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1 Intreduction

In [11] the second and third author introduced a symplectic homology theory.
By means of a general construction, given real numbers ¢ < b and an integer
k they assigned to each open set U of C" a group S,f“’b)(U ) and studied its
properties. In the present paper which continues the work in [11], we show how
this construction can be carried over to more general manifolds. We assume the
reader to be familiar with [11], since there are many constructions which we
recall here in a more general set up without giving a detailed proof. In fact, the
arguments given in [11] work under more general circumstances at least if some
topological assumptions are met. Only in the case that there is a considerable
difference we give complete details.

For applications we refer the reader to [13] and the forthcoming paper [14].
For motivation of the present construction we refer the reader to [11]. However
we recall that the crucial observation made [2] is that periodic orbits for Hamil-
tonian systems can be used to construct many new symplectic invariants. Our
construction in [11] and the present paper precisely exploits the same aspects of
this observation. We also would like to point the attention to {3, 4, 5] for other
applications of this ”philosophy”.

* Andreas Floer died on May 15th, 1991,



2 A general construction

In the following we describe the construction under suitable hypotheses on the
symplectic manifold (M, w). Other assumptions allow similar constructions and
we outline some generalizations later on.

We assume (M ,w) is a compact symplectic manifold with or without bound-
ary, such that [w] vanishes on m,(M ). Moreover we assume that the first Chern
class ¢ for pullback bundles u*TM — S? and [u] € 7 (M) vanishes, where
TM — M carries the structure of a complex vectorbundle induced by a w-
calibrated almost complex structure J. ("w-calibrated” means that wo(J X id) is
a Riemannian metric. The space of such structures is contractible.)

If OM +# (, we assume that M is of contact type. This means that there exists
an outward pointing transversal vector field 7 defined on an open neighborhood
of OM in M such that the Lie derivative satisfies L,w = w. Equivalently ( set
A = ipw), there exists a 1-form A on a neighborhood of M such that dA = w and
A A @A"Y ap is a volume form determining the orientation on OM induced
from the orientation w" on M.

We call a smooth Hamiltonian H : S' x M — R admissible if
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o There exists a nonempty open subset U of M with

c(U) C M \OM and H|(S! x cl(U)) < 0.
e If M =0, all 1-periodic solutions are nondegenerate .

{ o If OM #0, there exists a constant m = m(H) > 0, (0
such that H(t,x) = m for all (t,x) € S! x W, where W

is a neighborhood of M . Moreover, every 1-periodic

solution x : S! — M satisfying fal H(t, x())dt <mis
nondegenerate. Further, H(t,x) < m for all (#,x) €

S! x M and the set of 1-periodic solutions x with

JUH(t x (@)t < m s finite,

\,

We denote by ngtr(gl,M ) the set of all smooth contractible loops in M.

Given x € é’ﬁtr(Sl,M ) we denote by ¥ : D — M a smooth extension of x to
the disk. We define the action of x denoted by A(x) via

AGx) = -/i*w. )

D

This is well defined in view of the assumption [w]|m,(M) = 0. Given a smooth
arc in CZ5,(S',M) say (7,1) — x.(t) is smooth, the map 7 — A(x;) is of class
C®. Let xg = x, and £(¢) = f;xr(r)fﬁg. We compute
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e lr0Alt,) = — 6{“ W(E(e), 1 (N)dt

1

J wC(e), &@)dr.

0

Il

We define @5 by
I
Py(x) = A(X)—/H(t,x(f))df
0
and observe that

i

dy(x)E = / W) — X (x(0)), E(0))dt

0

for all smooth vector fields £ along the contractible curve x € Cg‘gﬁ@‘,M ).
Here Xp, is the vector field defined by ix, w = dH,. Hence

dPy(x) = 0 &= i(t) = Xy (x(@), treS!

If H is admissible and x is a contractible 1-periodic solution of the Hamiltonian
system associated to H satisfying &y (x) > —m(H), we infer that fol H(t,x(t)) <
m(H ). In fact, if we have equality x has to be constant and @y (x) = —m(H).
Hence x has to be nondegenerate.

We denote for a € R,a > —m(H) by P,(H) the finite set consisting of all
contractible 1-periodic solutions satisfying @y (x) > a. We call @y (x) the energy
of x. The energy will be one of the important numerical values attached to a
contractible 1-periodic solution. Another invariant is the Conley-Zehnder index,
[1]. The version we need is described [19]. Let x be as above and linearize the
Hamiltonian vector field along x. The linearized system defines a symplectic Inop
X (1) satisfying

X(t): TX(O)M oy Tx(;)M

is symplectic and
X0 =1d, X(): Ty — Txo

since x(0) = x(1). We infer that 1 ¢ spec(X (1)) since x is nondegenerate. Take
an extension X : D — M of x and symplectically trivialize *7M — D. In view
of the condition on c; the trivializations induced for x*TM — S'! are homotopic
and independent of the choice of the extension X. Hence take such a trivialization

¥ x*TM s 8! x C.
Let us write ¥(t) for the induced map
w(t): TX(Z)M — C",

We consider the arc I given by ¢t — ¥(OX()¥(0)~'. Then I'0) = Id
and I'(1) = TO)X(M¥(0)~! so that spec(I'(1)) = spec (X(1)). Hence 1 ¢



spec(I'(1)). According to [19], I' has a Conley-Zehnder index indc; € Z,
which is independent of the choice of ¥ (if ¥ is as described above). Hence
indcz(x) := indcz (") € Z is a well defined invariant of a contractible nondegen-
erate 1-periodic solution.

Summing up we have a map P,(H) — R x Z associating to x € P,(H) the
"local invariants” (®y(x), indcz(x)), where a > —m(H) and H is admissible.
Then for every x € P,(H) we have x(S') C M\oM.

A smooth time-dependent almost complex structure J : S' x TM — TM is
called w-calibrated if w o (J; x id) is a time-dependent Riemannian metric on
M, where J; = J(t,-). If OM # () we further assume the following: There exists
an outward pointing transversal vector field  near M with Lyw = w. The flow
(1)—e<r<o of 1 yields a diffeomorphism ¢ : (—¢,0] x M — W onto some
neighbourhood W of dM in M. Let W, := ;(OM ). The restriction of A\ = iyw
to W, is a contact form with contact bundle & = ker(\ |w,) and Reeb vector
field X € TW, defined by ixd )\ |w,= 0, ixA = 1. We assume that on W,/ is
time-independent, leaves £ invariant and maps X onto 7. Denote by 7 the set of
all such J.

We claim that 7 is nonempty, and any two elements of 7 can be joined by
a smooth path (J;)o<r<1 in J.

To see this observe that the existence of a W, 7, A, £, X as described above
follows directly from our assumption that OM is of contact type. Now it is
well-known that for every symplectic vector bundle (£, w) the space of almost
complex structures on E for which wo(J xid) is a bundle metric is nonempty and
contractible. So we find an almost complex structure on £ such that w |¢ o(J x id)
is a bundle metric on £. Extending it first to the bundle TM |y via J(X) = 7,
J(n) = —X, and then to the whole bundle TM — M, we obtain a J € 7. For
the second part let J°,J! € J be given with associated vectorfields g, m near
OM . Since both 79 and 7, are transversal to OM and outward pointing, the same
is true for all n, =7m + ({1 — 7)o, 0 < 7 < 1. Moreover, L, w = w for all 7.
Arguing as above we can associate to every 7, a J™ € J, depending smoothly
on 7. We can also achieve that J0 = J0, J' = J!, and the claim is proved.

Now consider pairs (J, H ), where H is an admissible Hamiltonian andJ € 7.

Given x,y € P,(H),a > —m(H), we consider the set M(x,y;J, H) defined
by

Mx,y;J,H) = {u:Z — M |u is smooth and satisfies (3) below },
where Z =R x S!,(s,t) € Z, and
ug + J(@t,uu + V; H(t,u) =0
u(s,*) — x in C* for s — —0 (3)
u(s,*) — y in C* for s — +o0.

Here V,, is the gradient taken with respect to the Riemannian metric wo(J, x id).
If follows from [18], Lemma 2.4, that if W is a foliated neighborhood of OM as
described above and H = m(H) on W, then u(Z) C M\W.



By C*-modifying J (see [12]) we can achieve that the new pair (z JH) still
satisfies all the hypotheses above, and for every pair (x,y), M(x,y;J,H) is a
finite dimensional manifold. This is due to the fact that M(x,y;J,H) can be
considered as the zero set of a regular Fredholm section. We call such a pair
(J, H) admissible.

Let us denote for simplicity by Ad(M) the collection of all admissible pairs
(J,H). Following [11], we define for (/,H) € Ad(M) and a > —m(H) the
graded free Abelian group C,(J,H):

C.(J,H) = @& ClJ,H)
CHI,H) = @epuplx (4)
PuHY = {x €P,(H)| indez(x) =k}.

We define & : C¥(J,H) — CF*Y(J,H) by

GO = Y Y, @iy,

YEPSHY N\ Mx,viJ H)

where M(x,y;J,H) = M(x,y;J,H)/R and (i) € {1, —1} are suitable "orien-
tations” attached to the points in ]@, see [10]. We recall that dim M (x,y;J,H)
is given by the difference ind¢z(y) — indez(x), see [19]. The crucial point is
that &y © & = 0. Hence (C,(J,H),$é) is a co-chain complex. Moreover, for
b > a > —~m(H) we have the commutative diagram.

G HY 5 CU,H)

UL, H) -5 G, H)

where the vertical arrows are given by inclusion.

Next we have to investigate the dependence of the co-chain complex on J
and H. To do this we define a partial ordering on Ad(M) by

(jl,Hl) S (JZaHZ) = Hl(f,Z) < Hz(t,Z) for all (t,Z)- (5)

We would like to associate, in analogy to [11], to the above situation a natural
chain homotopy class

o(Ja, Hyy J1, Hy) : Co(Jy, Hy) — Cu(Jy, Hy).

To this purpose we take a monotone homotopy, i.e. a2 smooth pair (/,H) =
(J(s,t,2),H(s,t,2), (s,t,2) € R x S§' x M such that



VJ(s,),H(s,)
(1(33 ')) H(S: '))

1), Hi(+)) for s > 5o
(J2(+), Hz(+)) for s < —sp

il

i

(6)
J(s,y € T foralls e R
H(s,t,z) = H(s) for z near OM
and
OH(s,t,2) <0 for all (s,1,2) )

The existence of such a homotopy follows from the discussion after the definition
of J.

For xy € P,(Hy), x3 € P,(Hy), a > —m(H,) define M(xy,x;;J, H) as before.
In order to get compactness results as in [11] we must ensure that the elements
of M(xy,x;;J,H) are bounded away uniformly from OM. We can no longer
apply Lemma 2.4 from [18] since J may depend on s near OM .
Lemma. Given a monotone homotopy (J,H) and a > —m(H;), there ex-
ist constants cg,b > O depending on J,H and a such that for all ¢ > ¢y,
(JC(S) ')}Hc(sa )) = (J(%: )aH(ga N ox € Pa(H])r X2 € Pa(HZ) and u €
M(xp, x1;J €, HC) we have (with respect to some fixed metric on M ):

dist(u(Z),0M) > ¢

We call such a (J¢, H*) a slow monotone homotopy.

Proof. Choose an € > 0 such that for all s € R we have diffeomorphisms
WYis) @ (=2¢,0] x oM A W(s) induced by the vector field n(s, ) near oM.
We may assume that H(s,:) = H(s) on UsezR W (s). Take a smooth function
f:RxM — [~2£0] satisfying f = —3c on M\ JW(s) , f(s,2) = 7 for
x € P(s){r} x OM), 7 € [~¢,0], and |df(s,-)| < 1 where || is taken with
respect to the metric w o (J(s,-) x id). Pick an open neighbourhood W of oM
contained in [;cg ¥(s)([—¢&,0] x M) and having smooth boundary. Since W
is compact, there is a p > 0 such that every closed curve in W with length < p
is contractible in W. Let a > —m(H;) be given and define

b =  sup f <0
Rx(M\W)
A = max{Py,(x1) — Pu,(x2) | X1 € Pu(Hy),x; € P,(H3)}

Take an [ > 0 large enough such that

1/ —f\i < min{p, ——-I-;—,a +m(H)}

and let

By passing from (J,H) to (J¢, H¢) for some ¢ large enough we may assume
that on W
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851+ 5101 + S 1@ < p

where A = iyw and norms are taken with respect to the metric w o (J; X id).
Now let x; € P,(H,), x, € P,(H3) and u € M(xp,x;;J,H) be given and
consider the function g(s,t) := f(s,u(s,?)) on the cylinder Z =R x §!. We will
show that g < -f% < 0, from which the lemma follows.
From 0;H < 0 it follows that

/[uslzds dt < Py (x1) — P, (xz)
z
< A

So there exist s, k € Z, with |sg4; —s¢| < ! and fol]us(sk,t)lzdt < %. Fork ¢ Z
let x; (¢) = u(sy, ).

Case 1: x;(t) € W for all t € S!. Using that on W u satisfies the equation
ug +J (s, u)u, =0 we calculate

1
length(x) < ( f e | 2dt)
3]

¥
= /0 L s, 1))

< JJB
- )
< p
By definition of p this implies that x; is contractible in W. Letxy : D — W
be a smooth extension of x; to the closed unit disk. Using w = dA(s;,-) on W
we get

A = /E{*w]
D

= / xk”\(&:v)'
51

]
= /0 w(n(sg, xx ), % )dt

< /0 el

A

<
- /

Hence

]
D, ) = A(xk)_/ H (g, x)dt
0

< \E“M(HJ)

< a



in contradiction to a < Py, (x2) < Dy, ,.1(xx). So case 1 does not occur, and for
all k € Z we are in

Case 2: There is a #; € S! such that x;(t,) ¢ W. Then for any ¢t € S' we find a
to €S, t —1 <ty <t such that x;(tp) ¢ W and x,(t/) € W forall 1 < t' < ¢.
This yields

H
9t < glseio)+ / 18,950, £\’

i

< b+ / (st x0) - i’

o

i
e
< b
-2

where the last but one inequality follows as in case 1.

So for the finite cylinders Z; = [sx, sx41] % S' we have shown that g < % <0
on 0Z;. It remains to estimate g in the interior of Z; . If (s,1) € Z; and g(s,1) > b
then u(s,t) € W, and we can compute

A5, 1) - uy) — S (A(s,u) - us) OsA(s,u) - u, +u"dA8;,0,)

O A (s, 1) - vy +wlug, uy)

i

Il

1
DeX(s,u) -y = 5 (fus [ + e
Using df oJ = A on W we obtain

gs(s,1) = Of(s,u) = A(s,u) - u
gf(syf) 'X{sa“)’&s

1f

and hence

Dg = Gu+Gn
= B +d@) s — 0w+ S (sl + )

I 1
> 10| = S@NI = 318Af
>
for all (s,1) € Z; with g(s,t) > b.
Define ,
A — Bl Skt Sk
G(s, 1) = g(s, 1) + 5 (s - )

For (5,1) € Z with §(s,1) > 3b we have g(s,#) > b (remember y = —% and
|sk+1 — sk <[ ) and therefore



AGg=NDNg+u>0

So g cannot have an interior maximum >> ;ib in Z. On the other hand, g < %
on 07Z; implies § < % on 07, thus g(s,1) < §(s,1) < %’ for all (s, ) € Z;. Since
k € Z was arbitrary, the lemma is proved.

This lemma ensures that for slow monotone homotopies (J, H) the solution
spaces M(x;, x;;J, H) have the usual compactness properties. Now we can pro-
ceed as in [11]: For admissible pairs (J1, H;) < (J,, Hy), regular slow monotone
homotopies between (J, H;) and (J,, H,) induce a unique chain homotopy class

o(Jy, Hai Jy, Hy) 2 Collda, Hy) — Cu(Jy, Hy)
such that the following properties hold:
o(J,H;J,H) = id (8)
For (J1, Hy) < (J2, Hy) < (J3, H3) we have
o(J2, Hy, J1, Hy) 0 0(J3, H3, J2, Hy) = 0(J3, H3, J1, Hy) ®)
For b > a > —m(H;) the following diagram commutes:

ColJ2, Ha) -5 Co(Jy, Hy)
(10)
Cp(Ja, Hy) D5 CuJ1, Hy).

Note in (9) that if two slow monotone homotopies between (J1, H;) and
(J2, H,) respectively (J;, H2) and (J3, H3) are sufficiently slow then their com-
position is a slow monotone homotopy between (J;, H;) and (J3, H3). Then use
uniqueness of o.

Now let R be any commutative ring. We apply the functor Hom(x, R) to the
quotient co-chain complexes C,/Cp, where b > a > —m(H) to obtain the chain
complexes

D*"(J H) = Hom(C,(J ,H)/Cy(J ,H);R) (11)

with boundary operator 0 induced by 6. For numbers b > a > —m{(H) and
b’ > a’ > —m(H), such that b > b’ and a > a’ we have obviously induced
homotopy classes of maps

Ca/cb B Ca‘/cb'
and consequently
DG HY —s DD H)Y . (12)

These maps behave functorially, ie. for b; > a; > -m(H),i = 1,2,3, and
b3 szZb], a3 Zaz ZGI we have



Dlab) —— plaz,by)

(13)
Dlas.b3)
If(J,H)< (f , H ) then the following diagram is also commutative
Dty Hy -Z» DlbJ H)
(14)

Dy Hy = DWH(J,H)

where o is the dual of 0'(.7 ,I? ;J,H) and the vertical maps are those in (12).
Here a,b,a’, b’ are as described above.

Now we pass to homology obtaining the symplectic homology groups
§1@8)(J, H) of the admissible pair (J, H) € Ad(M).

These homology groups are independent of J (by the discussion above), but
they depend on H . In order to obtain invariants of the manifold, we have to pass
to a direct limit over the Hamiltonians. This is done as follows:

Let U C M be open (possibly empty) with c{(U) C M\OM . Let Ad(M ,U)
be the subset of Ad(M ) consisting of those pairs (J, H) for which H |gi 7y < 0.
The density results on admissible pairs (see [12], [19]) imply that (Ad(M, U), <)
is a directed set. Thus we may take the direct limit over Ad(M , U) to obtain the
symplectic homology groups

SEM,U) = limS“P U, H) . (15)
Note that S!¢2)(J, H) is well defined if b > a > —m(H ); omit in the direct limit

all those (J, H) for which this not true. /parbox Given numbers ¢ > b > a the
exact sequence of chain complexes

0 — D[“’b)(.I,H) —_ D[“*C)(J,H) N D{b’c)(J,H) B (16)

for (J,H) € AdM,U),a > —m(H), gives, since direct limits preserve exact-
ness, the long exact homology sequence

S[a,b)(M) U) ;S{“*C)(M, U)

7
Ox

SBM, U)



where the connecting homomorphism J, has degree —1. We shall denote the
diagram (17) by A, 5.(M,U) and call it the exact triangle. If @ < b < ¢ and
a' < b < witha' <a,b’ <band ¢’ < c, the maps from (12) induce a
morphism between triangles

Barpr oMUY —> By p o (M, U). (18)

which is functorial.
This construction has many nice properties, which we shall study in the next
section.

3 Elementary properties of symplectic homology

Let us first recall the properties already outlined in the previous section. Given
b >aand b’ > a’, such that a > a’ and b > b’ we have natural transformations.

S{a'»b’) —y Sy (19)

There is another natural transformation 0. of degree —1, which together with
(19) yields for a < b < ¢ the exact triangle A, 5 ..

§la,®) > la.c)

(20)
O
5!

by

The natural transformations in (19) induce morphisms between exact triangles.
In order to be more precise, assume a < b < c,a’ <b' < c¢'anda’ <a,b’ <
b,c¢’ < c. Then the following diagram is commutative

glab) % §lbe)

L\S o

la,0)

T (21)




In short we have Ay pr v — Lgp which is functorial in the numbers a, b,
e.t.c.

Next assume U C V are open with cl(V) € M\OM. Then AdM,V) C
Ad(M , U), hence we obtain a natural map

st vy — s U) (22)

inducing a morphism between exact triangles and being compatible with all other
natural transformations.

Next assume ¥ : M — M is a symplectic diffeomorphism mapping U
into V, where U and V are open subsets of M with their closures contained in
M\OM . We shall write

oM, U (M, V). (23)

If (J,H) € Ad(M,V) then Hy defined by Hyg(t,x) = H(r,¥(x)), satisfies
Hy|six gy < 0. We define further Jy by

Je(t,x)h = TO) @, ()T .

Then (Jy, Hy) € Ad(M , U).

If u € M(x,y;J,H) then &~ (u) is in M@~ (x), &~ 1(y); Jy, He). So, the
new connecting orbit spaces are obtained by applying ¥~!. Consequently we
obtain a co-chain map ¥* : C,(J,H) — C,(Jy, Hy) by x — ¥~} (x) inducing

@y : DMy, Hy) — D", H) (24)
and consequently the isomorphism
Uy : Sy, Hy) — S©PH) (25)

Passing to the direct limit induces an isomorphism

TSy w(vy) s slebm v, (26)
Combining ¥ with the natural map (22), namely since U C #~1(V):
SEPDM, o= (V) — SPIM,U) 27)
gives a morphism ¥*, i.e
Sb M, V) . Slab M, U)
- (28)

Y
SNM, w1 (V)



It follows immediately from the construction that ¥* gives a morphism between
the exact triangles Ag p (M, V) and A, (M, U). Moreover, it is compatible
with all the introduced natural transformations. Further, it is clear that (®¥)* =
v*@* and Id : M,U) — (M, U) induces Id. (22) is in fact induced by Id :
M, Uy-M,VyforUCV.

The key point will be that an isotopy of symplectic maps &; : (M, U) —
(M,V) with s € [0, 1] will induce maps (¥,)* which are independent of s €
[0, 1]. This will be shown in the next section.

4 Isotopy invariance

We follow the ideas of {11]. Assume (M ,w) is a symplectic manifold with the
properties described before. Let H be an admissible Hamiltonian and fix numbers
b > a > —m(H). Define

g(H la,b)): = min{ _inf (@~ Py(x), (29)

Jnf (b~ D)},
where the infima are taken over all contractible 1-periodic solutions of * =
Xp,(x) with @y (x) > —m(H). Since the set of such solutions is finite, we have
g(H ,[a, b)) > 0. We shall call g(H,la, b)) the "gap”.

Given admissible Hamiltonians H and K we define their distance d(H,K)
as follows. Consider a smooth path 7 — H, of Hamiltonians such that each H,
is constant close to OM ,r € [1, 2] and H,, = H,H,, = K. Take the integral
d((H;)) defined by

2

OH,
d(H,)) = / [max | S0 ar (30)

Ty

Then let d{H , K) be the infimum of all numbers d{(H,)) taken all smooth paths
as just described.
Now let (Jy, Hy) and (J2, H,) be admissible, a and b fixed such that

b>a> max{—m(Hl)} —-m(Hg)} .
Suppose we have the estimate
d(Hy, Hy) < min {g(Hy, [a, b)), g(Ha, [a, b)) } 3D

Then we can take a regular homotopy (J(s,t,z), H(s,t,z)) which satisfies
(6) and is slow in the sense of the lemma of section 2, but instead of being
monotone satisfies the weaker condition

d((Hs)) < min {g(H1,1a,b), 92, 1a,b) | (32)



For u € M(x3,x,;J,H) we calculate

1

d , OH
4_1;@”‘(“(3)) = H@H;(“(S)}Hi?(s) - / g(s,t,u(s,:))dz. (33)
0

Here L?(s) is the L?-section space along loops equipped with the L2-inner product
associated to the w-calibrated 7-dependent almost complex structure J (s, *, *).
Integrating (33) we infer via (32)

py(x0) = B v) > —min {g(Hya,b)), g0, [a, b))} . (34)
If x; € P,(Hy), pt = a, b, then (34) and the definition of the “gaps” imply
Dy, (x1) 2 p.
Now we can proceed as in section 2 to obtain unique chain homotopy classes
o(Jy, Hy Jy, Hy) 0 Cu(a, Hy) — Cu(Jh, Hy) (35)

for i = a,b. Furthermore, if (J;, H;),i = 1,2, 3, are admissible pairs satisfying

1
d(Hi, Hy) < > min {gtt1,1a,b)), 9(Hs,[a, b)) }

- (36)
d(Hz, Hy) < 5 min { g(Hy, [a, b)), g(Hs, [a,b) }
then
a(J2, Hy Jy, Hy) o 0(J3, Hy3 Jo, Hy) = o(J3, Ha Ji, Hy) 37

Taking (J3, H3) = (J;, H;) we conclude that in this case a(J,, Hz;J, H;) induces
an isomorphism in homology

Sy, Hy) ;.EE §eP Uy, Hy) (38)

with inverse induced by o(Jy, Hy; J2, H;). Here “sdi” stands for.the small distance
isomorphism. This uniquely defined isomorphism always exists if the distance
between H, and H, is small with respect to the ”gaps”, more precisely if the first
equation of (36) holds.

Now we are in the position to prove the isotopy invariance. Assume U,V are
open subsets of M such that U,V < M\GM . Suppose (¥,) is a smooth isotopy
of symplectic maps such that ¥, (U)C V¥, : M = M. Fix b > a and choose
an admissible pair (J, H) with H|(S' x V) < 0 and define H, : S' xM — R by

H.(t,x) = H(t, ¥, (x))

and
Jot,x) = T x) ¢, T )NTE(x) .



Clearly (J-,H,) is admissible for all 7 € [0, 1]. Since U C ¥ /(V) for every
7 € [0, 1] we can find an admissible (J, K) such that

K|S'x0)<0
(J,K)> ., H) forall 7€[0,1]. (39)

Taking for fixed T a slow monotone homotopy we obtain a unique chain homo-
topy class o,

Cud,K) — Cu(Ur, Hy) (40)

for every u > —m(H ). We observe that the distance d(H,,, H;,) for fixed 7y and
71 close to 7p is as small as we wish. Consequently, the map in (40) for 7 = 7
and g = a,b factors through a monotone homotopy to C,(J-,H, ) and the
“smallness map” from C,(J,, Hy) to C,{J5, Hy,) provided 7 is close enough
to 79. Hence for 7; close to 7o we have the commutative diagram

Sy, Hry) ——> S, K)

sdi “@h

\ 4

S {a‘b)(‘]’r! il H'r,)
Here the unmarked arrows are coming from slow montone homotopies. If we
can show that the “sdi”-map in the notation of (25) is given by

(!I’,,.—llkr’rg)## : S{a,b)(JmHm) =, S{a,b)(Jﬂ,Hn)

we have as an easy corollary the isotopy invariance. In fact, in this case we
obtain the commutative diagramm

S@b)(Jo, Hy) ———— Slab)J K)

(& W) (42)

\
S0y, Hy)
Here we can pass to the direct limit to obtain



SWOM, 7 (V) " SPM . U)

718, “3)

\ 4
SleOM 0 (V)
Now the composites o o !ffﬁ”l and o o @]", where ¢ stands for the appropriate

natural map induced by inclusion, define ¥y and V[ respectively. Hence we
obtain the commutative diagram

@M, B3 (V)

> sl U) (44)

SE@PM FTH(V))

So it remains to prove the identity sdi = (¥ YW, Yus for 7y close to 7p. In order
to simplify notation we note that the above reduces to the following question:

Assume 7 — ¥, is a smooth arc of symplectic maps with % = Id,(J,H)
is admissible and, b > a > —m(H), is it then true that (W )gs = sdi for 7
close to zero? Let 3 : R — [0,1] be a smooth map satisfying G(s) = 0 for
5§ <0,8'(s)>0fors €(0,1)and B(s) =1 for s > 1. Define’

HE(S7 f,.X) = H(t:!ps,@(s}(x))

J(s,t,x) = Ty?sﬁ(s}(x}MI olJ{(t, stﬁ(s)(x)) o Twe,@(s)(x) (45)
forall (s,t,x) € RxS!'xM and e > 0. Let u € M(x,x%,J¢, H®), i.e. u satisfies
u, + J(s, t,uduy + ViyeunH (s,t,u) = 0 (46)

and converges for s — +oo to contractible 1-periodic solutions x,x® of H, H*
respectively. Define v:Z — M by

u(s,t) = Wy, (u(s, 1)



and insert this in (46) to obtain

0

(£, )@, + Tl Dus(s, 1)
+ T (s, 1, U (0l DT s, (s, 1)

+V]‘(s,t}H (S,I, 83(3)(1’(53:))) (47)

B oy (0, D) [v(5,8) + I (1,065, D)(s, )
+ VinH (t,v(s, 1) + T@'eﬁ(«f)(""@:I))(%%&s})(”(&f))]

Now if ind¢z (x) = ind¢ez (x¢), the only solution of v +J (¢, V), +VynH(t,v) =0
connecting x and ¥ ' o x® is v(s, t) = x(t)

The expression T¥ ﬂ(é)(v(s (L s 6:‘3(9)(@(5 t)) defines a small perturbation
(depending on €) compactly supported in s. By the compactness estimates in [7]
and the inverse function theorem, for small € (47) has a unique solution © close to
every v(s,t) = x(t), where x is a contractible 1-periodic solution of x = Xp (x).

Consequently, (46) has for every 1-periodic solution x in P,(H)\Py(H) a
unique solution u connecting x with ¥!(x) provided ¢ is small enough. Hence
the map from C,(J,H) — C,(Jg,Hy) for u = a,b induced by the homotopy
(J¢, H?) is precisely the map .

On the other hand for € small , (J¢, H¢) is a regular slow homotopy satisfying
the smallness condition (32).

Hence we have proved

Proposition 1. Let (M ,w) be as previously described and U,V open subsets
of M such that U,V C M\OM. Given a smooth isotopy of symplectic maps
V. (M,U)— (M, V) we have that (¥;)* is independent of s.

5 Possible extensions

To define symplectic homology groups S@?)(J | H) we have introduced the space
J of w-calibrated almost complex structures on M behaving nicely at the bound-
ary. One can also consider the bigger space J of w-calibrated almost complex
structures defined on the interior of M (not necessarily extendible to the bound-
ary) and satisfying the analogous condition near OM (where n, A etc. may also not
be extendible to OM ). For J € J and H admissible, solutions in M(x;,x2;J, H)
still stay away from the boundary by [18], Lemma 2.4. Hence S'9*)(J, H) can
be defined as before. It is however not clear if two elements of J can be joined
by a path in 7. Therefore it cannot be excluded as before that S'®*)(J , H) might
depend on the choice of J € J. But if we fix a J € J, we can still take the
direct limit over H to obtain symplectic homology groups S'¢?(M , U ,J) having
the same properties as before. These groups will be used in {14] to prove the
so-called “stability of the action spectrum”.



Our construction was carried out under the standing assumption that [w]
and ¢; vanish on m(M). The assumption on ¢; guarantees that a contractible
periodic trajectory has a well defined Morse index: the Conley-Zehnder index.
The assumption on [w] implies that for a contractible loop x we have a well
defined action @4 (x).

It makes of course also sense to look for noncontractible 1-periodic solutions
in a given class o € [S',M]. We fix in that case a reference loop xy € o
Given another loop x € a we would like to define a number @y (x), so that
the derivative of @y with respect to x vanishes if and only if x is a 1-periodic
solution of the Hamiltonian system X = Xp (x) in the class of a. The only way
is the following:

Take a smooth map ¥ : [0,1] x S' — M such that ¥(0,1) = xo(t) and
x(1,¢) =x(¢) fort € S! and define Py (x) := fx*w—foi H (t, x(1)). The difficulty
here is that @y (x) is not well defined. Clearly by Stokes’s Theorem we obtain
the same value if we replace X by any X which is homotopic to ¥ with boundary
fixed. So the right objects to study are not the 1-periodic solutions in the class
a, but the 1-periodic solutions together with their “history”, i.e. a homotopy of
a given reference curve xg to the loop x. Let CZ°(S',M) be the collection of
all loops x of class «, and denote by Cgfx(,(Sl,M) the universal covering with
reference curve xy. Then finding 1-periodic solutions of class « turns out to be
a variational problem on this space. Problems of this kind can be handled at the
expense of some nontrivial algebraic machinery, see [16].

All these difficulties can be of course avoided if the symplectic form w is
exact, i.e. w = d A\ for some |-form on M. Then we define

1

1
Pylx) = m/x*A—/ H(t,x())d:
0

0

for every loop.

The previous discussion solves the problem of finding a real filtration pro-
vided the Morse complex can be handled analytically. (The bubbling off of
holomorphic spheres has to be controlled.) The other problem is the fixing of
a grading. For this one takes the reference curve xy and considers the pullback
bundle x;TM — S!, which is a symplectic vectorbundle. Of interest are first
order linear differential operators Lo : L2 (x(TM) D H 2 (x§TM) — LA (x;TM),
which in a suitable symplectic trivialization ¥*TM ~ S! x C" look like

(Loh)(t) = —ih(t) — A(OR()

where t — A(f) is a smooth map into the real linear maps of C” such that A(z)
is symmetric for the real inner product < *,% >= Re(*,*) on C". We assume
Kern(Lg) = {0} and call L() and Ly in this case nondegenerate. Ly is what we call
in [10] an asymptotic operator.

Now we consider xo and Lo as some kind of normalizing data. Given any
element of C .S, M), i.e. a homotopy class of maps % : [0,1] x S' — M with



X(0,1) = xo(t) and x(1,1) = x(t) we define a Morse index for x provided it is a
nondegenerate 1-periodic solution of a Hamiltonian system x = Xg(x). Namely
having fixed a calibrated perhaps z-dependent almost complex structure J we can
write X = Xy (x) as —J (t,x(t))f;x(z) — V, H(t,x(t)) = 0. Linearizing the latter
expression by varying x in the function space we obtain a second asymptotic
operator L = L(H ,x). (It only depends on x, not on %.)

Now one trivialises £*TM — [0, 1] xS!. This determines tnv1ahzatmns for Ly
and L(H , x) which depend up to homotopy only on the class of X in Coﬁ (S, M).
Now one has obtained asymptotic operators LO and L(H x). One takes now a
Fredholm operator A of the type described in [10] having asymptotic operators

= Ly and A* = L(H,x) and defines the generalized Conley-Zehnder index
of [x] with respect to the normalizing data (xq, Lg) to be precisely the Fredholm
index of A.

It follows from results in [10] that this definition is independent of the con-
structions involved. Let us write for it ind([X], H) = ind, 1y,([¥], H). If we use
this construction for contractible loops under the assumption that ¢; vanishes on
m2(M) we see that this index map differs from the Conley-Zehnder index only
by a fixed constant. Given an admissible pair (J, H), consider the manifold of
connecting orbits between two nondegenerate 1-periodic solutions in the class «,
ie.

M= x50 H) = {u:Z > Mlu, +J (@, u)u, + V; H(t,u) = 0,

u(s, ) — x*

as § — *oo}.

It turns out as the consequence of the discussions in {10] that the local dimension
dim, M close to u satisfies

dim, M = ind([b],H) — ind([a],H) ,

where a : [0,1] x S! — M is any fixed homotopy between x5 and x~, and
b is the homotopy obtained by first carrying out a followed by the homotopy
described by u. Let us write [b] = [a]&[u]. Then the above formula reads

dim, M = ind(la}&[u]l,H) — ind([a],H) .

We note finally that for manifolds M with contact type boundary which are
equidimensional submanifolds of a cotangent bundle we have ¢, |m,(M) =0 and
w|M = dA. In that case dim, M is independent of the choice of u, and only
depends on x~ and x*. One can carry out our homology construction for any
class o since in that case no holomorphic spheres exist. The integer grading is
fixed by prescribing a pair (x,Lo) as described above. The filtration is given
naturally through the choice of A = pdg. Another case where the construction
can be carried out are monotone manifolds in the sense of [9].
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