characteristics, such that every boundary component contain-
ing one of the y; also contains a loop in one of the classes c;.

Step 2. By Lemma 1 there exist disjoint embedded loops L, ..., Lg
in the classes ci, ..., c; which are tangent to ker(\) and such that every y;
intersects one of the L;.

Step 3. Apply Theorems 1 and 2 to each of the tangent loops
Ly,..., L. We obtain a new symplectic form ' on M with the properties
listed in Theorems 1 and 2, in particular:

e In the new characteristic foliation £ on M the old closed charac-
teristics y1, ...,y have disappeared, and new closed characteristics
L?E have been created in the classes +c¢;.

e The interior ( M ,w') is symplectomorphic to ( M ,W).

Proof of Lemma 1. First we will deform ¢ to make it tangent to ker(\)
near the prescribed points. Taking more points we may assume that two
consecutive points are always contained in one Darboux chart. So it suffices
to show the following local statement:

Consider R®™~! with coordinates (q1.,p1, .. . ,qn_1,Pn_1, ) and the stan-
dard form dz + Ay(,—1), where Ay, 1) = %Z?:_ll(q,;dpi — pidg;) as before.
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Let

c:[—€1+¢— RN
be an embedding which is tangent to ker(\) outside (0,1). Then there
exists a CY-small smooth isotopy of c, fixed outside (0, 1), to an embedded
curve L tangent to

ker(dz + )\g(n_l)) = { - /\Q(n—l) (Y)% +Y|Y = Z (aié?iqi + bi@im) } ’

Without loss of generality assume ¢(0) = 0. Let
T R2n71 N R2n72
be the projection onto the {z = 0}-hyperplane. A curve
r=(rr,r.):[0,1] - R}
with r(0) = 0 is tangent if and only if

) ) == [ @) N

So setting 7r := wc and defining 7, by (%) we obtain a tangent curve
r:[0,1] — R?~! which matches smoothly with the given curve c at t = 0.

Next we want to make r embedded by a C°°-small perturbation away
from the end points {0,1} and keeping it tangent. To this purpose we
perturb the projection 7r away from the end points until it only has a
finite number of transversal self-intersections in (0,1), and define r, by
(x). This yields a new tangent curve which we will still denote by r. Let
0 < t; <ty <1 be times with 7r(¢;) = wr(t2). Then

. (t) — 74(t2) = /D dAa(n-—1)

is the symplectic area of any disk D in R2™~Y) bounded by 7r([t1, t2]). Note
that here we have used Stoke’s theorem for piecewise smooth boundary.
Now we perturb 77 to make this area nonzero for all self-intersection points
of mr. The resulting r, with r, again defined by (x), will be tangent and
embedded.

The curve r matches with ¢ at ¢ = 0, but at ¢ = 1 the z-component
r,(1) will in general be different from c,(1). To compensate for this, let
am : [0,1] — R?"~ 1D be an embedded closed curve matching smoothly
with 7r(t + 1) at ¢ = 0 and with 7c(t) at ¢ = 1. Define the z-component

maft) = 720 = [ rm) gy
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At t = 1 we obtain
ma(1) = (1) + [ ' dhpgo)

for any extension m of wm to the unit disk D. So we may choose mm in
such a way that m,(1) = ¢,(1). The tangent curve m = (wm,m,) then
matches smoothly with (¢ + 1) at ¢ = 0 and with ¢(¢) at ¢ = 1. Define the
curve L : [—¢,1 4+ ¢ — R?"~ ! by
c(t) ft<Qort>1,
L(t) = r(6() if0<t<d,
m(p(t)) ifg3<t<1,
where ¢ : [0,1] — [0,2] is a smooth diffeomorphism with ¢(t) = ¢ for ¢ near
0, ¢(t) =t +1 for ¢t near 1, and ¢(3) = 1.
L is the desired embedded tangent curve. Applying this procedure to a

finer partition of ¢ we can get L arbitrarily C°-close to ¢, and L is clearly
isotopic to ¢ through embedded curves. O

Changing the foliation on the boundary: Proof of Theorem 1.
Near the tangent loop L the contact form A has the following normal
form: Let B,%k be the closed ball around 0 of radius v in R?* with coordi-

nates z = (q1,p1,- - -k, Pk)- Put
k:=n—2
and define
P :=[-6,0] x [—¢,¢€] x sz x St
with coordinates
p=(t,x,20).
Consider the 1-forms Aoy = %Zle(qidpi — pidg;) on ng and
)\0 = dt+$d9+)\2k

on P. According to Lemma A1 of the appendix there exists a neighborhood
of L in N diffeomorphic to P such that

L = {0}2k+2 % Sl
and
Ap=Xo.

Hence Theorem 1 follows from the following proposition, setting X := \;
on P and )\ := )\ outside.



283

PROPOSITION 1. There exist 1-forms (As)o<s<1 on P, agreeing with g
near 0P, with the following properties:

(i) The cylinder
7 = [—6,6] x {0}2FFL x st
is invariant under the flow of ker(d)\s) for all s € [0,1]. The circles

L* = {:I:g} x {0}2EFL x g1

are closed orbits of ker(d\1) oriented in direction :I:%.
(ii) All orbits of ker(d\;) on Z are asymptotic to L* as shown in Figure 3.

Figure 3. The foliation on Z

(iii) For 0 < s < 1 all orbits of ker(d\s) in P enter P at some point
(=6,x,2,0) and exit P at the opposite point (+6,x,z,0). The same
is true for all orbits of ker(d\;) in P\ Z.

(iv) As are contact forms for 0 < s < 1, and A\ is a confoliation form.
Moreover, A\1 A (d\1)"~! = 0 precisely on L™ U L*.

REMARK. There cannot exist a contact form A\; on P, agreeing with Ag
near 0P, and having the properties (i)-(iii). This follows from the discus-
sion preceding Corollary I: If such a contact form existed then Corollary I
would yield a Reeb vector field on S® without unknotted periodic orbits,
contradicting Hofer’s result.

Proof. The following construction is taken from [G]. Tt is a symplectic
version of F. Wilson’s mirror image plugs (cf. [Wi]).

Let H and f be functions on Q := [—6, 8] X [—¢€, €] X B%k depending only
on t, x and |z|, and satisfying

(H1) H = x near 0Q);

(H2) Hy — |H| — |2 |H;| > 0 for all (¢, z,2) # (£ 5,0,0);
(H3) H.(+35.,0,0) =0;

(H4) H(t,0,2z) =0 for all (¢,z2);

(H5) H(—t,z,z) = H(t,x, 2);
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(H6) H(t,x,2) = z((t F $)? + 2% + |2|?) for (¢,z,2) near (££,0,0):

and

(f1) f = 0 near 0Q);

(£2) f£.(5,0,0) >0, f.(—5,0,0) < 0;

(f3) f is sufficiently C?-small;

(f4) f(=t,z,2) = —f(t,z, 2) ‘

(f5) f(t,z,2) = +ax for (t,z,2) near (+§,0,0), with some a > 0.

Here H, etc. are partial derivatives, and H, denotes the gradient of H
with respect to the z-variables. The level lines of H on {z = 0} are shown
in Figure 4. The conditions (H6) and (f5) are not really necessary, but they
will simplify some local computations.

§/2 6

Figure 4. The level lines of H for z =0

A function H satisfying (H1-6) can be constructed as follows (cf. [G]).
Choose the following smooth functions:

e g:[-6,6] — [0,1] even such that g = 1 near +6, g = 0 precisely at
+8, and g(t) = (t ¥ §)? for t near +5.

e h:[—c € — [—¢ € odd with h(z) = z for x near +e, h(x) = 2° near
0, W (z) — |h(z)| > 22, and |h(x)| < |z|.

e [:[0,7] — [0,1] monotone increasing such that [ = 1 near v, I(r) = r
near 0, [(r) > 72, and I'(r) < cr for some constant ¢ > 0.

Define
H(t,x,2) == (1= U(|2])[(1 = g(t)h(z) + g(t)x] +1(|2])z .

2
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Properties (H1) and (H3-5) follow immediately. For (H2) we calculate,
choosing |z| < e sufficiently small,

Hy — |H| — |2] | H,|
=1 =01 =gl +g] +1—[(1=D[(1 — g)h+ gz] + x|
— |2 |=V[(1 = g)h + gx] + x|
> (1 =01 =g)(r = [n)) + (1 =1)g(1 = |z]) +1(1 — |z])
— 2| ['](1 = g)|h — 2|

> (1=0)(1 - g)2* + 5(1 = 1)g + 51 — 2¢|z[*z|
> (1-1(1—g)2* + 3(1 - D)g+ 311 — 4cf(]
>0

if 4ce < 1, with equality if and only if [ = g = 2 = 0, i.e. at (t,x,2) =
(££,0,0).
Finally, for (¢,z,z,) near (% 8,0,0) we have

Ht,z,2) = (1= |22)[(1= (t 7 §))2" + (¢ 7 §)"a] + |2l ,

which agrees with (H6) up to higher order terms. So we can modify H in
a neighborhood of (:I:%, 0,0) to fulfill (H6).
Now define
H(t,z,z) == sH(t,z,z) + (1 — s)x
and
As = (1=sf(t,z,2))dt + H*(t, 2, 2)d0 + Aoy, .
Clearly Ay = Ag near 9P for all s € [0,1].

(iv)  As is nowhere vanishing because for | f| < 1 the dt-term is never zero.
Its exterior derivative is

dX\s = sfydtde + H)dxdf + H dtdf + sdt Nd,f + d, H® \df + dXoy, ,
where d, denotes the differential with respect to the z-variables. It follows
that

(dX)" T = (k4 1)(sfe dt dx + HE dx df + Hf dt df) A (dAgp)®
k(k 1) (sfp doH® — sHEdof) Adt dad A (dhog)"
where the coefficients (k+ 1) and k(k+ 1) do not depend on the convention
for the wedge product. By (H2) and (H3), the term (k+1)HZ dx dOA (dog)*
vanishes only if s = 1 and (¢, z,2) = (£ g, 0,0). But then by (f2) the term

(k+1)s fp dt d;v/\(d)\gk)k is nonzero. Hence d); is maximally nondegenerate
for all s.
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To check the confoliation type property, compute
e A (A = (k+ 1)[(1 = sf)HE + sH® f,] dt da df A (doy)*
+ h(k+1)AapA(s fy do S —sHE d. f)AdE da dOA(dAog,)F !
=(k+1)[(1—sf)H]+ sH®f, + h] -vol ,

where

vol == dt dzdf A (doy)"
and h is the function defined by
EXok A (sfodoH® — sHE d f) A dt dazdf A (dDox)* ™ = h - vol .
Since Aoy, is of order |z|, h can be estimated by
B < 1B 2] (1ol V2] + 1ol )

Assuming €,y < % and choosing f C'-small this leads to the following
estimate:

(L= sf)HE + sH fo 4+ > (L= || = k|| |f. ) HE — | fol (| + K| [H2))

L (sHo(1-5))— (| H|+(1—8)e| ]2 | FL|)

(0) Ls(H, — [H| — |2 [H.]) + 3 (1 = 5)(1 = |a])
>0

for all 0 < s < 1, with equality if and only if s = 1 and (¢, z,2) = (:I:g, 0,0),
i.e. on LT U L™. This proves (iv).

Vv

(i) and (ii) ker(d\;) is generated by the nonvanishing vector field

X® = sfpip + Hif — Hi &+ sfpogs — sHivp

where for a function g on P, v, denotes the vector field having no %, a%
and % components and satisfying
d.g =iy, doy -
Note that since f and H are functions of ¢,z and |z| only,
d.f(ves) = d,H*(vf) =0 .

Using this one easily verifies that X?° indeed satisfies i xsdAs = 0.
Because of (H4) and once again the dependence of H and f on ¢,z and
|z| only, X*® reduces along the cylinder Z to

Xt =sfol+HiG .

This shows that 7 is invariant under X* for all s € [0, 1]. The flow of X! on
7 is depicted in Figure 3. It has the two closed orbits L* corresponding to
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the points where H, vanishes. The orientations of L™ and L™ are opposite
to each other because f,(— $,0,0) = —f,(+ £,0,0). Outside L* the 2-
component of X! is strictly positive, so all other orbits on Z are asymptotic
to LT as shown in Figure 3.

(iii) Suppose that either s < 1, or s = 1, and in the latter case only points
in P\ Z are considered. In these cases the é%-component of X% is strictly
positive, and we can normalize X* to

A ys_ 90 4 sf+ 8  HP 9 | sfu, —~_ sHp
HgX_8t+H§BG H:ioz + s VHS — 3 Vf

= % +Y°.
Hence after reparametrisation the integral curves of X® are curves

b (ty(t)

(we use the notation y = (z, z,0)) satisfying
y(t) =Y*(t,y(1)) -
Now by (H5) and (f4) the time-dependent vector field Y* satisfies
Yi(t,y) = =Y?*(—t,y) .

Thus for every solution y(t), the curve t — y(—t) is also a solution, and by
uniqueness we obtain

y(=t) = y(@) -
In particular, y(—6) = y(6), and (iii) follows. This finishes the proof of
Proposition 1 and Theorem 1. O

Keeping the interior symplectomorphic: Proof of Theorem 2.

Let (OM, ) be the contact type boundary of (M,w). In order to find
a normal form for w near the tangent loop L C M, we need the following
fact:

There exists a neighborhood (0, 1] x OM of OM in M, OM corresponding
to {1} x M, and a 1-form p on (0,1] x OM such that

dp = wl|o1xom >
Bliyxon = A,
and
tlgsyxonm
is a contact form for all s € (0, 1].
Such a neighborhood can be constructed as follows: By the relative
Poincaré Lemma (see [W1]) we find a 1-form p on a neighborhood V' of
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OM in M with
wly = du
and
w|lOM = X .
Define a vector field Y on V' by
Tyw = [4 .

Then Y is transverse to OM because w™(Y, X, 71, ..., Zop—2) > 0 for X
the Reeb vector field of A, and Z;, ..., Zs, o a positively oriented basis of
ker(A) on M. Let g be a positive smooth function on V such that the
flow ¢s of —gY starting on M exists until time 1 and stays in V. If g is
sufficiently small this leads to an embedding

(0,1] x OM — M

(5,2) = d1-5(2) ,
onto a neighborhood of M in V. From

Ligvyn = iggyyw + d(i(gyu)
=gu

it follows that

D15 (Wl gy 0m))
is a positive multiple of A and hence a contact form, and the fact is proved.

Now consider the embedded tangent loop L C dM. Recall from the
proof of Theorem 1 that P = [, 6] X [—¢, €] X ng x S1. Define on (0,1] x P
with coordinates (s,t,x, z,0) the 1-form
o = sdt +xdf + Aoy .

By Lemma A5 of the appendix we find, after a change of the foliation
({8} x OM)¢(p) near L, a neighborhood (p, 1] x P of L in M such that
L={1} x {0}%+2 x s!

and

tlpa)xp = Ho -
Properties (i) and (ii) of Theorem 2 are contained in the following propo-
sition, setting w’ := duy on (p,1] x P and ' := w outside.

PROPOSITION 2. (i) There exists a 1-form py on (p, 1] x P such that
p1 = po near {p} x PU(p,1] x P ,

dpq is a symplectic form ,
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p1lgsyx p is a contact form for s € (p, 1) ,

and
mlyxp = A1,
where A1 is the confoliation form of Proposition 1.
(ii) There exists a diffeomorphism U : (p,1) X P — (p,1) x P such that

U =id near {p} x PU (p,1) x OP

and

U*(dpr) = dpo -
Proof. (i) Let o : (p, 1] — [0, 1] be a smooth function satisfying

o =0 near p ,
(o) ol)=1,

o(s)<lfors<1
(see Figure 5). Define ®¢ : (p,1] x P — R x P,
Do(s,t,z,2,0) = (s,t,HU(S)(t,a:,z),z,H) ,

where H satisfies (H1-6).

a) b)

— o(s)=s o(s)=1—(1-s)

g a

Figure 5. The two choices of o
We will need the following lemma:

LEMMA 2. (a) ®g is a homeomorphism onto its image, and outside the
circles L* := {1} x {£8} x {0}?**1 x S! it is a diffeomorphism.

(b) For every neighborhood U of L~ UL" there exists a constant c(U) >
0 such that if ® : (p,1] x P — R x P satisfies

|® — Poflcn < e(U)

then D®(X) is invertible for all X ¢ U, and ®(X;) # ®(X3) for all X1 # Xo
with Xy ¢ U.
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Proof. (a) First note that a map of the form

(X,Y) — (F(X,Y),Y)
is a homeomorphism respectively diffeomorphism if and only if for every
fixed Y the map X — F(X,Y) is a homeomorphism respectively diffeo-

morphism. So in this case we only have to show that for every fixed
Y = (s,t,2,60) the map

B w— HOO (1, 2)
is a homeomorphism onto its image and a diffeomorphism outside L*. Now
by (H2), the derivative of ®} satisfies

D (x) = H] (¢, 2)
=(1—-0(s))+o(s)Hy(t,x,2)
>0

for (s,t,z,2) # (1,:|:%,0,0). This shows that ®} is injective and a diffeo-
morphism outside L*. Since [—e€, €] is compact, (I>OY is also a homeomor-

phism onto its image.
(b) By part (a), there exists a constant b > 0 such that

det D®(X) >bforall X ¢ U .

Hence
det D®(X) > b — const||® — Dgl|cn

>0
it X ¢ U, and ||® — ol is sufficiently small.
By part (a), there also exists a constant ¢ > 0 such that
|Po(X1) — Po(X2)| > | X1 — Xo| for X ¢ U .
Hence
[(X1) — B(X2)[ = |Po(X1) — Po(X2)| — [(® — Po)(X1) — (P — Po)(X2)]
> o] X1 — Xof = [|® — Rl o1 | X1 — Xy
>0
if X1 ¢ U, and ||® — O/ is sufficiently small. 0

Now we are going to modify ®( in order to get a smooth embedding.
Let T': (p,1] x P - R x P,

F(s,t,at,z,@) = (S - O'(S)f(t,ﬂj,Z),t,HU(S)(t,Jj, Z) - g(s,t,az,z),z,Q) 3

where H, f and o satisfy (H1-6), (f1-5) and (o) respectively, and g : (p, 1] X
@ — R is a smooth function vanishing near {p} x Q U (p, 1] x 9Q with

gl + lg2] + 192 < T5(1—s) .
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Here Q = [—6,0] X [—¢€, €] X B%k as in the proof of Proposition 1. Let U be
a neighborhood of L™ U L™ on which H and f are of the forms (H6) and
(f5), and assume that on U we have

o(s)=s,
g(s,t,x,z) = £b(1 —s) ,
with a constant b > 16a, where a > 0 is the constant in (f5) (see Figure 5a).

Moreover, let || f||c1 and ||g]|c1 be small enough such that Lemma 2 can be
applied to T'.

LEMMA 3. T is a smooth embedding.

Proof. 1. In view of Lemma 2, we only have to show that the restriction
['|y is an embedding. As noted in the proof of Lemma 2, this is equivalent
to showing that for every Y = (¢, z,6) the map

T (s,2) = (s — o (s) f(t, 2, 2), H) (8,2, 2) — g(s,t, 2, 2))
is an embedding.

To show that I'Y is an immersion, let us compute the Jacobi determinant
at a point (s,t,x,z,0) € U:

Y . 1_U/f —0 fa
det DT (s,x) = det o(H—2)— g5 oHy+(1—0)
> 5(0Hy + (1= 0)) = 0gs fo — olo’| | fol [H — 2

if |o'||f| < . Now on U we have H, > 322, |H| < |z|, gsf» = —ab and
|fz] = a. Hence

det DT (s,2) > 1 (302? + (1 — o)) + abo — 2ac|d’| |z|

= 10[32% — dalo’||z|] + 3(1 — o) + abo

= 1o[2? +2(|z| — a|o’])? — 2a®|0’*] + (1 — o) + abo
(1) > 102 + 5(1 = o) + abo — a*|0')?0 .
Inserting o(s) = s and dropping the first 2 terms in (1) we get

det DTY (s, ) > abs — a®s
>0

for b > a.

2. Next we will show that I'Y is injective. Therefore suppose that

Y(s,z) =TY(s, )
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for some Y = (t,z,6) and some (s,z), (s',2') such that both (s,t,z,z2,0)
and (8',t,2',z,0) lie in U. By the definition of I'V this is equivalent to the
2 equations (we omit the arguments (¢, z, 6))
(s =s)—o(s) f(a") +a(s)f(z) =0,
o(s)H(2") = o(s)H(z)+ (1 -0(s')a’ = (1 - (s))x—g(s',2") +g(s,2) =0,
or, after recollecting terms,
(2) (8" =8) = (o(s) = a(s)) f(x) = a(s")(f(2') = f(2)) ,
3) o(s')(H(2") — H(x)) + (1 — o(s)) (2" — 2)
= (0(5') = o(s))(z — H(z)) + g(s',2") — g(s,)

Inserting o = s, f = tax and g = £b(1 — s), equations (2) and (3)

simplify to

(4) § — g = Fas (o —x),
(5) S(H(2')—H(x)+(1—=8) (2" —2)+ (s —s)(H(x) —x+b)=0.
Without loss of generality suppose that ' > x. Using (H6) we can estimate
H(z')— H(z) > (/)3 — 23
= (2’ — z)((2')* 4+ 2’z + °)
(6) > 5(2’ = 2)((2')* +27) .
Inserting (4) in (5) and then using (6) and |H| < |z| yields
0=s'(H(z') - H(x)) + (1 — )2’ — 2) + £ (2' — 2)(H(z) — v £ b)

>/ (H(a!) — H(z)) + £25 (2/ — 2)(H(z) — 2) + 125 (2 — )

> §'(H(2'") — H(z)) — 4as’|z| (z/ — x) + Jabs'(z' — x)
35 (a' — 2)[2? — 8a|z| + ab]
15/ (a) — 2)[(|z] — 4a)? — 16a® + ab]
> 1s/(2/ — z)(ab - 16a?)
>0

v

if 2’ > x, since b > 16a. This contradition proves x = x’ and thus s = &’
by equation (4).
This proves that I'V is an injective immersion. Since T'Y' = id near
{p} x [—€,€], TV is an embedding. O
We continue in the proof of (i). Define

pr =T po
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Near {p} x PU (p,1] x OP we have I' = id and hence p; = p9. The 2-form
duy = I dpo is symplectic because dpg is symplectic.
Replacing H® by H°®) — g in the proof of Proposition 1 (iv) we obtain

k+1 _ )
p A (dpn) ’{s}xp— (k+1)G -vol ,

where the estimate (0) for the function G is modified to

G > go(Hy — |H| — |2| |H2]) + 5(1 = o) (1 — [2]) - 2lga| — 5(1lg] + 2] |g:])
> 1(1=0) = 2(|gal + lgl +1g21) ,

where we have used (H2) again in the last step. By assumption, there

exists a number sg € (p,1) with o(s) = s for s > s9. For s < s¢p we have

o(s) < 1, and therefore G > 0 if ||g||c1 is sufficiently small. For so < s < 1
the hypothesis on g yields

h2 3-8 - 301
>0.
Hence /11|{S}X p is a contact form for s < 1. Finally,
pilpyxp = (1= f)dt + H da + g
=1,
and (i) is proved.
(ii) Define @ : (p,1] x P — R x P by
O(s,t,x,2,0) := (s — U(s)f(t,x,z),t,H"(s)(t,x,z),z,Q) ,

where H, f and o satisfy (H1-6), (f1-5) and (o) respectively, and on some
neighborhood U of L™ U Lt we have (H6), (f5) and

o(s)=1—(1—s)*

(see Figure 5b). Moreover, suppose that || f||c1 is small enough such that
Lemma 2 can be applied to ®.

LEMMA 4. @ is a homeomorphism onto its image, and outside the circles
L* it is a diffeomorphism.

Proof. 1. In view of Lemma 2, it suffices to prove the statement for the
restriction ®|y. By the same argument as in (i), it suffices to show that for
every fixed Y = (¢, z,0) the map

Y i (s,x) > (s —o(s)f(t,z, 2), HO) (¢, z, 2))
is a homeomorphism, and det D®Y (s, z) # 0 for (s,t,z,2) # (1, :I:g,0,0).
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Let us first prove the last statement. Putting b =0, 0 =1 — (1 — s)?
and ¢’ = 2(1 — s) in inequality (1) we get

det DOY (s,2) > Jo2? + 3(1 — o) — a*|0'|%0

> 1[(1 - 5)* — 8a*(1 — 5)%0]
> 1(1—s)*[1 — 8a?]
>0

if s <1, anda2<%.
If s =1 we insert (1) = 1 and ¢/(1) = 0 in the first expression for the
Jacobi determinant to get

det D®Y (1,2) = H,(t,x, 2)
>0
for (t,x,z) # (£5,0,0).
2. Next we will show that ®Y is injective. Therefore suppose that
Y (s,2) = Y (5, 2")
for some Y = (t,2,0) and some (s,z), (s',2') such that both (s,t,z,z,0)
and (s',t,2/,2,0) lie in U. This is equivalent to the equations (2) and (3),

with ¢ = 0 in (3). Since both terms on the left-hand side of equation (3)
have the same sign, we deduce, using |H (z)| < |z|,

(1) o(sHH (") = H(x)| + (1 —o(s)|2" — 2 < 2lz|[o(s") —a(s)] .
From (2) we deduce, using f = +ax,
alz’ — x| > o(s")|f(2') — ()|
=|(s" = 5) = (a(5') — () ()|

> | — 8| — max | f| max |o’| |s' — s

> %|s' — s

if max | f| max |o’| < 5. Hence

(8) |s" — s| < 2alz’ — 2| .

Without loss of generality assume o(s’) > o(s). From (8) we get
1 —s| <|1—5+2alx — 2| .

Taking squares on both sides leads to

(1-8)2<(1-5)+4a|2’ —z||1 — | +4a® |2/ — 2|,
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and therefore
lo(s") — o(s)| < 4ala’ — x| |1 — | +4a® |2’ — x| .
Inserting this in (7) yields
o(s")|H(2') — H(z)| < 2[z]|o(s") — a(s)| = (1 = o(s') ]2 — 2
< 2lz| (4ala’ — x| |1 — | + 4a® |2" — z]?)
— 1 §]P|a’ — 2]
=2’ — x| [~ |1 — &> +8alz| |1 — &
+ 8a? |z| |2 — ]
= |2’ — | [~ (|1 = §'| — 4a|z|)? + 1647 |2|?
+ 8a? |z| |2 — =]
< |2’ — x| a® (16|x|* + 8|z| |2’ — z|) .
For a sufficiently small this implies
(9) H(2') — H(z)| < ala’ — a|(jaf? + |l |+ — a])
On the other hand, from inequality (6) we get
H) - H@)| > S’ — (2 + %)
Ha' = al (/] + [«

slz’ = z|(jal? + o] |2 — 2) -

(A\VARVS

Choosing a < %, it follows from this inequality and (9) that
&' — x|(|2]? + |2][2" — =) = 0,

hence z = 0 or x = 2’. In the latter case, inequality (8) implies s = s’, and
we are done. If z = 0, inequality (7) implies

o(sH(a) = H(z)| + (1 —o(s)]a" — 2[ =0,

which by (H2) is only possible if z = z/. Again it follows that s = s’, and
the injectivity of ® is proved.

Since ®Y is continuous and injective, and ®¥ = id near {p} x [—¢, €], it
follows that ®Y is a homeomorphism onto its image. Moreover, by part 1,
®Y is a diffeomorphism outside (s, t,z,2) = (1, :I:g, 0,0), and the lemma is
proved. O

Since I' = ® =id near {p} x PU (p,1] x 9P and ' = ® on {1} x P, we
have

I'((p,1) x P) = @((p,1) x P) .
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Hence we can define the diffeomorphism
=T 'od:(p,1)x P — (p,1) x P
and the 1-form
py = (9" = @ po -
Clearly ® = id near {p} x P U (p,1) x OP. The restrictions
X = Hil{syxp

= (s —o(s)f)dt + H*)d + Aoy

= (s =1)dt + Ay
are contact forms for all s < 1, and

dX, = dXg(s) -
Now we follow an argument from [EHof2]. The kernel of d\, is generated

by the vector field X?(®) defined in the proof of Proposition 1. For s < 1
(®) > 0, so we can normalise X7 to

ys .= 1 Xa'(s)
: H;,(S) .

For t +u < ¢ let 8 : (t,2,2,0) — (t +u,2’,2',0") be the flow of Y*. Since
LysdX, = d(iy=d\.)
=0 ,
the flow 95 preserves d\,. Define diffeomorphisms ¢° : P — P by
*(t,y) = Yis(=0,y)

g
we have Hy

where y = (z, 2, 6).
CrLamM. (¢*)*dX, = dXo.
Indeed, 1° maps each P, := {t} x [—¢, €] x ng x ST into itself, and
lp =50 d—t-s
where ¢, is the flow generated by %. It follows that
() (AN R,) = (—1—8)" (Vi1s) " (dNR,)
= (¢—t-5)"(dX|p_,)
= (¢—1-5)"(dXo|p_;)
= dXo|p, -
In the direction of % we have
DU (ty) - 5 = givive(—5,9)
=Y (4is(=6,))
=Y*(¥°(t,y)) ,
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which implies

o ()" dX,) = (9°)"(iy=dX)

=0

=1 2 (dXo) -
Hence (¢*)*d\}, and dAg agree on the whole tangent spaces, and the claim
is proved.

Note that ¥* = id near OP. This is trivial except for the boundary

part {t = +6}, where it follows from property (iii) of Proposition 1 (see
Figure 6).

Figure 6. The definition of v°
Define a diffeomorphism ¥’ : (p,1) x P — (p,1) x P by

(s, p) = (5,0°(p)) -

U’ leaves each {s} x P invariant, and ¥’ = id near {p} x PU (p,1) x OP.
It follows that

(U")*dpy = duo near {p} x PU(p,1) x OP .
Moreover, by the claim we have just proved,
()" dpy | sy xp = dptol(syxp
for s € (p,1).

The proof of the proposition is now finished by the following general
lemma, applied to N := P, wg := dpg and wy := (¥)*dy].
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LEMMA 4. Let N be a compact connected manifold of dimension 2n — 1
with boundary such that H'(N,ON;:R) = 0. Let wy and w; be symplectic
forms on (p,1) x N with

wo =wy near {p} x NU (p,1) x ON
and
wol{sixn = wil{s}xn
for all s € (p,1).

Then there exists a diffeomorphism ¥ : (p,1) x N — (p,1) x N, leaving
all {s} x N invariant, such that

U =id near {p} x NU (p,1) x ON
and
T*w; = wy .
Proof. Consider the closed 2-form
wW:i=w] —wy .
Since W|{sxn = 0 for all s, & can be written as
w=dsAN~y

with some 1-form + which is unique if we require ﬁ/(%) = 0. As @ vanishes
near {p} x N U (p,1) x N, so does . From

ds A dy = —di
=0

it follows that |, is closed for all s. Since H'Y(N,0N;R) = 0, there
exist functions fs on {s} x N such that

’Y|{s}><N =dfs .
Moreover, since y vanishes on {s} x9N, we can choose fs = 0 near {s} xON.
Then the fs are unique and fit together to form a smooth function F on
(p,1) x N, vanishing near {p} x N U (p,1) x N, with

Ysixn = AF[{spxn

for all s. We conclude that

v —dF =Gds
for some function G, and therefore

(%) & =dsAdF .
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The argument is finished by Moser’s trick (see [Mo]). For 0 < 7 < 1

define
Wy i =wp+T17ds NdF
and compute
Wr=wh+Tnwy tAds AdF .

Thus (w?)o<r<1 provides a linear path from wf to wi. Now w{ and w}
are both volume forms, and they define the same orientation because they
agree near {p} x N U (p,1) x ON. It follows that all w, are symplectic.

Define a 7-dependent vector field Z. by

z’ZTwT = Fds 5

and denote by ¢, : (p,1) x N — (p,1) x N its flow. Z; leaves all {s} x N
invariant, and Z, = 0 near {p} x N U (p,1) x ON. Therefore ¢, exists for
all 7 € [0, 1] (here we use the compactness of N), leaves {s} x N invariant,
and ¢, = id near {p} x NU(p, 1) x ON. The simple but famous calculation
(using Cartan’s formula for the Lie derivative)

d%((bin) = ¢7(Lz,wr + %WT)

= ¢X(d(iz,ws) + iz dws + ds N dF)

= ¢;k' d(iZ-er - Fds)

=0
yields ¢jw1 = wp. This concludes the proof of Lemma 4 and of Proposi-
tion 2. O

It remains to show properties (iii) and (iv) of Theorem 1.

(iii) If w = du is exact, we may take the 1-form on (p,1] x M at the
beginning of the proof of Theorem 2 to be the given form p. By Lemma A5

of the appendix we may change u in a neighborhood of L in (p, 1] x M to
achieve

N|(p’,1]><P = Mo
for some p’ € (p,1). Proceeding as before we find a 1-form z/ on M agreeing
with u outside (p, 1] x 9M, and a diffeomorphism 1 : Jff — ]EI such that

(dy') = dp -

So ¢¥*i’ — p is closed and vanishes on ]6[\(;), 1) x OM. Since Hl(]ﬁ[, ]\04\
(p,1) x OM;R) =0, v*1// — p is exact.

(iy) If (M,w) is symplectically embedded in a symplectic manifold
(M, ) without boundary, we find a 1-form £ on a tubular neighborhood
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(p,2 — p) x OM of OM in M such that

dit = &l (p2—pyxom >
ilgyxon = A,
and fi|{s}xonr is a contact form for all s € (p,2 — p). By Lemma A5 of the
appendix we may assume that

il (p2-p)xP = Ho -
In the proof of Proposition 1 we have defined an embedding T : (p, 1] x P —
R X P such that
p=1"po -
By choosing H and f sufficiently small we can achieve that the image of I'
is contained in (p,1 —p) x P C M, and we can extend T by the identity to
a symplectic embedding

(M,u') — (M,&) .
This finishes the proof of Theorem 2. O

3 Applications I

In this section we prove Corollaries A,D,E,G,I and J.

Proof of Corollary A. Apply the construction in Theorems 1 and 2 with
one tangent loop L : St — dM which is contractible in OM. Property (iv)
of Theorem 1 together with i;, d\' = 0 implies \'(LT) = 0 and therefore

N=0.

L+

Arguing by contradiction, suppose that the boundary of the symplectic
manifold (M,w’) obtained by means of Theorem 2 is of contact type with
a contact form \”. From d\ = d\’ = W'|sp and the contractibility of L™
in M we then get, using Stokes’ theorem,

[ =[] x=0.
JLt JD JLT

Here D is a smooth disk in M bounded by L*. But in view of i; . d\” = 0,
the contact condition A’ A (d\")"~! > 0 implies that \”(L") > 0, hence
N'>0,
L+
and we have a contradiction. O
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Proof of Corollary D. Since there are only finitely many closed characteris-
tics on (OM, du), we can choose by Lemma 1 a tangent loop L intersecting
all of them. Applying the construction we destroy the closed characteris-
tics. The newly created closed characteristics of (OM,du') all have action
zero by (iv) of Theorem 1. By (iv) of Theorem 2 the interiors are exact
symplectomorphic. |

Proof of Corollary E. We have already shown in the proof of Theorem 1
that each time a closed orbit of £, intersects one of the L; it splits up into
two heteroclinic orbits. It remains to verify that the sum of the actions of
the heteroclinic orbits equals the action of the original orbit.

Consider the forms Ag, A1 on the neighborhood P of one tangent loop
L; as in Proposition 1. The orbits of ker(d)\g) in P intersecting L; =
{0}2k+2 x S are

y = [-6,6] x {02+ x {6}

with fixed § € S'. Their action is

/A0=26.
JY

As shown in Proposition 1, each such orbit splits into 3 orbits y_, yo, y+ of
ker(dA;) lying on the invariant cylinder Z (see Figure 3). Hence the result
follows from the following lemma.

LEMMA 5. In the above notation,

/)\1+ )\1+/ A1 =26.
- Yo Y+

Proof. The restriction of A1 to the cylinder Z is
Mlz = Q1= fdt.
Therefore the orbit
y-(s) = (t(s),0,0,0(s)), s € (—o0,0]
of X! has the action



302

Analogous formulae hold for yo and yy. Adding up we obtain

. . 5
/ M +/ Mt [ = / (1= f(£,0,0))dt
Yo -6
=20,

because f is odd in t¢. O
Proof of Corollary G. Let n = 2 and P = [-6,8] x [—e,¢] x S1, Z, \
and X' be as in the proof of Proposition 1. For n = 2 the vector field X!
simplifies to
The proof of Corollary G is based on the following lemma about the flow
of X! near L.

LEMMA 6. Let F' C P be a continuously embedded closed surface invariant
under the flow of X'. If F' contains one point of Z, then it contains the
whole cylinder Z.

Proof. Under the flow of X! the point in FNZ tends in forward or backward
time to L™ or L™, say L*. By invariance and compactness of F this implies
LtCcF.

Take a small closed disk
"C[-6,6] x [—€,¢] x {6}

o
around pg := (3,0,90) € Lt which is transversal to X'. Let D C D’ be a
smaller disk around pg such that the Poincaré return maps ¢, ¢~ : D — D’
of the flows of X! respectively —X! are defined (see Figure 7). Note that

d(po) = ¢~ (po) =
o
CrAaM 1. F N D' is locally path-connected.

o
Proof. Let U be an open neighborhood of D’ in P on which the projection
o
7:U— D

(o]
along flow lines of X! is defined. Around a given point p € F'N D’ choose
an open neighborhood W in U such that V := W N F' is path connected.
Since F' is invariant, 7(V) = «(W) N F is an open neighborhood of p in
(e}

FnD.

Any point ¢ in (V') can be connected to p by a path in U, first following
the flow line from ¢ to a point in V' and then connecting this point to p
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Figure 7. The Poincaré return map on D

(0]
in V. The projection of this path onto D’ joins ¢ to p in m(V'). Hence 7(V)
is path-connected, and the claim follows.
Consider the space

T:= ([-1,1] x {0}) U ({0} x [-1,0]) C R?

which has the shape of the letter T, with the topology induced from R?.
We say that a topological space X contains a T if there exists a continuous
embedding of T into X.

(e}
CrAaM 2. F'N D’ does not contain a 7.

(0]
Proof. Suppose that we have an embedding f : T"<— F N D’. Using the
flow of X! we can extend it to an embedding

fTX(_/%P)‘—’Fa
for some small p > 0. By invariance of the domain the image
F((=1,1) x {0} x (=p, p))

is open in F'. In particular it contains a neighborhood of f(0,0) in . But
then f cannot be injective, and we have a contradiction.
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Now let K be the connected component of pg in F'N 1% K is locally
compact, connected and locally path connected by Claim 1. Now each two
points in a locally compact, connected and locally connected metric space
can be joined by an arc, where an arc is the homeomorphic image of a
closed interval ([HoY], Theorem 3.15 and the remark following it). So K
has the property that any two points can be joined by an arc.

CrLaM 3. K C [-6,6] x {0} x {60} C P.

Proof. Arguing by contradiction, suppose that there exists a point p; €
K whose z-component is nonzero. The idea why this should lead to a
contradiction is the following: Connect p; to po by an arc ¢; in K, and
consider the arcs ¢(c1) and ¢~ '(c1). Since pg is a fixed point, ¢(c1) and
# '(c1) both emanate from pg. On the other hand, the flow of X!, and
hence also the return map ¢, strictly increases the t-component outside
the set {x = 0}. Thus the three arcs c1, ¢(c1) and ¢ !(c;) are pairwise
different, and we have a situation as shown in Figure 8a. But then the
three arcs form a T at pg, contradicting Claim 2.

a. b. c.
T T T
¢ Hp)
o e(p1) " (p1) ™ @™ (p1)
pL -«
| Ps P2 ‘ | 3 P2 ‘ ‘ 3
|
t t t
C2 C1 Cc3 ) C1 c3 Cca c1 C3
Figure 8.

Now we will make this argument precise. Since the t-component strictly
increases along the X'-orbit of py, the iterated images of p; under ¢ and
¢~ eventually leave D. In particular, after replacing p; by some iterated
image, we may assume that ¢(p;) ¢ K.

Let ¢; be an arc in K joining pg to p1. Let m > 0 be the maximal
integer such that ¢~™(p;) € K.

Case A: m = 0. Let ¢y be the maximal subarc of ¢~ 1(c1) starting
from pg and contained in D, and let ps be its end point on dD. Define c3
and p3 in the analogous way for ¢(c1) (see Figure 8a).
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Let g2 be the first point in which co, starting from po, hits ¢;. The
point ¢y cannot be an interior point of ¢; because then K would contain
aT. The point g2 cannot be p; because then ¢(p1) € ¢; C K, contradicting
the choice of p;. Hence g2 = pog.

Let g3 be the first point in which cs, starting from ps, hits the arc ¢; Ucs.
By the previous argument, g3 cannot be an interior point of ¢; or co. It
cannot be p; because then ¢~1(p1) € ¢; C K. If it were po, then ¢(ps)
and ¢~ !(p2) would both lie in K C D. But since ¢ strictly increases the
t-component outside pg, we can choose the disk D in such a way that every
boundary point on 9D leaves D under either ¢ or ¢~'. (This is achieved
by choosing D such that 0D has only 2 isolated tangencies with the level
lines of H shown in Figure 4). Hence ¢q3 = po, and again we find a 7" in K.
This shows that Case A leads to a contradiction.

Next suppose m > 0. If py := ¢7™(p;1) lies on ¢;, then we shorten the
arc ci, replacing p1 by p| := p2, p2 by ph := p1, ¢ by ¢! and c; by the
subarc ¢} of ¢ from pg to p). This yields an equivalent situation, but with
ph not lying on ¢}. So without loss of generality we may assume that py
does not lie on ¢;. Let ¢o be an arc in K joining po to p1. Let ¢ be the first
point in which ¢y hits ¢;, and replace co by the arc from ps to ¢o. Arguing
as in Case A, ¢ cannot be an interior point of ¢;.

Case B: g2 = pp. Let c3 be the maximal subarc of ¢™(c;) contained
in D, and let ps be its end point on 9D (see Figure 8b). Let g3 be the first
point, starting from ps, in which c3 hits the arc ¢; Ucs. In view of Claim 2,
g3 can only be one of the end points p;, p2 of c1 Ucy. It cannot be p1, since
then ¢~ (p1) = p2 would lie on ¢;, which we have excluded above. Neither
can g3 be py because then ¢~"™(py) would belong to ¢; C K, contradicting
the choice of m for ps. Hence q3 = pg, and again K contains a T

Case C: ¢2 = p1. Let c3 be the maximal subarc of ¢™(cq) starting
from p; and contained in D, and let p3 be its end point on 9D (see Figure
8c). Let g3 be the first point in which c3, starting from ps, hits ¢; U cs.
Since py is a fixed point of ¢ and is not contained in ¢z, pg is not contained
in ¢™(cq) either, so g3 cannot be pg. The point g3 is not py because then
¢~ (p2) would lie in ¢y C K, contradicting the choice of m for py. Hence
g3 = p1, and once again we have found a 7" in K.

In all cases we have arrived at a contradiction, so Claim 3 is proved.

The set K does not consist only of the point py because then the loop L™
would be an open subset of the surface F', which is impossible by invariance
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of the domain. Thus K must contain an interval in [—6,6] x {0} x {60}
containing po, say [$,$ + p] x {0} x {6p}. By invariance, F' contains the
cylinder
[g,é] x {0} x St .

Since F' has no boundary, there must be other points of F' in any neighbor-
hood of L*. Arguing as in Claim 3, we conclude that these points can only
lie on Z. It follows that F' contains (— §,6] x {0} x S'. By compactness of
F we get L™ C F, and the same argument as above applied to L~ yields
Z CF. O

We proceed to prove Corollary G.
In complex coordinates z; = g; + ip; on R* = C? |z1| and |z are
integrals of the characteristic flow on JFE(r). Thus the invariant tori are

Toy a0 = {(21,22) | |21] = a1, | 22| = a2}

2 2
with a1, ae > 0 and Z—i—l—f—; = 1. (a1,a2) = (0,/r2) and (/r71,0) correspond
to the two closed characteristics. Perturb the loop S — 9E(r),

t — (\/r1 cost,/rasint) , t €0, 2]
to a loop
L:tw— (z1(t), z2(t))
in OF(r) tangent to ker(As|sp(r)), keeping it fixed at t = 0 and t = § (see
Lemma 1). It follows that

t (@) l2@)) . tel0F]

covers the ellipse segment
a2 a2
{(al,ag) lar,a2 >0, 7L+ 2= 1} .

So L intersects not only the two closed characteristics, but also all invariant
tori. Applying the construction in Theorems 1 and 2 to a neighborhood PP
of L as before we obtain a compact subset M C R* such that on (OM,wy)
the two old closed characteristics have disappeared and two new ones L™
been created.

Arguing by contradiction, suppose that F' C OM is a continuously em-
bedded invariant torus for the new characteristic foliation.

Claim. FnZ#0.
Since the maximal invariant set in P is the cylinder [ — 2, 8] x {0} x S!
between L™ and L™, F cannot lie entirely in P. Recall that by construction

OM\ P=0E(r)\ P,
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and thus the characteristic foliations are equal in this region. Let p € F'\ P
be a point which does not belong to one of the two closed characteristics of
the old foliation. Denote by O;; 40), O, (p) its forward orbits in the old
respectively in the new foliation.

If Of,,,(p) tends to LT U L™ we are done. So suppose this is not the

case. Then, by property (iii) of Proposition 1,

O:ew(p) \P = O(—)?d(p) \P :

Now remember that p lies on some invariant torus 1" of the old foliation, and
O;} 4(p) is dense in T because 7L is irrational. It follows from the discussion
above that O}, (p) \ P is dense in T'\ P, and invariance and compactness
of F imply

T\PCF\P.

Since the tangent loop L intersects all invariant tori, in particular 7',
there exists an orbit on 7" which breaks up into a heteroclinic chain to
L~ ULT in the new foliation. This means that there exists a point ¢ € T'\ P
such that O, (q) tends to L~ and therefore lies eventually on Z. By
invariance of F', the claim follows.

The claim and Lemma 6 yield
Z CF.

Now let 7" be any invariant torus of the old foliation. As above, since L
intersects T”, there exists a point ¢’ € T’ \ P such that O, (¢') tends
to L™. So O;.,,(q¢') meets Z and hence F, and from invariance of F we

conclude ¢’ € F'. The same argument as above yields
T'"\PCF\P,

for every invariant torus 7" of the old foliation. But the invariant tori com-
pletely foliate the complement of the two closed characteristics in OE(r),
so we get

OM\PCF.

This in turn implies, in view of the invariance of F,
F=0M,
which is absurd. Hence F' cannot exist, and Corollary G is proved. O

Proof of Corollary I. Let E(r) € R* be an ellipsoid with 7+ irrational.
Apply the construction to destroy the two closed characteristics, creating
two new ones of knot types +c. The new characteristic foliation is defined
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by a confoliation form A on OE(r) = S3. Let X be a positive section of the
oriented line bundle ker(d\) — S3. Then the condition

ANAA >0

implies that A(X) > 0. Choose a 1-form p on S® such that u(X) =1, and
define the volume form € := p A d\. Then

ixQ = pu(X)d\ = d\ .

The proof of the last statement is based on the following local statement
on P, where we use again the terminology of the proof of Proposition 1.

LEMMA 7. There exists a contact form A, on P, \. = \g near 0P, such
that

Ae(XH >0
Moreover, A\. can be connected to Ao by a path of contact forms fixed
near OP.

Proof. Define
Ae i= M1 +g(t,x,2)db
where g : Q := [—6,6] X [—¢€, €] x ng — R is a smooth function satisfying
(gl) g =0 near 0Q);
(g2) g-fx>0,and g- fy > 0 near (£ %,0,0);
(€3) |92l + |2|lg:] < Ho — [H| = |2[|Hs] for all (t, 2, 2) # (+5,0.0).

(g1) and (g2) can be easily achieved if we choose g to be supported in
the region near (£ $,0,0) where f, # 0. To satisfy (g3) it suffices in view
of (H2) to choose g constant near (= £,0,0) and sufficiently small.

In

Ae(X1) =M (XY) +g fo
both terms are greater or equal to 0. Outside (=% %7 0,0), A; is contact and
therefore A\ (X') > 0, and at (£ g, 0,0) we have g f; > 0. This shows that
Ae(X1) > 0.

To prove that A. is a contact form, repeat the calculation in the proof
of Proposition 1 with H replaced by H + g, but keeping the term g f, with
the correct sign:

Ac A (d)\c)k_H > [(1 —|fl = kL)) (Hy + g2)
= k1 faol l2l (=] + 1g:]) + fo(H + g)] - vol
> [5(Hy — [H| = |2| 1Hz| = |ga| = |2]|g2]) + g fo] - vol
>0
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by (g2) and (g3).

For the last statement observe that (gl) and (g3) are still satisfied if
we replace H by H® and f by sf for s < 1. Hence we can connect A. to
Ao + g df by the path of contact forms

(As +gdb)o<s<t -
Then connecting Ag + g df to Ay by the path
(Ao + 5 gdf)o<s<a
concludes the proof. O

Now the last statement of Corollary I follows easily: Extend the contact
form A, by Ao to a contact form on S3 which we will still denote by ..
By the last statement of Lemma 7, A. can be connected to the standard
contact form A\g on S2 by a path of contact forms. Hence by Gray’s stability
theorem there exists a diffeomorphism ¢ of S3, isotopic to the identity, such
that

" Ao =hM
for some positive function h on S3. From Lemma 7 we get
A0 X) =hA(X)>0.
Replacing X by ¢, X finishes the proof of Corollary I. O

Proof of Corollary J. Apply the construction to an ellipsoid E(r) C R?"
with % # Q for i # j, destroying all (if & is even) respectively all but one

(if k£ is odd) closed characteristics, creating k respectively k — 1 new ones. O

4 The Generalized Construction

The proof of Theorems 1 and 2 shows that we actually need the contact
form A only in a neighborhood of the tangent loop L. So we can modify
the construction as follows:

Let (N, w) be a manifold of dimension 2n—1 > 3 with a maximally non-
degenerate 2-form, and let L € N be an embedded loop which is nowhere
tangent to ker(w).

By Lemma A2 of the appendix there exists a neighborhood of L diffeo-
morphic to P such that

wlp =d\g ,
and L corresponds to {0}2"~2 x S, where P and )q are as in Proposition 1.
Hence Proposition 1 yields
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Theorem 1'. Let (N,w) and L C N be as above. Then there exists
a maximally nondegenerate 2-form «' on N, agreeing with w outside a
neighborhood of L, with the following properties:

(i) The characteristic foliation generated by ker(w’) has 2 new closed
orbits L* isotopic to L.
(ii) Every closed characteristic of ker(w) intersecting L breaks up into two
characteristics of ker(w') heteroclinic to L*.
(iii) Apart from (i) and (ii) no closed characteristics are created nor de-
stroyed. O

Next let (M,w) be a symplectic manifold of dimension 2n > 4, and
L € OM an embedded loop which is nowhere tangent to ker(w|gas).

By Lemma A4 of the appendix there exists a foliated neighborhood
(p,1] x P of L = {1} x {0}?"=2 x S! in M such that

Wl (pxp = dpo

where pg is the 1-form as in Proposition 2. So Proposition 2 implies

Theorem 2'. Let (M,w) and L C OM be as above. Then there exists a
symplectic form w' on M, agreeing with w outside a neighborhood of L in
M, with the following properties:

(i) &|sar is as in Theorem 1'.
(ii) The interiors ( M ,w) and ( M ,w') are symplectomorphic.
(i) If (M,w) is symplectically embedded in some symplectic manifold
(M, &) without boundary, then we can choose ' such that (M,w') is
also symplectically embedded in (M ,W). |

5 Applications II

In this section we prove Corollaries B,C,F and H.

Proof of Corollary B. Let (O0M,\) be the contact type boundary of the
symplectic manifold (M,w). Take an embedded loop L C M which is
nowhere tangent to ker(w|gps) and contractible in 9M, and such that

AA#O.

More explicitly, take a Darboux chart on OM in which A looks like dz +
% ;’:‘11(q,-dpl- — pidg;) on R?"71 and let L be a small circle in the (g, p1)-

plane.
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Let (p, 1] x P be a neighborhood of L as above on which w = dpu. Apply
the generalized construction in Theorems 1’ and 2’ to obtain a symplectic
form w’ on M such that (]\O4,w’) is symplectomorphic to (]\c/i[,w), W =w
outside (p,1] x P, and

u"’/|{1}><P =dX\
where P and A\ are as in Proposition 1.

We claim that (OM,w’) is not of confoliation type. To see this, suppose

that 7 is a 1-form on OM with

dr = |ons -

By Proposition 1 the line bundles ker(w|p) and ker(w’|p) are both tangent
to the cylinder
Z =[=6,6] x {0}*" 3 x S|
thus
wlz=ulz7=0.
It follows from Stokes’ theorem that

L=l l
L@AzéA#&

where K := {+6} x {0}?"73 x S!, and all loops are given the orientation
—1—%. On the other hand, if L is constructed as described above and P

o
chosen to lie entirely in the Darboux chart, then K is contractible in M\ P.

and

Since in M\ }g the forms w = d\ and w’ = dr agree, Stokes’ theorem yields

AfzkA.
/_T=Aﬁ7¢o.

Now recall that «’ induces on L~ and L' opposite orientations, so with
these orientations one of the two integrals is positive and the other one
negative. This contradiction shows that 7 cannot be a confoliation form. O

Altogether we obtain

Proof of Corollary C. The proof is similar to that of Corollary B. However,
we must argue a little bit more carefully in order to get property (i). Choose
a contractible embedded loop L C S%*~1(1) which is nowhere tangent to

ker(wan|g2n-1(1)) and such that
/A#O
L
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for any 1-form A on R?" with d\ = wy,. By Lemma A4 of the appendix we
find a diffeomorphism ® : B" — B?" of the closed ball of radius 1 with

d=id on B"U S (1),
2
and a neighborhood P of L = {0}?"~2 x S' in $?"~!(1) such that

w2n|¢)((p71]xp) = d,U»O

for some p € (%, 1). Now apply the generalized construction as in the proof
of Corollary B. Using (iii) of Theorem 2" we obtain an embedding

U ®(BY") — R
such that
U’ =id outside ®((p,1] x P),
and ¥ := U’ o ® has the desired properties. O

Proof of Corollary F. Let L € M be an embedded loop which is con-
tractible in M and nowhere tangent to ker(w|sas). Let (p,1] x P be a
neighborhood of L in M on which w = dug, and

Ko={1} x {+6} x {0} 3 x S' c {1} x P

The loop K is contractible in M \ (p,1] x P: Deform it via {p} x {6} x
{03273 x St to {p} x {0}2"2 x S', which is contractible in M\ (p, 1] x OM
by the contractibility of L.

By the construction in Theorems 1’ and 2" we obtain a symplectic form
W' on M with two new closed characteristics L*. Using the contractibility
of K we conclude, arguing as in the proof of Corollary B, that they have
actions

Aw/(Li) = :l:Aw(L)
or
Ay (Li) = FAL (L),

if L* are given the orientations induced by w'.

Now the proof can be easily finished. Choose contractible embedded
nowhere tangent loops L; C OM with

A, (Lz) = a; -

This can be achieved by simply adding small loops in a Darboux chart until
the actions equal a;. Performing the generalized construction we obtain
new closed characteristics with actions +a;. In a second step, choose a
contractible embedded nowhere tangent loop of action 0 which intersects
all the old closed characteristics and the new ones with action —a;, and
apply the construction again. This yields the desired action spectrum. O
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Proof of Corollary H. Since the foliation on T is linear we find an embedded
loop L in T transversal to the foliation. Apply the generalized construction
to this loop. It follows from (i) and (iii) of Proposition 1 that 7" is invariant
for the new foliation, and outside T the two foliations are conjugate, i.e.
there exists a diffeomorphism mapping leaves onto leaves. On T all orbits
of L, break up, and 2 new orbits LT are created. O

6 Appendix: Normal Forms Near Embedded Loops

In this appendix we derive the normal forms for contact and symplectic
forms near embedded loops which are used in this paper. Most of them
are special cases of general results due to A. Weinstein. Thus Lemma A3
is an immediate consequence of Theorem 4.1 of [W1], and Lemmas Al and
A5 are essentially contained in Proposition 4.2 of [W3]. For the sake of
completeness, we give self-contained proofs here.

Throughout the appendix N will be a smooth manifold of dimension
2k+3, k> 0.

Recall the following definitions from section 3: ng is the closed ball
around 0 of radius v in R?F with coordinates z = (q1,P15- -+ Qrs PK), and

Pi=1-6,6] x [—e,e] x B2 x 5!

with coordinates p = (¢, xz, z,6). We have 1-forms

k
Aok == pi dg;
i=1
on ng and
Ao = dt+:l?d9+/_\2k
on P.

Our first normal form concerns a contact form near a tangent loop.
Here an embedded loop L is called tangent for a contact form A if L is
everywhere tangent to ker(\).

LEMMA Al. Let A be a contact formon N and L C N an embedded tangent
loop. Then (for some 6,¢ and ) there exists an embedding ¢ : P — N
onto a neighborhood of I with ¢({0}2%*2 x S) = L and

PAN=Xo .

Proof. The following proof has been pointed out to me by C. Abbas. After
pulling back A by any embedding mapping {0}2*2 x S' to L we have
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two 1-forms A, A\g on P. We will transform A into Ag by a succession of
diffeomorphisms fixing L, possibly shrinking P in each step.

1. Since L = {0}?#+2 x S1 is tangent, the Reeb vector field X of A does
not point in the Oy-direction near L. Applying a diffeo of P of the form
(t,z,z,0) — (A(0) - (t,x, 2),0) we can arrange that the d;-component of X
is positive on all of (a possibly smaller) P.

2. Next we want to make X = 0; on all of P. This requires finding a
diffeomorphism ¢ of P with ¢.9, = X, or explicitly

%(t,q) = X(6(t,q)) .

where we have abbreviated ¢ = («, 2z, 60). Since the 9;-component X7 of X
is strictly positive, we can perform the change of variables

{7(07Q) =0,
dr = X1(é(t, q))dt .

Set (7, q) := ¢(t.q). The equation to solve becomes

S (r.9) = xwEm X (T9)
=Y (¥(7.9) -

Since the Or-component of Y is identically 1, the first component of 1 is
1(7,q) = 7, and the other components s must satisfy

Wa (7,q) = Ya(7,4b2(7,q)) -

This is an ordinary differential equation which has a local solution ¥ with
2(0,q) = q. Transforming back yields the diffeomorphism ¢.

3. Consider the bilinear forms dA(0, ) and do(0,8) on T(g ) P, 0 € St
Their kernels both equal R - 9;, and their restrictions to the hyperplane
{t = 0} are linear symplectic forms. After applying a diffeomorphism
(t,x,2,0) — (t, A(0) - (z, 2),0), A() linear, we may assume that dA(0,6) =
dXo(0,0) for all 9 € S!.

4. Now we are in the situation to use Moser’s method (see [Mo]). Let

As = (1 —5)Ag + s\,
and calculate for a time-dependent vector field Y and its flow ¢,

& (D5As) = OL(LyAs + g5 Xs)
= (bt(d(’tyﬁAQ + iysd)\s + ()\ — )\0)) .
If this equals 0 for all s, ¢; is the desired diffeomorphism with ¢7A = Ap.
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So it suffices to find a vector field Y; satisfying

iYS /\S =0 )

Ty,dAs = Ao — A .
We infer from 2. and 3. that near L all A\ are contact forms with Reeb
vector field d,. Since the form d)s is nondegenerate on the hyperplane
{t=0} in each tangent space, we find a unique vector field Y; with vanishing
t-component such that iy,dAs and Ao — A agree on all these hyperplanes.
But as we also have

19, dNs =0,

i9,(Ao—A) =0,
the equation 7y, dAs = Ag — A holds on the whole tangent spaces. Now add a
Op-component to Y to satisfy the first equation iy, A; = 0, which is possible
because As(9;) = 1. Since this does not affect the second equation, the
vector field is found and the proof complete. O

Recall that a 2-form w on N is called maximally nondegenerate if its
kernel is one-dimensional. Near a loop which is nowhere tangent to ker(w)
the 2-form w has the following normal form:

LEMMA A2. Let w be a closed maximally nondegenerate 2-form on N and
L C N an embedded loop nowhere tangent to ker(w). Then there exists an
embedding ¢ : P — N onto a neighborhood of L with ¢({0}?#*2x S') = L
and

P'w =d)\ .
Proof. 1. Set wy := d)\g, and pull back w anyhow to P. As in the first three
steps in the proof of Lemma Al we can arrange that ker(w) =R -9, on all
of P, and w = wp along L = {0}?+2 x S,

2. The 2-form wy — w is closed and vanishes along L. Hence by the
relative Poincaré Lemma there exists a 1-form «, vanishing along L, with
doo=wy—w .

We claim that moreover «(9;) = 0. To see this let us recall the definition
of the form «. Abbreviate ¢ = (t,x, z), define maps ¢5 : P — P,

$s(q,0) := (sq,0)
and an s-dependent vector field Yy, s > 0, by

Ys(ﬁbs) = %Cbs .

Set @ := wy — w and define

= /01 @i (iy,@)ds .
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The integral is well-defined although Y is singular at s = 0. To see this
introduce the nonsingular vector field

%|s=0¢8 = (Q;O) .
Then Y, = %(q, 0), and the integrand can be written as
Qb:(iYs‘I’) = (D((gbs)*Ys, (¢s)*)
=&((q,0), (9s)+7)

which is nonsingular. We have «(9;) = 0 because ig,& = 0, and obviously
«a = 0 along L. Moreover,

1
do = / &t d(iy, @)ds
0

1

= / %cb:@ ds
0

= $10 — ¢

—w

and the claim is proved.
3. To apply Moser’s method define

ws = (1 — 8wy + sw ,

and calculate for a vector field X, and its flow ),
& Wiws) = ¢ (d(ix,ws) + (W — wo))
=¢id(ix,ws — ) .
So we are done if we can find a vector field X, with
Ix,Ws = Q.

Near L the forms w, are all nondegenerate on the hyperplanes {t = 0}.
Hence there exists a unique vector fields X with vanishing 0;-component
such that the equation holds on these hyperplanes. But on the other hand,
igws = 0 and «(d;) = 0. So the equation holds on the whole tangent
spaces, and the proof is finished. |

We proceed to derive normal forms in the even-dimensional manifold

R x N, starting with the following technical lemma.

LEMMA A3. Let A C N be compact. Let wg and wy be two symplectic
forms on a neighborhood U of {1} x A in R x N such that w§™? and w+?
define the same orientation, and wol({1}xNynu = Wil({1}xN)nU-
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Then there exists a diffeomorphism ¥ : R x N — R x N with

(1) U=id on {1} x N andoutside U ,
(ii) U*w; =wp on [l—o,140]x A forsome o>0.
The statement remains valid if we replace R by (—oo, 1] and [1 — 0,1 + o]
by [1—o,1].
Proof. 1. Let us first show that we may assume wy = wy along ({1} x N)NU.
Define ¥ : R x N — R x N by
U(s,x):= (h(s,z), ),

where h(-,z) : R — R are diffeomorphisms with A(1,z) = 1, h(s,z) = s
for (s,z) outside U, and

(F5h(1,2)) - i = wp ™
for z in a neighborhood V of A in N. Clearly ¥ = id on {1} x N and
outside U. The last condition on h ensures that (U*w;)k+2 = w§+2 along
{1} xV. Together with the agreement of wy and U*w; on {1} xV this implies
that U*w; = wyp along {1} x V. Replacing U by a smaller neighborhood
the statement follows.

2. The form w; —wy is closed, and by 1. we may assume that it vanishes
along ({1} x N)NU. By the relative Poincaré Lemma there exists a 1-form
a on (a possibly smaller) U, a = 0 along ({1} x N) N U, such that

do=w;—wy on[l—o,14+0]xA
for some o > 0. Extend o to R x N such that « = 0 on {1} x N and
outside U.
To apply Moser’s method, define
ws = (1 — s)wo + swy .

Since wp = wy along ({1} x N)NU, for U sufficiently small w, are symplectic
forms on U. Define a vector field X; on R x N by

ixsws = —«
on U and X = 0 outside U, and let ¥, be its flow. Note that X, vanishes
along {1} x N and therefore Wy|¢y, v =id. On [1 — 0,1+ 0] x A we get

%(\If:ws) = Ul (d(ix,ws) + da)

-0,
and U1 : R X N — R x N is the desired diffeomorphism. Since ¥q maps
(—o00,1] X N onto itself, the same proof also works for (—oco, 1] instead
of R. O
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The following lemma shows that we can put a symplectic form on R x N
and its restriction to {1} x NV simultaneously into normal forms. Define the
1-form

o i= s dt + x df + Aoy,
on R x P, where s is the coordinate on R.

LEMMA A4. Let w be a symplectic form on a neighborhood U of {1} x N
in Rx N, and L C {1} x N an embedded loop nowhere tangent to
ker(w|g1}xn). Then there exists a difftomorphism ¥ : R x N — R x N
with

(i) U=id on {1} xN andoutside U,
and an embedding ® : [1 — 0,1+ o] X P — U of the form
(i) ®(s,p) = (s,9(p))

with ¢({0}%*2 x S1) = L, such that

(iii) O*U*w = dpuyg .

The statement remains true with (—oo, 1] instead of R and [1 — o, 1] instead
of [l —o,1+0].

Proof. Let ¢ : P — ({1} x N)NU be an embedding as provided by
Lemma A2 with ¢({0}%72 x S) = L and
" (wlf1yxn) = dXo
= duol{iyxp -

Define @ : [1 — 0,1+ 0] x P— U by
(i) B(s.p) = (5,6(p)) .
and consider the 2-form w; on [1 — 0,1 4 g] x ¢(P) defined by

D*wy = dpyg .
After perhaps composing ¢ with the orientation reversing diffeomorphism
(t,z,2,0) — (—t,x,2,0) of P we may assume that wf+2 and wF? define

the same orientation. Since wy and w also agree on {1} x ¢(P), Lemma A3
yields a diffeomorphism ¥ of R x N satistying (i) and

U'w=w; on[l—o,140]x¢(P),
which together with the definition of w; gives (iii). 0
Finally we want to put a symplectic form near a contact type hypersur-

face into normal form simultaneously with the contact form on the hyper-
surface.
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LEMMA A5. Let p be a 1-form on (1 — o’,1 + ¢') x N such that du is
symplectic and p A (du)k+1|{8}xN > 0 with respect to ias((du)k+2)|{s}xN
forall s € (1—0',1+4+0'). Let L C {1} X N be an embedded tangent loop
and U a neighborhood of L in (1 —¢’,1+ ¢’) x N.

Then there exists a diffeomorphism ¥ : R x N — R x N with

(i) U=id on {1} x N andoutside U,

a l-form ¢/ on (1 —o’,1+ ¢') x N with

.. W —*y =dh for some function h on (1—o¢';1+0')x N
(i) vanishing on {1} x N and outside U ,

(iii) 4'|syxnv is a contact form for s € [1—o,1+0] and some o € (0,0”) ,
and an embedding ® : [1 — 0,1 + o] x P < U of the form

(iv) ®(s,p) = (s,¢(p))
with ¢({0}2*+2 x S1) = L, such that
(v) "' = pg -

The statement remains valid if R, (1 —¢/,1 + ¢') and [1 — 0,1 + o] are
replaced by (—oo, 1], (1 — o’,1] and [1 — o, 1] respectively.
REMARK. Observe that
<I>*\Il*d,u = d,u,()

and

O U (ulf1yxn) = Ao
i.e. the lemma really puts du and pf{1y5 v into normal forms around L.
Proof. Let ¢ : P — ({1} x N)NU be the embedding from Lemma Al with
H({0}2F+2 x S1) = [, and

¢*(U|{1}><N) = Ao -
For small o define ®: [1 — 0,1+ 0] x P — U by
(iv) O(s.p) := (s,0(p)) ,
and consider the 1-form i on [1 — 0,1+ o] x ¢(P) defined by
Dy = po -

It follows from the hypothesis on the orientation of p A (dp)*+! l{1}xn that
(dp)*+2 and (dp1)*+? define the same orientation. Since p and p; agree on

{1} x ¢(P), we can apply Lemma A3 to get a diffeomorphism ¥ of R x N
satisfying (i) and

U*dpy =dp; on [l—o,1+0]x¢(P).
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Hence p; — @* 1 is a closed 1-form on [1 — 0,14 o] x ¢(P) whose restriction
to {1} x ¢(P) vanishes. By the relative Poincaré Lemma there exists a
function h on [1 — 0,1 + o] x ¢(P) (for possibly smaller P and o) with
b1y xp(p) = 0 and

pw —V'u=dh on [1—o01+0]x¢(P).

Extend h to (1—0’,1+0") x N such that it vanishes on {1} x N and outside
U, and define

(ii) W =9*u+dh on (1—o 14+0)xN.

Then p' satisfies (v), and 1[5y is a contact form for s sufficiently close

to 1. This concludes the proof. O
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