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Abstract—Based on the concept of representing semantic
uncertainty by a valuation map which assigns to certain semantic
units valuations taken from an abstract valuation set, we provide
formal proofs that certain reasonable properties of the operations
decision and reinforcement are related to algebraic structures on
the valuation set. On the other hand, we infer from psychological
research that in human behaviour reasonable operations are
distorted by cognitive biases. In a final section, we connect our
results to applications and propose a method for modeling the
influence of certain cognitive biases.

I. INTRODUCTION

When designing an artifical system for cognitive infocom-
munications [1], it is difficult to avoid semantic uncertainty.
The primary goal of this article was to support the view that
an appropriate dealing with semantic uncertainty is reflected in
certain algebraic laws. This would lead to algebraic structures
which can be considered as homomorphic images of processes
performed by human beings when dealing with semantic
uncertainty.

While working on this problem, we saw that we can
Sformally prove, based on relational calculus, that certain appar-
ently reasonable ways of dealing with semantic uncertainty are
essentially equivalent to certain algebraic laws. On the other
hand, we recognized that psychological research has revealed
that real human behaviour is often dominated by cognitive
biases, which prevents humans from behaving apparently
reasonable [2]. Finally, we saw that there are effective methods
for reconciling these two contradicting views.

In this paper, we focus attention on two psychological oper-
ations: decision and reinforcement. For making a mathematical
analysis possible, it is necessary to fix precisely what we mean
by these operations. Our modeling assumptions are as follows.

1) We call decision the selection of certain semantic
units and neglecting others.

2)  We call reinforcement any changes of valuations by
incorporating new information provided by a second
valuation map. In most cases, reinforcement will have
the effect that the valuations of certain semantic units
are ‘strengthened’, while the valuations of others are
‘weakened’.

The plan of the paper is as follows. In section II, we start
with a parsimonious concept valuation map, which is just an
assignment of valuations to semantic units. Here we assume
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that the meaning of an utterance comes as set of clearly dis-
tinguishable semantic units, and a valuation map assigning to
each semantic unit one or more numbers indicating confidence,
probability, or, in general, some figures related to something
like ‘degree of reliability’. The valuation map concept allows
us to relate certain psychological operations to set-theoretic
and algebraic structures on the set of possible valuations. On
the basis of these modeling assumptions, we exhibit relations
between laws concerning semantic operations on one side,
and algebraic laws concerning binary operations on the set of
valuations on the other side. This is mainly original research,
but related to known results in computer science [3]. The final
section III relates our results to applications and discusses an
idea how to incorporate certain cognitive biases.

II. VALUATIONS AND OPERATIONS

An essential point in modeling semantic uncertainty is to
associate valuations to semantic units which enable the system
to perform the basic operations decision and reinforcement.
Before diving into mathematical investigations, let us consider
an example which in the sequel will be used to illustrate our
results.

Example 1: Let us imagine a travel information system.
Before giving information to the user, it needs some input from
the user, given in one or more dialogue steps. Let us assume
that the input is given as spoken utterances, and that the system
contains a speech recognizer producing as recognition result
an N-best list. Let us further assume that the system is able
to associate to each entry of the N-best list a meaning, and
that the meaning is represented by feature-value pairs, ¢. g.:

e  Destination: Prague.
e Date for traveling: next Tuesday.
e  Departure time: after 8 a.m.

e  Arrival time: before midnight.

We consider each individual feature-value pair as a semantic
unit. It may happen that different wordings convey the same
semantic unit. For example, the meanings of the following
phrases both contain the semantic unit [Destination : Prague]:

e [ want to travel to Prague.

e  The destination is Prague.



For simplicity, let us assume that each utterance conveys
exactly one semantic unit. If it happens that the speech
recognizer associates to different wordings the same semantic
unit, we consider them as equivalent. Under these assumptions,
a recognition result comes as an N-best list of semantic units
with the property that a semantic unit occurs at most once
in the N-best list. Moreover, let us assume that the system
provides several data concerning reliability of the recognition
results. For instance, such data may comprise acoustic scores
and language model scores computed by the speech recognizer,
data derived from the context of using this system, world
knowledge like importance of certain destinations as touristic
or business destination, and possibly data stemming from
personalization. We shall refer to these data as the set of
scores, and we assume that the valuation of a semantic unit
is computed from the set of scores coming with the semantic
unit. At this stage it is possible to insert an ‘interface’ distorting
the computation in such a way that certain cognitive biases are
modeled. For instance, in [4] a method is given which models
the loss aversion bias.

Example 2: Let us return to the speech recognition exam-
ple described above. In this case, for computing the valuation
of a semantic unit, we should take into account acoustic scores
and information about the context, e. g., about the preceding
system prompt and the situational context.

What is the meaning of decision and reinforcement in
this example? As a recognition result may consist of several
alternatives, the system eventually has to decide which alter-
natives should be retained and which ones should be rejected.
It is not assumed that the system always decides immediately
after receiving a recognition result. If the system is not sure
about the intention of the user, it may delay a decision to the
future, and ask for repetition or further information. We call
reinforcement the combination of recognition results from two
or more utterances.

For fixing notation, assume that U is an arbitrary set of
semantic units, and let X denote a for the moment unknown
set of possible valuations. Then a valuation map is a map

P:U— X. ey

A map with target X which is only defined on a subset V C U
is called a partial valuation map. The domain of definition of
a (partial) valuation map is denoted by D(®). This concept is
similar to the ‘valuation function’ considered in [5, p. 4]. In
this setting, decision is an operation restricting a given (partial)
valuation map ® to some subset

D(Ve) CD(®) C T,

leading to a partial valuation V@ := ®|pyq) which only
valuates the semantic units corresponding to the decision. The
elements of D(V®) are called winners of the decision. For
instance, if U = {uj,us}, and the system decides to retain
only the semantic unit 1, then w; is the only winner of the
decision, and V® = ®|;,,, ;. Note that we do not exclude that
D(V®) = @; but we say that a decision operation V is non-
vanishing, if, for any valuation map ®, any non-empty subset
of U contains at least one winner. Similarly, reinforcement is
an operation taking two valuation maps ®; and ®, as input
and producing a new valuation map ®; & ®, with the property

D(B; & $o) = D(D1) N D(Dy).
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The idea is to define appropriate mathematical structures on
the set X from which these operations can be derived. The
condition is that the valuations of the outcome should only
depend on the valuations of semantic units, and not on their
semantic content. In [6], an operation is called consistent w.r.t.
valuation, if it fulfills this condition.

A. Consistent decision operations and binary relations

In case of the decision operation, the system basically has
to decide in favor of one of two semantic units. If ® : U — Xis
a valuation map, consistency of decision with valuation means
that D(V®) is a union of complete level sets of @, i.e., given
a level ¢ € X, then

O He) CD(VD) or & '(c)ND(VE)=2. (2

The basic mathematical concept used for describing the
concept ‘decision between two semantic units’ is that of a
binary relation on a set X, formally defined as a set of pairs, or
as a subset of the cartesian product X x X. If >C Xx X denotes
a binary relation, then an expression ‘z > y’ just means that
the pair (z,y) €. For defining a decision operation out of
a binary relation, we extend this notation to arbitrary subset
Y C X by setting

z>Y & VyeY:zD>y. 3)

In case « > Y we say that « dominates Y w.rt. I>. Given a
valuation map ® : U — X, and a subset V C U, we say that an
element u € U (®-)dominates V (w.rt. B), if ®(u) B d(V).
For instance, for any valuation map @, any element ©u € U
®-dominates the empty set @ (w.r.t. any binary relation).

Theorem 1: Let U be an arbitrary set of semantic units, and
let >> denote a binary relation on a set X. Given a valuation
maps ¢ : U — X, setting

ueD(VP) = &(u) > 2(U) 4)

defines a decision operation V on valuation maps which is
consistent with valuation.

Proof: In order to prove consistency, it suffices to prove
assertion (2) from (4). But this is almost immediate: If P :
U — Xis a valuation map, and if u;,us € U are two semantic
units with equal valuation, ®(u1) = ®(u2), then condition (4)
shows that

u; € D(VP) & uy € D(VD),
which reformulates (2). |

Example 3: Let us return to our travel information system
example with recognition result given in an N-best list of
semantic units, and suppose that we receive the list

(“I want to travel tomorrow”),
(“I want to travel to Moscow”),

1)  [Date : tomorrow]
2)  [Dest : Moscow]

where each item is equipped with a set of scores. Assuming
that the valuation of a semantic unit is computed from its set
of scores, consistency of decision with valuation means that
decision is only based on valuation. In our recognition result,
acoustic scores are likely to be similar—assume they are equal.
If valuation is based only on acoustic scores, a decision which
is consistent with valuation must either take both alternatives,



or reject both. If we had also scores from the context, e. g.,
if the system expects as input the date of traveling, we could
incorporate these context scores into valuation. In this case, a
decision for the first recognition alternative while rejecting the
second can be consistent with valuation.

B. Non-vanishing and effective decisions

The construction in (4) does not exclude the case D(V®) =
@. As an example, consider the three-element set X =
{z,y, z} and the binary relation

>:={(z,9), (y,2), (z,2)} C X xX,

and the valuation map ® : {uy, u2,us} — X given by ®(uq) =
x, ®(uz) = y, and ®(u3) = z. In this situation, there is no
semantic unit whose valuation dominates all the others, whence
D(V®) = 2.

In mathematics, there are some coined verbal expressions
referring to certain properties of binary relations. A binary
relation B C X x X is called

reflexive, if VieX:xBx,

total, if Ve,yeX: zBy or yBx,
antisymmetric, if tBy and yBxz imply z =y,
transitive, if By and yBz imply x =1y .

Note that any total binary relation is also reflexive.

For having a property of binary relations ensuring that
the induced decision operation is non-vanishing, it appears
natural to call a binary relation subset-topped, if any non-empty
subset of X contains an element dominating the subset via that
binary relation. Unfortunately, the usual order relation > on
the set R of real numbers is not subset-topped in this sense,
as, for instance, an open interval doesn’t contain a dominating
element.

In order to come to a more appropriate notion, let ¢ denote
an arbitrary cardinal number, finite or transfinite. A binary
relation is called c-subset-topped, if any set of cardinality < ¢
contains a dominating element, and it is called finite-subset-
topped, if it is n-subset-topped for any finite cardinal n. For
two cardinals ¢ > d > 0, any c-subset-topped binary relation is
also d-subset-topped. A binary relation is reflexive, if and only
if it is 1-subset-topped. And a binary relation is total, if and
only if it is 2-subset-topped. In addition, any total, transitive
relation > is finite-subset-topped, as arranging the elements of
a finite subset in a chain

1> l>... DTy

implies by transitivity that 1 > {z1,...,2,}.

Denoting the cardinality of a given set U by |U|, we
have the following characterization of non-vanishing decision
operations:

Theorem 2: Let U be a non-empty set of semantic units,
let > be a binary relation on X, and let V be defined according
to (4). Then V is non-vanishing, if and only if > is |U|-subset-
topped.

Proof: ‘Only if’-part: Assume the V is non-vanishing, and
let Y C X be a subset satisfying 0 < |Y| < |U|. Then there
is a valuation map ® : U — X such that ®(U) = Y. Because
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V is non-vanishing, we infer that D(V®) # &, which implies
by (4) that there is an element u € D(V®) with the property
x = ®(u) > ®(U) = Y. This proves that > is |U|-subset-
topped.

‘If’-part: Let &> be |U|-subset-topped, and let & : U — X be
a valuation map. Because |®(U)| < |U|, there exists « € ®(U)
such that x > ®(U). Choose v € U satisfying ®(u) = .
According to (4), u € D(V®), which proves D(V®) # &. B

Let us call a decision operation V effective, if for any
two semantic units ui,us € U with different valuation
®(u1) # P(u2), at most one of them is a winner. In other
words, V is effective if its result D(V®) does not contain two
semantic units with different valuations. We have the following
characterization of effective decision operations:

Theorem 3: Let U be a set of semantic units, let > be a
binary operation, and let V be the decision operator induced
by > via (4). Then V is effective, if and only if > is
antisymmetric.

Proof: ‘Only if’-part: Let z,y € X with z > y and y >
x. Let further ® be a valuation map with D(®) = {uy,us},
®(u1) = x and (uz) = y. By (4) we get D(V®) = {uq,us}.
If V is effective, then @ = ®(u1) = P(uz) = y, ie. > is
antisymmetric.

‘If’-part: Let ® be a valuation map and let uj,us €
D(V®). By (4) we get ®(u1) > ®(u2) and @(u2) > P(u1).
If > is antisymmetric, then ®(u;) = ®(us2), which means that
V is effective. [ ]

Example 4: If a recognition result consists of two recogni-
tion alternatives with different valuations, then a non-vanishing
decision operation takes at least one them, while an effective
decision operation takes at most one of them.

C. Stability of a decision operation

Let > denote a binary operation. The symmetric part of >
is defined by

r~y e x>y Ay . o)

A D>-clique is a subset Y C X satisfying Vz,y € Y : x ~ y
which is maximal w.r.t. set inclusion. The binary relation >
is called clique-decomposable, if X can be decomposed into
a union of pairwise disjoint >-cliques, or, equivalently, if its
symmetric part ~ is reflexive and transitive. Note that any re-
flexive, antisymmetric binary relation is clique-decomposable,
because reflexivity implies that any element belongs to a
clique, and antisymmetry implies that any clique consists of
at most one element.

Moreover, given a valuation map ® : U — X and a binary
relation > on X, two semantic units u,us € U are called ®-
equivalent, if ®(uy) > ®(uz) and P(ug) > ®(uq); formally

up ~p uz e Pur) ~ P(ug). (6)

We call a decision operation V equivalent value stable, if,
for any valuation map ® : U — X, the binary relation ~g¢
is reflexive and transitive. Note that, if decision is equivalent
value stable, then both binary relations > and its symmetric
part ~ are reflexive.



Theorem 4: Let U be a non-empty set of semantic units, let
> be a |U|-subset-topped relation on a set X. Then the decision
operation V on valuation maps induced by > is equivalent
value stable, if and only if > is clique-decomposable.

Proof: As U # @&, we have |U| > 1, from which we infer
that > is reflexive.

‘Only if’-part: Assume the V is equivalent value stable. For
proving that > is clique-decomposable, it remains to show that
~ is transitive. Let z,y,z € X such that z ~ y and y ~ z.
Further let ® be a valuation map with D(®) = {uy, us, us},
O(uy) = x, P(uz) =y, and P(uz) = z. Then uy ~g uz ~o
us. If V is equivalent value stable, then u; ~g¢ us, and (6)
implies x ~ z, whence ~ is tansitive.

‘If’-part: Let ¢ be a valuation map. As reflexivity of ~
implies that the binary relation ~¢ on U is also reflexive,
we only have to prove that ~g is transitive. To this end, let
Uy, U, uz € D(P) such that uy ~g ug as well as ug ~g
ug. Then (6) gives ®(uy) ~ P(u2) ~ ®(us). If > is clique-
decomposable, then ®(u;) ~ ®(us), which means that u; ~¢
us3, whence ~¢ 1is transitive. |

Let us call a decision V subset-stable, if, for any valuation
map ® : U — X and any subset V C U, its result doesn’t
change when it is performed first on V and then on the
complement U \ V joined to the winners W := D(V(®|y))
of decision on the subset. Using the notation

V= (U\V)UW = (U\V)UD(V(2[v)), (D
decision is called subset-stable if, for any subset V C U,
D (V (2[v)) =D(V®). ®)

Theorem 5: Let U be a set of semantic units satisfying
Ul > 3, and let > be a |U|-subset-topped relation on a
set X which is also clique-decomposable. Then the decision
operation V on valuation maps induced by > is subset-stable,
if and only if > is transitive.

Proof: As 1> is clique-decomposable, it follows from that
its symmetric part ~ is reflexive and transitive. Formally, we
have to prove that

V is subset-stable <= > is transitive. 9)

‘=’: Let x > y > z be a chain in X, then we have to
prove that z > z.

Because U has at least three elements, we can choose
semantic units ui, us,us € U, and a (partial) valuation map
D {up,ug,uzt = X with &(uy) = z, ®(uz) = y, and
®(uz) = z. We consider the following four cases:

First case: y ¥ x and z ¥ y. If x ¥ 2z, the set
Y := {z,y, 2} wouldn’t have a dominating element, whence
> couldn’t be 3-subset-topped. Therefore, z > 2.

Second case: y ¥ = and z > y.  Assume x [¥ z, and fix
the subset V := {u1,u3} C U. By (4) we infer D(V(®|y)) =
{us}, hence V' = {uq,us} according to (7). As y > z and
z >y, we deduce D(V(®@|y+)) = {ug, ug}. On the other hand,
y ¥ x implies D(V®) = {us}, contradicting that V is subset-
stable. Hence z > z.
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Third case: y > 2 and z ¥ y.  Fix V = {ug,u3z}. By (4)
we get {uz} = D(V(P|y)), and (7) gives V' = {uy,u2}. We
deduce D(V(®ly/)) = {u1,uz}. If V is subset-stable, then
D(V®) = {uy, uz}, implying z > 2.

Fourth case: y > = and z > y. In this case, u; ~¢
us ~g uz. Since V is equivalent value stable, this implies
u1 ~¢ Uz, whence x ~ z, which implies z > z.

‘<" of (9): Let @ : U — X be a valuation map, let V C U,
and use the notation

V= (U\V)UD(V(2[v)

as in (7). We can assume without loss of generality that V '\
D(V(®|y)) # &, since otherwise V' = U, and (8) would
become trivial. Morcover, since > is |U|-subset-topped, V is
non-vanishing, which means D(V(®|y)) # 2.

It remains to prove the set equation D(V®) = D(V(P®|w)).
For proving ‘C’, let u € D(V®). Then ®(u) > ®(U), from
which we get ®(u) > ®(V’). Since u cannot be an element
of VA D(V(®|y)), we infer u € D(V(P|y)).

For proving ‘2’, let u € D(V(®y)). If u € D(V(D|y)),
then u dominates V and U\V, ie, u € D(V®). If u € U\ 'V,
then, in particular, v dominates D(V(®|y)). Finally, let w €
VAD(V(®]y)). Choose v € D(V(®|y)). Then u > v > w. If
> is transitive, then u > w. Therefore, © dominates the whole
set U, i.e.,, u € D(VD). [ |

By theorem 2, we know that whenever a binary relation
>> on the set of valuations induces a non-vanishing decision
operation, then > has to be |Ul-subset-topped. If U # &, this
implies that > is reflexive. In case > is clique-decomposible,
theorem 5 enables us to extend this result:

e If the induced decision operation is subset-stable, then
> has to be transitive, additionally. This is related to
the known concept preorder, where, by definition, a
preorder is a binary relation which is both reflexive
and transitive. Observe a total preorder is always
finite-subset-topped.

e If the induced decision operation is effective and
subset-stable, then > has to be antisymmetric and
transitive, additionally. Here we are in the well-studied
realm of fotal orders.

D. The intuitive notion ‘higher’

A mathematical structure giving a notion of ‘higher’ is, for
instance, the structure called fotally ordered set. For defining
this in mathematical terms, it is possible to do this either
with the concept fotal strict order, or with the concept fotal
(non-strict) order, where the latter is more common but less
intuitive.

For serving intuition, it is worth to define the irreflexive
part B* of a binary relation B by
By &

xBy and x #y.

A binary relation B* is called trichotomic, if, for arbitrary
z,y € X, exactly one of the following assertions is true:

xB*y, x=y, yB x. (10)



Note that a total binary relation is antisymmetric, if and only
if its irreflexive part is trichotomic.

In mathematics and computer science, it has turned out
that a reflexive extension ‘higher or equal’, or, equivalently,
‘not smaller’, is also very useful. Formally, a binary relation
is called a strict total order, if it is transitive and trichotomic.
On the other hand, a (non-strict) total order is a binary relation
which is total, reflexive, antisymmetric, and transitive.

The psychological content of the verbal expression ‘higher’
is captured in the mathematical notions trichotomy and tran-
sitivity. By the remark following (10), a non-strict total order
is nothing but a reflexive binary relation whose irreflexive part
captures the psychological content of a verbal expression like
‘higher’ or ‘smaller’.

Example 5: In some situations, human judgements like ‘a
longer line’ or ‘a shorter line’ do not coincide with physical
measurement. A famous example is an optical illusion called
Miiller-Lyer illusion, where two lines of equal length are pre-
sented in different graphical contexts, which misleads virtually
all human beings who sec the pictures for the first time. If
decision 1is interpreted as decision for the longer line, then
the context-dependency shows that this decision operation is
not subset-stable. By theorem 5 we infer that such a decision
cannot be described by a total order, in perfect harmony with
experimental data.

E. Algebraic structures

It is possible to connect the properties of binary relations
investigated in the previous sections to properties of binary
operations, which are commonly used for defining algebraic
structures. To fix ideas, a finitary operation on a given set S is a
map [ taking a finite number of input elements z1,...,2, €S
to produce an output f(z1,...,T,) = y € S. The most
common types of finitary operations are constants ¢ € S,
considered as ‘zero-ary operations’, i.e., maps with zero input
elements, and binary operations, considered as maps

*:SxS =S, (z,y) » xxy €S. (11)

An algebraic structure consists of a set S, called carrier set or
underlying set, and some given finitary operations, subject to
a number of logical assertions called axioms of the algebraic
structure. Widely used axioms for binary operations are, for
instance, the law of associativity,

Vr,y,z€X: xx(yxz)=(xxy)xz,

and the law of commutativity,
Ve,y e X: xzxy=yx*zx.

An important axiom for the connection of binary relations and

operations is the law of idempotency:
VeeX: xxx==x.

We found that a stronger axiom, which we call the law of
inertness,

Ve,y e X zxy € {z,y}, (12)
is necessary. Our result is as follows.

Theorem 6: Let X be an arbitrary set.

559

1) If % is an inert binary operation on X, then the
associated successor relation =, on X defined by
Tr Yy (r=z*xyVa=yx*z) is total.

2) If = is a total binary relation on X, then the associ-
ated maximum operation %, defined by x . y := x,
if z = y, and xx, y := y otherwise, is an inert binary
operation on X.

3) A total binary relation is antisymmetric, if and only
if its associated maximum operation is commutative.

4) A total binary relation is transitive, if and only if its
associated maximum operation is associative.

Due to lack of space, we omit a formal proof of this
theorem. Similar results can be found in the literature: In
[3, Chap. 4], it is shown that the first binary operation in a
dioid (an algebraic structure with two binary operations where
the first one is assumed to be idempotent, associative, and
commutative) gives rise to the construction of a partial order.
Lemma 4.30 in [3] proves that this partial order is total, if and
only if the first binary operation has the property given in (12).

The consequence of theorem 6 is that, whenever a binary
relation I> on the set of valuations induces a decision operation
which is consistent with valuation, effective, and subset-stable,
then D> is total, and the associated binary operation . is inert,
commutative, and associative.

Example 6: Taking up again our speech recognition ex-
ample, it appears reasonable to postulate that any two possible
valuations can be compared. Therefore, it is quite natural to
require that the first binary operation of the algebraic structure
on the set of possible valuations is inert.

FE. The reinforcement operation

As mentioned before, there is another psychologically
important operation on valuation maps: reinforcement. Let
®, : U — X be a given valuation map. When new information
is received, it should be incorporated into the information rep-
resented by ®;. Technically, suppose that the new information
is represented as another valuation map ®,, then this incor-
poration produces a new valuation map ®o & $5. It appears
appropriate to call this operation reinforcement, as any new
information should make the valuation more precise—despite
the fact that reinforcement may strengthen some semantic units
while weakening others.

According to [6], an operation is called consistent with
valuation, if, for each individual semantic unit v € U, its out-
come valuation (®; & ®2)(u) only depends on the incoming
valuations @4 (u), ®2(u) € X, and not directly on the involved
semantic contents. Therefore, reinforcement is consistent with
valuation, if and only if it is induced by a binary operation o
on X, formally:

D1 & Dy U— X, (By&Dy)(u) =Py (u)oDa(u). (13)

Example 7: In our speech recognition example, reinforce-
ment comes in when a second utterance is recognized. Each
recognition result gives a valuation map on the set of semantic
units. Given the first valuation map, we use the binary opera-
tion reinforcement for incorporating the information from the
second recognition result.

The next step is to ponder on algebraic laws concerning the
binary operation o on the set of possible valuations. Having



(13) as background, it is not reasonable to postulate that o
should be inert—in this respect, reinforcement is different from
decision.

The link between commutativity of the binary operation
o inducing a reinforcement operation and psychology is that
commutativity of o is equivalent to stability of reinforcement
w.r.t. ordering of the presented information. But there is an
important and well-studied psychological effect called priming
[2], which means that previous information usually influ-
ences updating information, even if the previous information
is received subconsciously. Therefore, in human psychology,
reinforcement is clearly not stable w.r.t. ordering of presented
information. Hence, for designing an aritifical system whose
behavior should be agreeable for human beings, commutativity
of the second binary operation on X is not an essential
postulate.

The law of associativity of the binary operation o is
equivalent to stability of reinforcement w.r.t. aggregation of
information: associativity of o means that it is unimportant for
valuation whether new information comes piecewise in two
chunks, or combined in one chunk. A psychological effect
possibly contradicting this kind of stability of reinforcement
is the halo effect [2].

A further mathematical notion not mentioned before is
distributivity: given two binary operations x and o on X, the
operation o is said to distribute over x, provided

zo(y*xz)=(zoy)*(xoz),

any7ZEX: (;r*y)ozz(xoz)*(yoz)‘

(14)
This is the non-commutative formulation; if o were assumed
to be commutative, it would suffice to postulate only one of
the two equations. The psychological pendant to distributivity
is stability of decision w.r.t. reinforcement. More precisely,
the first equation in (14) means that if two semantic units
are equally valuated by a given valuation map ®;, and a new
valuation map ®5 comes in, then it is unimportant whether
decision is made on the basis of ®,, and then reinforced,
or reinforcement is made first and then decision. The second
equation in (14) means that if the incoming new valuation map
puts the equal valuations on two semantic units u; and uo,
then it is unimportant whether decision comes first and then
reinforcement, or reinforcement comes first and then decision.
It is obvious that real human behaviour often violates this—
in fact, real life decisions strongly depend on availability of
information.

III. APPLICATIONS

An overview of results achieved in section II is given
in Table I: the first column refers to mathematical laws, the
second one to semantic operations, and the third column indi-
cates a cognitive bias possibly violating the law. As discussed
in [6], the algebraic laws which we related to psychology
lead to the algebraic structure semiring, which opens the use
of weighted finite state transducers as described in [7] even
for processing semantics. In addition, semirings arc the basic
algebraic strcuture used for weighted Petri net transducers
described in [8].

It remains the problem how to deal with cognitive biases.
We’ve seen in [6] that priming can be modeled by using a non-
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TABLE 1. ALGEBRAIC LAWS VS. COGNITIVE BIASES

Mathematical operation Semantic operation | Cognitive bias

First binary operation * Decision

— inert — non-vanishing

— commutative — effective Miiller-Lyer paradox

— subset-stable — associative

Second binary operation o Reinforcement
— well-defined

— commutative

— consistent
— order-stable
— aggregation-stable

Priming

— associative Halo effect

o distributes over % Decision is stable Context-dependency

w.r.t. reinforcement of decisions

commutative semiring which is constructed there. The reason
for cognitive biases like anchoring or the halo effect seems
to be that human behaviour is more context-dependent than
mathematical operations. An idea to incorporate more context-
sensitivity is spreading. We show by an example that a natural
spreading strategy provides a connection between rigorous
algebraic laws and a softer dealing with semantic uncertainty
which is able to model certain cognitive biases.

Example 8: Suppose that the set U of semantic units is
equipped with similarity weights ¢ : U x U — [0,1], and
consider valuation maps ® : U — [0,1] with the binary
operations * = max and o meaning multiplication. Then
spreading Y. operates on a valuation map ® as follows:

Y0:U—R, X&(u):=max{o(u,z)P(x):zcU}.

Under the natural requirement that any semantic unit u € U is
‘maximal self-similar’, meaning o(u,u) = 1, we get X& > @,
which can influence decision. If we combine spreading and
reinforcement, we get

Vu eU: ®y(u) o XP(u) = Po(u) o Py (u),

and this can have an even stronger influence on decision.
It follows that spreading can be used for stressing ‘similar’
semantic units. This can serve as a model for anchoring, or a
halo effect.
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