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We consider exciton effects on current in molecular nanojunctions, using a model comprising a two two-
level sites bridge connecting free-electron reservoirs. Expanding the density operator in the many-electron
eigenstates of the uncoupled sites, we obtain a 16�16 density matrix in the bridge subspace whose dynamics
is governed by Liouville equation that takes into account interactions on the bridge as well as electron injection
and damping to and from the leads. Our consideration can be considerably simplified by using the pseudospin
description based on the symmetry properties of Lie group SU�2�. We study the influence of the bias voltage,
the Coulomb repulsion, and the energy-transfer interactions on the steady-state current and, in particular, focus
on the effect of the excitonic interaction between bridge sites. Our calculations show that in case of noninter-
acting electrons this interaction leads to reduction in the current at high voltage for a homodimer bridge. In
other words, we predict the effect of “exciton” blocking. The effect of exciton blocking is modified for a
heterodimer bridge and disappears for strong Coulomb repulsion at sites. In the latter case the exciton type
interactions can open new channels for electronic conduction. In particular, in the case of strong Coulomb
repulsion, conduction exists even when the electronic connectivity does not exist.
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I. INTRODUCTION

Electron transport through molecular wires has been un-
der intense theoretical �see, e.g., Refs. 1 and 2� and experi-
mental �see, e.g., Refs. 3 and 4� study in the last few years.
Theoretical studies usually fall into two categories. The first
focuses on the ab initio computations of the orbitals relevant
for the motion of excess charges through the molecular
wire5–9 while the other10,11 employs generic models to gain
qualitative understanding of the transport process. At the
simplest level10,11 the wire Hamiltonian is described by a
tight-binding chain composed of N sites with nearest-
neighbor coupling �Huckel model� that represents the elec-
tron transfer �tunneling� interactions between adjacent sites.
This model has been generalized to include Coulomb inter-
actions between electrons on the same site12 �Hubbard
model� and/or electron-phonon interactions.13 In the present
paper we investigate another extension of this model in
which we take into account energy-transfer interactions be-
tween adjacent molecular sites.

Energy-transfer interactions—excitation �deexcitation� of
a site accompanied by de-excitation �excitation� of another
are well known in the exciton theory.14–16 In particular, Fren-
kel excitons—neutral excited states in which an electron and
a hole are placed on the same site are readily transferred
between sites and such intersite interactions can accompany
the charge-transfer processes as was shown for charge-
transfer excitons17 in �quasi-�one-dimensional structures,18,19

including polysilanes.20–22 The latter show a weak coupling
between the Frenkel exciton with the admixture of charge-
transfer states and nuclear motions.21,22

In molecular bridges energy-transfer interactions can also
sometimes have important effects on charge-transfer dynam-

ics. Charge and energy transfers in a linear
2 ,2� :6� ,2�-terpyridine-based trinuclear Ru-�II�-Os�II�
nanometer-sized array,23 and one-dimensional energy/
electron transfer of amylose-encapsulated chain
chromophores24 are examples. In addition, it seems likely
that energy transfer takes place in chemically responsive mo-
lecular transistors based on a dimer of terpyridyl molecules
combined with ion Co2+.25

It should be noted that electron transfer is a tunneling
process that depends exponentially on the site-site distance
while energy transfer is associated with dipolar coupling that
scales like the inverse cube of this distance and can therefore
dominate at larger distances. The importance of the latter
stems also form geometric issues, which are related to the
dipole-dipole interaction between different sites occurring in
the vicinity of metal particles in molecular nanojunctions.
Really, Gersten and Nitzan26,27 predicted accelerated energy
transfer due to the enhancement of the dipole-dipole interac-
tion near a solid particle �see also Refs. 28 and 29� and in the
last time a number of works devoted to the exciton-plasmon
interactions have been published30–33 that are related to
physical effects due to the local-field enhancement.34–39

How will such dipolar interactions affect the conduction
properties of molecular junctions? This question was ad-
dressed by Galperin et al.40 by the example of a junction
composed of one-site wire and two-metal leads, where they
predicted the existence of non-Landauer current induced by
the electron-hole excitations in the leads. There were no ana-
log treatment of simultaneous electron and energy transfer
�excitons� in multisite bridges. Here we address this problem
by using the Liouville-von Neumann equation �LNE� for the
total density operator to derive an expression for the conduc-
tion of a molecular wire model that contains both electron-
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and energy-transfer interactions. While not a central issue of
the present work, we note that energy transfer is closely re-
lated to heat transfer through the molecular
nanojunction—an issue of important consequences for junc-
tion stability and integrity.

Treated separately, the simplest models of exciton and
electron transport may be represented by tight-binding trans-
port models, albeit in different representations. Indeed, in the
wire Hamiltonian �see Eq. �3� below�, both the electron- and
energy-transfer terms are binary in terms of the annihilation
and creation operators for electrons and excitons, respec-
tively. Their simultaneous treatment, however, constitutes a
rather complex nonlinear problem. In this work we combine
a tight-binding model for electron transport10,11 with that of
one-dimensional Frenkel excitons14–16 to investigate the ef-
fect of energy-transfer interaction on electron transport in
one-dimensional nanowires. The outline of the paper is as
follows. In Sec. II we introduce our model and in Sec. III we
derive a master equation in the eigenbasis of many-electron
wire Hamiltonian. Section IV is devoted to the analytical
solution of the problem where we consider both noninteract-
ing electrons at a site and strong Coulomb repulsion at sites.
In Sec. V we show that the exciton type interactions can
open new channels for electronic conduction. In Sec. VI we
carry out numerical simulations, compare them with the ana-
lytical theory, and show the existence of the “exciton block-
ing” effect. We summarize our results in Sec. VII. In Appen-
dix A we calculate the eigenbasis of many-electron wire
Hamiltonian for noninteracting electrons at a site, using the
Jordan-Wigner transformation.41 In Appendices B–D we
present auxiliary calculations.

II. MODEL

We consider a spinless model for a molecular wire that
comprises two interacting sites, each represented by its
ground, �g�, and excited, �e�, states positioned between two
leads represented by free-electron reservoirs L and R �Fig.
1�. The electron reservoirs �leads� are characterized by their
electronic chemical potentials �L and �R, where the differ-
ence �L−�R=eVbs is the imposed voltage bias. The corre-
sponding Hamiltonian is

Ĥ = Ĥwire + Ĥleads + Ĥcontacts, �1�

Ĥleads = �
k��L,R	

�kĉk
+ĉk, �2�

Ĥwire = �
m=1,2

f=g,e

�mfĉmf
+ ĉmf − �

f=g,e
� f�ĉ2f

+ ĉ1f + ĉ1f
+ ĉ2f�

+ �J�b1
+b2 + b2

+b1� + �
m=1,2

UmNm�Nm − 1� , �3�

Ĥcontacts = V̂ + Ŵ , �4�

V̂ = �
mf

V̂mf = �
mf ,k�Km

Vk
�mf�ĉk

+ĉmf + H.c., �5�

Ŵ = �
m

Ŵm = �
m,k�k��Km

Ŵkk�
�m�bk�kbn

+ + H.c., �6�

where ĉmf
+ �ĉmf� �m=1,2 , f =g ,e� are creation �annihilation�

operators for electrons in the different site states of energies
�mf while ĉk

+ �ĉk� �k�L ,R� are creation �annihilation� opera-
tors for free electrons �energies �k� in the leads L and R.
n̂mf = ĉmf

+ ĉmf are the occupation operators for the different site
states and site-occupation operators are given by Nm= n̂mg
+ n̂me. The operators bm

+ = ĉme
+ ĉmg and bm= ĉmg

+ ĉme are excitonic
�creation and annihilation� operators on the molecular sites
m=1,2 while bk�k= ĉk

+ĉk�=bkk�
+ �k ,k��L or R� corresponds to

electron-hole pairs in the leads. In the wire Hamiltonian, Eq.
�3�, the � f terms represent electron hoping between site
states of similar energies �i.e., between �g� and between �e�
states of adjacent molecular sites�, the J terms represent ex-
citon hopping �energy transfer� between molecular sites and
the U terms correspond to on-site Coulomb interactions. The

molecular-lead interactions Ĥcontacts are taken to account for

two physical processes: V̂ describes electron transfer be-
tween the molecular bridge and the leads that gives rise to

net current in the biased junction while Ŵ describes energy
transfer between the bridge and electron-hole excitations in
the leads. In Eqs. �5� and �6� Km is the lead closer the mo-
lecular site m �K1=L , K2=R� and H.c. denotes Hermitian
conjugate. In what follows it will be useful also to define the
population operators

� f = n̂2f + n̂1f �7�

in the manifolds of ground �f =g� and excited �f =e� site
levels.

We consider electronic transport through the molecular
wire where the leads K=L ,R are taken to be each in its own
equilibrium characterized by its temperature T �here taken
equal for the two leads� and electronic electrochemical po-
tential �K. Therefore, the lead electrons are described by the
equilibrium Fermi functions fK��k�= �exp���k−�K� /kBT�
+1	−1. Consequently expectation values for lead operators
can be traced back to the expression 
ĉk

+ĉk��= fK��k��kk�,
where �kk� is the Kronecker delta. The excitonic operators
are equal to bm

+ = ĉme
+ ĉmg. The effect of the corresponding in-

teraction in the bridge �=�Jb1
+b2+H.c.� on the charge-

transport properties is the subject of our discussion.

FIG. 1. A model for energy-transfer-induced effects in molecu-
lar conduction. The right �R= ��r	�� and left �L= ��l	�� manifolds
represent two metal leads characterized by electrochemical poten-
tials �R and �L, respectively, each coupled to its nearest molecular
site. The molecular bridge is a dimer, where each site is represented
by its ground, �1g� and �2g�, and excited, �1e� and �2e�, states.
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III. MASTER EQUATION

Our analysis is based on the LNE or the generalized mas-
ter equation for the reduced density matrix of the molecular
subsystem, obtained using a standard procedure10,11,42 based

on taking Ĥcontacts as a perturbation. Briefly, one starts with
the LNE for the total density operator and use the projectors
of the type PK��t�=�K TrK ��t� in order to derive an equation
for the time evolution of the reduced density matrix 	
=TrR TrL �. The calculation is facilitated by invoking the so-
called noncrossing approximation that assumes that the ef-
fects of different reservoirs �here L ,R� and different relax-

ation processes �here V̂ and Ŵ� are independent and additive.
This leads to

d	�t�
dt

= −
i

�
�Ĥwire,	�t�� −

1

�2TrK�
0




dx†V̂,�V̂int�− x�,��t��‡

−
1

�2TrK�
0




dx†Ŵ,�Ŵint�− x�,��t��‡ , �8�

where for any operator Ô, Ôint is the corresponding interac-
tion representation

Ôint�− x� = exp�−
i

�
�Ĥwire + Ĥleads�xÔ

�exp� i

�
�Ĥwire + Ĥleads�x �9�

and where TrK=TrL TrR.
Consider first terms with the electron-transfer interactions

V̂. Writing the coupling Hamiltonians V̂nf �Eq. �5�� as

V̂nf = ĉnf�nf
+ + ĉnf

+ �nf , �10�

where �nf =�k�Kn
Vk

�nf�ĉk, we have

V̂nf
int�− x� = ĉnf

+int�− x��nf
int�− x� + ĉnf

int�− x��nf
+int�− x�

with

�nf
int�− x� = �k�Kn

Vk
�nf�ĉk exp� i

��kx� .

Similarly, writing the coupling Hamiltonian for energy

transfer Ŵ=�nŴn as

Ŵn = bn
+�n + bn�n

+, �11�

where �n=�k�k��Kn
Wkk�

�n� bk�k, then

Ŵn
int�− x� = bn

+int�− x��n
int�− x� + bn

int�− x��n
+int�− x� ,

�12�

where

�n
int�− x� = �

k�k��Kn

Wkk�
�n� bk�k exp� i

�
��k� − �k�x . �13�

Bearing in mind that ��t�=	�t��K, where 	�t�=TrK ��t� and
Eqs. �10�–�12�, we get for the second term on the right-hand
side �RHS� of Eq. �8�

−
1

�2TrK��
0




dx†V̂,�V̂int�− x�,��t��‡�
= −

1

�2�
0




dx�TrK�V̂V̂int�− x��K�	�t�

− TrK�V̂�K	�t�V̂int�− x�� − TrK�V̂int�− x��K	�t�V̂�

+ TrK��K	�t�V̂int�− x�V̂�	 . �14�

In evaluating the RHS of Eq. �14� we encounter reservoir
correlation functions that reflect the reservoir equilibrium
properties as well as the nature of its interaction with the
wire. For example,

Cnf�− x� = TrK��nf�nf
+ �− x��Kn

�

= �
k�Kn

�Vk
�nf��2�1 − fKn

��k��exp�−
i

�
�kx� . �15�

Turning to the energy-transfer contribution, third term on the
RHS of Eq. �8�, we obtain an expression of form �14� with

the energy-transfer interaction Ŵ replacing V̂. Using the
Wick’s theorem, we obtain correlation functions of the type

Dn�− x� = TrK��n�n
+�− x��Kn

�

= �
k�k��Kn

�Wkk�
�n� �2fKn

��k��1 − fKn
��k���

�exp� i

�
��k − �k��x . �16�

Below we get a Markovian master equation in the wideband
limit. The full master equation obtained in this way consti-
tutes a set of 256 coupled equation for the 16�16 elements
of the wire density matrix, which can be solved numerically
by diagonalizing the corresponding Liouvillian matrix. In
particular, we are interested in the steady-state solution, 	SS,
which is given by the eigenvector of zero eigenvalue. Once
	SS has been found, the current is obtained from


I� = Tr�Î	SS� , �17�

where the current operator �defined, e.g., as the rate of
change in electron population on the left of the dashed line in
Fig. 1� is given by

Î = e
d

dt
N̂ =

ie

�
�Ĥ,N̂� , �18�

N̂ = �
k�L

ĉk
+ĉk + n̂1g + n̂1e. �19�

In Sec. VI we show some results of such numerical calcula-
tions. To gain better insight of the transport properties of this
model, analytical simplifications in some limits are useful.
These are discussed next.

IV. ANALYTICAL EVALUATION

It is known11 that for the evaluation of Eqs. �8� and �14� it
is essential to work in the representation of the eigenstates of
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the Hamiltonian Ĥwire+ Ĥleads that defines the zeroth-order
time evolution. The use of other representations bears the
danger of generating artifacts, which, for instance, may lead
to a violation of fundamental equilibrium properties.43 We
thus face the problem of diagonalizing a matrix of order 256.
This procedure may be facilitated by using the pseudospin
description based on the symmetry properties of Lie group
SU�2� associated with the two-state problem �1f ,2f�; f
=e ,g. Such a “donor-acceptor” system may be described by
the “charge-transfer” operators b f

+= ĉ2f
+ ĉ1f and b f = ĉ1f

+ ĉ2f that
describe intersite charge transfer 1→2 and 2→1, respec-
tively, in upper and lower states of the molecular dimer. The

nondiagonal part of Ĥwire, Eq. �3�, can then be written in
terms of operators b f only

Ĥwire
�nondiag� = − �

f=g,e
� f�b f

+ + b f� − �J�be
+bg + bg

+be� . �20�

Define also the pseudospin �Bloch� vector in the second
quantization picture

�r1
f

r2
f

r3
f � = � b f

+ + b f

i�b f − b f
+�

n̂2f − n̂1f
� ; f = g,e . �21�

Its components have the following properties: �a� they satisfy
the same commutation rules as Pauli matrices 	̂1,2,3;44–46 �b�
the operators � f = n̂2f + n̂1f =�m=1,2ĉmf

+ ĉmf, f =e ,g �cf. Eq. �7��
and ri

f commute: �ri
f ,� f�=0 �i=1,2 ,3�; �c� any linear opera-

tor of the donor-acceptor system can be written as linear
superposition of the operators �ri

f	 and � f. In particular, the
wire Hamiltonian can be written as

Ĥwire =
1

2
�e��1e + �2e� + �

f=g,e
�1

2
r3

f ��2f − �1f� − � fr1
f

−
�J

2
�r1

er1
g + r2

er2
g� + �

m=1,2
UmNm�Nm − 1� . �22�

In Eq. �22� we have put, without loss of generality, ��1g
+�2g� /2=0. Because the operators � f and ri

f commute, � f is
conserved under unitary transformations related to the diago-

nalization of Ĥwire. Therefore, a total 24�24 space can be
partitioned into nine smaller subspaces, i.e., the Liouvillian
matrix in the required basis is block diagonal with blocks,
according to the values of � f =0,1 ,2 �see Fig. 2�: four one-

dimensional subspaces for � f =0,2 for either f =e ,g �type I�;
four two-dimensional subspaces for � f =1 and � f�=0,2,
where f � f� �type II�; and one four-dimensional subspace for
�e=�g=1 �type III�. The type I submatrix is diagonal while
four state pairs with each pair coupled by the charge-transfer
interaction are associated with the four 2�2 blocks of the
type II subspace. The remaining four states are coupled by
both the charge-transfer and exciton-transfer interactions and
constitute the 4�4 block of subspace III. Each of these sub-
spaces is characterized by assigning the values ��e ,�g� of
total populations in the ground and excited states of the two
bridge sites.

Using the identity

�r1
f �2 = �r2

f �2 = �r3
f �2 = � f − 2n̂2fn̂1f = �0 for � f = 0,2

1 for � f = 1
� ,

�23�

the wire Hamiltonian �22� can be written in the form

Ĥwire =
1

2
�e��1e + �2e� + �

m=1,2
UmNm�Nm − 1�

+ 0 for subspaces I

+
1

2
r3

f ��2f − �1f� − � fr1
f for subspaces II

+ �1

2 �
f=g,e

r3
f ��2f − �1f� − �

f=g,e
� fr1

f −
�J

2
�r1

er1
g

+ r2
er2

g� for subspace III. �24�

This prediagonalization provides an important simplification
of our problem. From Eqs. �17�–�19� the current is given by

Î =
ie

�
�

f=g,e
� f�b f − b f

+� =
e

�
�

f=g,e
� fr2

f . �25�

Using Eq. �23�, this yields

Î =
e

�
�

f=g,e
� fr2

f �� f = 1� . �26�

Obviously � f =1 in Eq. �26� is another way of saying that the
current in channel f exists only for the case of one of states
�f	 is occupied and another one of �f	 is unoccupied.

Further simplification is made below, when we consider
two specific limiting cases. The first limit, Um=0, describes
noninteracting electrons at each sites. In the opposite limit
with strong on-site Coulomb repulsion Um �m=1,2� is much
larger than any other energy scale of the problem. In the
latter case we disregards states with more than one electron
on any of the molecular site 1 and 2 so we need to consider
only nine bridge states: �01g ,02g ,01e ,02e�, �01g ,02g ,11e ,12e�,
and �11g ,12g ,01e ,02e� in subspaces I; �01g ,02g ,01e ,12e�,
�01g ,02g ,11e ,02e�, �01g ,12g ,01e ,02e�, and �11g ,02g ,01e ,02e� in
subspaces II; and �11g ,02g ,01e ,12e� and �01g ,12g ,11e ,02e� in
subspace III.

FIG. 2. A schematic display of the block structure of the wire
Hamiltonian.
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The diagonalization procedure yields the transformation
between the eigenstates of the wire Hamiltonian and the
states of the noninteraction molecular wire, �n1g ,n2g ,n1e ,n2e�
displayed in Fig. 2. Denoting the column vectors of these
states by �	 and ��	, respectively, and the transformation

between them by Ŷ, i.e., ��	= Ŷ�	, we can characterized
each eigenstate  by the corresponding subspace ��e ,�g�. In
this basis, the fermionic interaction picture operators �see Eq.
�9�� read, for example,


��ĉnf
int�− x���� = �Ŷ+

„�e���,�g���…�̃+
„�e���,�g���…ĉnf

��̃„�e���,�g���…Ŷ„�e���,�g���…���

� exp� i

�
�E�„�e���,�g���…

− E�„�e���,�g���…�x� ,

where (�e��� ,�g���) denotes the subspace associated with
the eigenstate � and points to the corresponding values of �e
and �g, and where (�e��� ,�g���)= (�e���+1,�g���) if f =e
and (�e��� ,�g���)= (�e��� ,�g���+1) if f =g. �̃ denotes the
transpose matrix �̂. The relaxation terms in the master Eq.
�8� take in this basis the forms

−
1

�2TrK�
0




dx†V̂,�V̂int�− x�,��t��‡��

=
1

2 �
nf����

�nf�ĉnf ,���	����ĉnf ,���
+ �2 − fKn

�E�� − E��

− fKn
�E�� − E��� + ĉnf ,���

+
	����ĉnf ,����fKn

�E� − E���

+ fKn
�E� − E���� − �ĉnf ,���ĉnf ,����

+ fKn
�E�� − E���

+ ĉnf ,���
+ ĉnf ,�����1 − fKn

�E�� − E����		���

− 	����ĉnf ,����ĉnf ,���
+ fKn

�E�� − E��� + ĉnf ,����
+ ĉnf ,���

��1 − fKn
�E�� − E����		 , �27�

where

�nf =
2�

�
�

k�Kn

�Vk
�nf��2���k − �nf� �28�

and

−
1

�2TrK�
0




dx�Ŵ,�Ŵint�− x�,��t�����

=
1

2 �
n����

�− BKn
�E����e + 1,�g� − E����e,�g + 1�,�Kn

�

��bn,���
+ bn,����	����t� + 	����t�bn,����

+ bn,����

− BKn
�E����e,�g + 1� − E����e + 1,�g�,�Kn

�

��bn,���bn,����
+

	����t� + 	����t�bn,����bn,���
+ �

+ bn,���
+

	�����t�bn,���BKn
�E����e,�g + 1�

− E���e + 1,�g�,�Kn
� + bn,���	�����t�bn,���

+ BKn

��E����e + 1,�g� − E���e,�g + 1�,�Kn
�

+ bn,���
+

	�����t�bn,���BKn
�E����e,�g + 1�

− E���e + 1,�g�,�Kn
� + bn,���	�����t�bn,���

+

FIG. 3. A possible physical realization of the selective tunneling
configuration, where only �g� levels are coupled to the leads.

FIG. 4. Different stages of the energy-transfer-induced current.
�a� Energy transfer, 	�1,1��0. �b� The charge transfer to the right
lead. �c� The intersite charge transfer, 	�1,0��0 and the charge
transfer from the left lead.
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�BKn
�E����e + 1,�g� − E���e,�g + 1�,�Kn

�	 , �29�

where

BKn
�E� − E�,�Kn

� =
2�

�
�

k�k��Kn

�Wkk�
�n� �2���k − �k� + E�

− E��fKn
��k��1 − fKn

��k��� . �30�

In evaluating these forms we have taken the wideband limit
for the electrodes spectral densities.

Next consider the diagonalization procedure itself. In sub-

spaces I the unitary transformation Ŷ��e ,�g� is obviously the
unity matrix. The diagonalization of the block matrices in
subspaces II and III is carried out in the limiting cases of
zero and infinite on-site interactions.

A. Zero on-site coupling

The case of zero on-site coupling is discussed in Appen-
dix A. We find the eigenfunctions and energies of the two-
site bridge summarized in the following table:

�g=0 �g=1 �g=2

�e=0 �0,0� +�0,1�= �01g ,12g ,01e ,02e� �0,2�= �11g ,12g ,01e ,02e�
=�01g ,02g ,01e ,02e� −�0,1�= �11g ,02g ,01e ,02e� E=0

E=0 E=0

�e=1 ��1,0� ̂�1,1�=Y+�1,1��̂�1,1� ��1,2�
= 1

�2
��01g ,02g ,01e ,12e�� E= 1

2 ��1e+�2e��
1
2J� = 1

�2
��11g ,12g ,01e ,12e��

���01g ,02g ,11e ,02e�� �
1
2
�4�e

2+J2�2 ���11g ,12g ,11e ,02e��

E=�2e��e

�̂�1,1� =�
�11g,02g,11e,02e�
�11g,02g,01e,12e�
�01g,12g,11e,02e�
�01g,12g,01e,12e�

� E=�2e��e

�̂�1,0� = ��01g,02g,01e,12e�
�01g,02g,11e,02e�

� �̂�1,2� = ��11g,12g,01e,12e�
�11g,12g,11e,02e�

�
�e=2 �2,0�= �01g ,02g ,11e ,12e� +�2,1�= �01g ,12g ,11e ,12e� �2,2�= �11g ,12g ,11e ,12e�

E=�1e+�2e −�2,1�= �11g ,02g ,11e ,12e� E=�1e+�2e

E=�1e+�2e

where

Y+�1,1� =
1
�2�

sin � − cos � − cos � sin �

cos � sin � sin � cos �

sin � cos � − cos � − sin �

cos � − sin � sin � − cos �
� �31�

and � is given by

cos 2� =
− J�

�4�e
2 + J2�2

and sin 2� =
2�e

�4�e
2 + J2�2

.

�32�

The current in this case is found to be


I� = −
2e

�
�e Im��	32�1,1� + 	41�1,1��cos 2� + �	31�1,1�

− 	42�1,1��sin 2� − �
�g=0,2

	−+�1,�g�� . �33�

Indices “+” and “−” in Eq. �33� correspond to the functions
+�1,�g� and −�1,�g�, respectively, in table. Indices 1, 2, 3,
and 4 label the eigenstates of the wire Hamiltonian in

subspace III. The corresponding energies are given by
formulas E1�E−,+, E2�E−,−, E3�E+,−, and E4�E+,+, where

E�,� = �e �
1

2
J� �

1

2
�4�e

2 + J2�2. �34�

B. Rotating-wave approximation

The calculation of the nondiagonal elements of the den-
sity matrix 	���1,�g� in Eq. �33� for the current is essentially
simplified for very weak wire—lead coupling when the co-
herent time evolution dominates the dynamics of the wire
electrons. This means that the largest time scale of the co-
herent evolution, given by the smallest energy difference,
and the dissipative time scale, determined by the electron-
and energy-transfer rates, �nf and BKn

�E�−E� ,�Kn
�, respec-

tively, are well separated, i.e., ��nf ,�BKn
�E�−E� ,�Kn

�
� �E�−E�� for �e=1 and ���. Then for �e=1 and ���,
Eq. �8� is dominated by the first term on the RHS. Conse-
quently, 	���1,�g� can be calculated in the first order of
��nf / �E�−E�� and �BKn

�E�−E� ,�Kn
� / �E�−E��. This con-

stitutes the essence of a rotating-wave approximation
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�RWA�.11 Within it, one can provide a closed expression for
the reduced density-matrix elements 	�� and for the station-
ary current. We shall use the RWA below in Sec. V and
Appendix B.

C. Strong Coulomb repulsion at sites

In the limit of strong Coulomb repulsion, Um is assumed
to be so large that at most one excess electron resides on
each site. Thus, the available Hilbert space for uncoupled
sites is reduced to three states �̂�0,0�= �01g ,02g ,01e ,02e�,
�̂�2,0�= �01g ,02g ,11e ,12e�, and �̂�0,2�= �11g ,12g ,01e ,02e� for
subspaces I; two states

�̂�1,0� = � �01g,02g,01e,12e�
�01g,02g,11e,02e��

and

�̂�0,1� = � �01g,12g,01e,02e�
�11g,02g,01e,02e��

for subspaces II; and the state

�̂�1,1� = � �11g,02g,01e,12e�
�01g,12g,11e,02e��

for the now two-dimensional subspace III. The unitary op-

erators Ŷ+�1,0� and Ŷ+�0,1� and the corresponding eigen-
states and eigenvalues are defined by the same Eqs.
�A3�–�A5�, respectively, as before �see Appendix A�. The

operator Ŷ+�1,1� is reduced to �see Appendix B�

Ŷ+�1,1� =
1
�2

� 1 1

− 1 1
� . �35�

Ŷ+�1,1� is used to obtain the corresponding eigenstates

̂�1,1�=Y+�1,1��̂�1,1� and eigenvalues E1,2=�e�J�.
Substituting Eq. �35� into Eq. �A6� of Appendix A for the

current, we get for �g=0


I� =
2e

�
�e Im 	−+�1,0� . �36�

V. CURRENT FROM THE ENERGY-TRANSFER
INTERACTION IN THE WIRE

In a recent paper40 Galperin et al. have predicted the ex-
istence of non-Landauer current induced by energy-transfer
interactions between a bridge molecule and electron-hole ex-
citations in the leads. Here we show that a similar non-
Landauer current arises from the exciton type interaction J in
the wire itself. For simplicity we limit ourselves to electron-
transfer interaction between the wire and the metal leads, Eq.
�27�, and disregard the corresponding excitation transfer, Eq.
�29�. Also for simplicity we consider a large bias limit in the
Coulomb blockade case when �L��e and �R��g, and the
states �e ,�g are positioned rather far ��kBT ,��J� , ��e�� from
the Fermi levels of both leads so that fL���=1 and fR���=0
can be taken on the RHS of Eq. �27�. Finally, we disregard
electron-transfer interaction in the “g” channel, i.e., we take
�g=0. Landauer-type current would be realized in channel

“e” when it is isolated from channel g, i.e., when J=0, �1g
=�2g=0, and �g=0. Solving Eqs. �8� and �27� in the RWA
approximation under these conditions and substituting the
steady-state solution into Eq. �36�, we get, using also the
normalization condition ��e=0,1,2Tr 	��e ,0�=1,


I�RWA = − e
�1e�2e

�1e + �2e
. �37�

Equation �37� describes the Landauer current and coincides
with Eq. �21� of Ref. 11 �excluding the sign�.

In fact, the current vanishes for �1e=�2e=0 even when
�1g ,�2g�0 since �g=0 �see Fig. 3�. Such selective coupling
to the leads could be obtained for the bridge made of a qua-
druple quantum dot where the lateral ones are strongly
coupled to the leads.47,48

Consider now the case when �1e=�2e=0; �1g ,�2g�0;
�g=0; and J�0. For this case Eqs. �8� and �27� together
with Eq. �36� lead to


I� = − 4e�gJ2�e
2 1 − �	−−�0,1� + 	�2,0��
�e

2�g
2 + 16�e

2J2 + �2�g
2J2 , �38�

where for simplicity we put �1g=�2g��g. Equation �38� de-
scribes a non-Landauer current caused by transport in differ-
ent channels: the intersite transfer occurs in channel e and
the charge transfer between the molecular bridge and the
leads occurs in channel g. The interchannel mixing is in-
duced by the energy-transfer term J �see Fig. 4�. For ex-
ample, starting with the molecular system in state
�11g ,02g ,01e ,12e�, electron transmission takes place along
route such as

�11g,02g,01e,12e�→
1

�01g,12g,11e,02e�→
2

�01g,02g,11e,02e�

→
3

�01g,02g,01e,12e�→
4

�11g,02g,01e,12e� .

Step 1 is an energy-transfer process, steps 2 and 3 rely on
�2g�0 and �e�0, respectively, and step 4 closes the circle
via the �1g process.

Equation �38� clearly shows that the current exists only
for J�0 and �e�0. For small J, 
I��J2. For large J we
obtain


I� � − 4e�g�e
21 − �	−−�0,1� + 	�2,0��

16�e
2 + �2�g

2 , �39�

which does not depend on J. In the limit ��J� , ��e���g, Eq.
�38� yields for 	−−�0,1�=	�2,0�=0


I�RWA = −
e

2

�2g�1g

�2g + �1g
. �40�

In deriving Eq. �40� we have not put �1g=�2g. This limit
corresponds to the range of validity of the RWA. Indeed, it
can be shown that Eq. �40� can be obtained for this model in
the RWA �see Appendix C�.

If 	−−�0,1� ,	�2,0��0, the non-Landauer current de-
creases since the populations of states
�11g ,02g ,01e ,02e��	−−�0,1�� and �01g ,02g ,11e ,12e� �	�2,0��
suppress current. Two latter states are also steady states in
the case under consideration �Coulomb blocking, �1e=�2e
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=�g=0� along with the states described by Fig. 4. The exis-
tence of several steady states corresponds to the presence of
the respective zero eigenvalues of the relaxation matrix. Our
numerical calculations give three such zero eigenvalues cor-
responding to three above steady states.

If �1e ,�2e�0, state �11g ,02g ,01e ,02e� is only steady state
that “locks” the current due to Coulomb blocking since �g
=0. Numerical simulations of other situations when �g�0
and noninteracting electrons at a site are carried out in the
next section.

VI. NUMERICAL RESULTS

The results presented in this section are based on direct
numerical solution of Eq. �8� and are in complete agreement
with the analytical solutions when applied to the special
cases treated in Secs. IV and V. The numerical solution was
carried using the basis of eigenstates of the Hamiltonian

Ĥwire, Eq. �3�. Once 	�t� is obtained from Eq. �8�, the expec-

tation value of the current is calculated as 
I�=Tr�Î	�t��,
where the current operator was defined by Eq. �26�. In this
calculation we have limited ourselves to the case where the

wire-lead energy-transfer coupling Ŵ is disregarded and, un-
less otherwise specified, have used the following parameters:
�1g=�2g=0.0 eV, �1e=�2e=2.0 eV, �g=�e=0.01 eV, and
�1f =�2f =0.02 eV for f =g ,e �below we use � to denote the
order of magnitude of these widths� and T=100 K. The
Fermi levels were taken to align symmetrically with respect
to the energy levels �1g and �1e, i.e., �L= ��1g+�1e+Vbs� /2
and �R=�L−Vbs. We also used the value of e�e /�=2.45
�10−6 A as the unit of current 
I�.

Consider first noninteracting electrons. Figures 5–7 show
the expectation value of the current 
I� and one-particle
populations Pnf =Tr�ĉnf

+ ĉnf	� as functions of the exciton in-
teraction parameter J. One can see that if the imposed volt-
age bias Vbs is larger than �e−�g, the expectation value of the
current diminishes when �J� increases �we have used J�0
which is typical to J aggregates, however the trend is similar

with J�0�. Such a behavior can be understood, using Eq.
�34� for the energies in subspaces III and Eq. �33� for the
current. The latter equation shows two direct contributions to
the current. The first one has its origin in states of subspace
III, the energies of which depend on both �e and J �the first
and the second terms on the RHS of Eq. �33��. The second
contribution arises from states of subspaces II, the energies
of which depend on �e only �the third terms on the RHS of
Eq. �33��. The nondiagonal elements of the density matrix on
the RHS of Eq. �33� for the steady-state condition can be
evaluated as Im 	���1,�g��

−�E�−E����

�E�−E��2+4�2�2 , Eq. �D2� of Ap-
pendix D. Since E−−E+=−2�e, Eq. �A5�, we get for the
contribution of the third term on the RHS of Eq. �33�

2e

�
�e Im �

�g=0,2
	−+�1,�g� �

2e�e
2�

�e
2 + �2�2 . �41�

The contribution of the first and the second terms on the
RHS of Eq. �33� depends on the relation between J and �e.

When ��J���e, Eq. �32� yields cos 2��0, sin 2��1,
and only the second term in Eq. �33� gives a contribution to
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FIG. 5. �Color online� The current 
I� displayed as a function of
the exciton coupling parameter J. Vbs=1.96 eV �dashed line�, Vbs

=2.0 eV �dotted line�, and Vbs=4.0 eV �solid line�.
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rameter J in the case of noninteracting electrons for Vbs=4.0 eV.
The current 
I� is shown in left panel and the populations P1g, P1e,
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FIG. 7. �Color online� Same as Fig. 6 for the parameters �g

=0, �e=0.01 eV, and Vbs=4.0 eV.
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the current from the states of subspace III. Under this condi-
tion one gets from Eq. �34� two doubly degenerated values of
energy E1=E4=�e+�e and E2=E3=�e−�e, where the split-
ting is of the same order of magnitude as the hopping matrix
element �e. We obtain

2e

�
�e Im�	31�1,1� − 	42�1,1�� �

2e�e
2�

�e
2 + �2�2 . �42�

This contribution is of the same order of magnitude as that
from the states of subspaces II.

In opposite case, ��J���e, cos 2��1 �again we use J
�0—as in J aggregates� and sin 2��0. In this case only the
first term in Eq. �33� contributes to the current from the
states of subspace III. For this case we get E2�E4��e and
E1,3��e�J�. This leads to

2e

�
�e Im�	32�1,1� + 	41�1,1�� �

1

�

− 4e�eJ�

J2 + 4�2 . �43�

This contribution is about � 4e�
�e

−J� for �J��2� that is much
smaller than that of Eqs. �41� and �42� since the hopping
matrix element �e is much smaller than the splitting between
states 3 and 2, and states 4 and 1 due to the exciton interac-
tion. This can cause the value of the total current to decrease.
In other words, the transitions 3→2 and 4→1 do not par-
ticipate in electron transfer due to their large splitting for
��J���e. This is in a sense exciton blocking of electron
transmission through the bridge. When �J��2�, the contri-
bution, Eq. �43�, increases with respect to that of Eqs. �41�
and �42�, and the effect of exciton blocking diminishes.

Next we turn to situations where electron-electron inter-
action is taken into account. Figure 8 shows the current 
I� as
a function of the Coulomb interaction parameter U1=U2.
Figure 9 depicts the current 
I� as a function of the bias
voltage Vbs for different values of the exciton coupling J for
the case of noninteracting electrons as well as for the case of
infinite on-site interaction between electrons. The exciton

blocking effect seen for noninteracting electrons �smaller
current for larger �J�� disappears in the case of Coulomb
blocking.

This is supported by Eq. �36� that does not show a direct
contribution of the states of subspace III to the current and
the above evaluation of the term 2e

� �e Im 	−+�1,0�. The
point is that in the case of interacting electrons, subspace III
includes only states, which are acted upon exciton interaction
�see Fig. 2�. Moreover, in the case of Coulomb blocking, the
effect of exciton-induced current exists �Sec. V�.

Figure 10 illustrates diminishing the exciton blocking ef-
fect when � increases �see above�. Our calculations show
that this effect is preserved up to �=0.1 eV.

The effect of exciton blocking depends also on the energy
detuning �2f −�1f in channel “f” for a heterodimer bridge.
Figures 11 and 12 show the current 
I� as a function of J for
�2e−�1e=0.1 eV. 
I� is seen to increase for small �J�, then to
decrease as �J� becomes larger. This can be related to the
modification of resonance conditions when �2e−�1e�0.

Finally, Figs. 13–16 show more of the system behavior for
the model with U1, U2=
. Figure 13 shows the current as a
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=4.0 eV �dotted line�, Vbs=8 eV �dashed line�, J=0.0 eV �left
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function of �J� for different values of the imposed voltage
bias Vbs. If Vbs is large compared to the energy difference
between the excited and ground site energies, the current
behaves in accordance with Eq. �38�. If Vbs is close to this
energy difference, the current increases initially with �J� and
then decreases to zero. Furthermore, in accordance with Eq.
�38�, the left panel of Fig. 14 shows that the steady-state
current is zero for the initial condition 	−−�0,1�=1. The
steady-state current is zero also for the initial condition
	�0,0�=1 since the latter state relaxes to 	−−�0,1�=1. Fig-
ures 15 and 16 show the time dependence of the current and
one-particle populations for different initial conditions corre-
sponding to the absence of relaxation in e channel and g
channel, respectively.

VII. CONCLUSION

We have developed a theory of electron transport through
a molecular wire in the presence of the effect of dipolar
energy-transfer interaction between the sites in the wire. We
found that such interaction, which leads to exciton excita-
tions in the wire, cannot in general be disregarded. We used

a model comprising a two two-level sites bridge connecting
free-electron reservoirs. Expanding the density operator in
the many-electron eigenstates of the uncoupled sites, we ob-
tain a 16�16 density matrix in the bridge subspace whose
dynamics is governed by Liuoville equation that takes into
account interactions on the bridge as well as electron injec-
tion and damping to and from the leads. Our consideration
has been considerably simplified by using the pseudospin
description based on the symmetry properties of Lie group
SU�2�. We studied the influence of the bias voltage, the Cou-
lomb repulsion and the energy-transfer interactions on the
steady-state current and, in particular, focus on the effect of
the excitonic interaction between bridge sites. Our calcula-
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I� plotted against the exciton coupling
parameter for bias Vbs=4.0 eV for different energies in the e chan-
nel: �1e=1.95 eV and �2e=2.05 eV. �g=0.01 eV �left panel� and
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tions show that in the case of noninteracting electrons this
interaction leads to reduction in the current at high voltage
for a homodimer bridge. This effect can be called “exciton”
blocking. The effect of exciton blocking is modified for a
heterodimer bridge and disappears for strong Coulomb repul-
sion at sites. In the latter case the exciton-type interactions
can open new channels for electronic conduction. In particu-
lar, in the case of strong Coulomb repulsion, conduction ex-
ists even when the electronic connectivity as defined above
does not exist.

To end this discussion we note that in this work we have
investigated a molecular bridge connecting metal leads. It is
worthy to note that the geometry considered could modify
the effect of dipolar energy-transfer interaction between the
sites in the wire.26 This issue will be considered elsewhere.

ACKNOWLEDGMENTS

This work was supported by the German-Israeli Fund
�P.H., S.K., and A.N.�, European Research Commission and
the Israel Science Foundation �A.N.�, the Israel-U.S. Bina-
tional Science Foundation �A.N. and B.F.�, the Russia-Israel
Scientific Research Cooperation �B.F.�, the Deutsche
Forschungsgemeinschaft through SPP 1243, and the German
Excellence Initiative via the “Nanosystems Initiative Munich
�NIM�” �P.H., S.K., and B.F.�.

APPENDIX A: NONINTERACTING ELECTRONS
AT A SITE

The unitary transformations Ŷ��e ,�g�= I for subspaces I.
As to subspaces II, Hamiltonian corresponding to the second
line of the RHS of Eq. �24�, where � f =1�� f� �f�� f� can be
diagonalized, using the unitary transformation

�R1
f

R2
f

R3
f � = T̂ f�r1

f

r2
f

r3
f � � �cos 2� f 0 − sin 2� f

0 1 0

sin 2� f 0 cos 2� f
��r1

f

r2
f

r3
f � ,

�A1�

where

cos 2� f =
�2f − �1f

���2f − �1f�2 + 4� f
2

,

sin 2� f =
− 2� f

���2f − �1f�2 + 4� f
2

. �A2�

The matrix elements of T̂ f are connected with the unitary

transformations Ŷ��e ,�g� for subspaces II by formula Tnj
f

= �1 /2�Tr�	̂nŶ+	̂ jŶ�, where 	̂n and 	̂ j are Pauli matrices.

1. Unitary transformations for subspaces II

Consider subspaces II. In the limit Um=0, the matrix T̂ f,

Eq. �A1�, with matrix elements Tnj
f = �1 /2�Tr�	̂nŶ+�� f

=1; � f�=0,2�	̂ jŶ�� f =1; � f�=0,2�� describes a rotation by

mixing angle 2� f around axis “y.” Ŷ�� f =1; � f�=0,2� is an
unitary operator defined by

Ŷ+�� f = 1; � f� = 0,2� = � cos � f sin � f

− sin � f cos � f
� , �A3�

which enables us to obtain eigenstates

�+�� f = 1;� f� = 0,2�

−�� f = 1;� f� = 0,2�� = Ŷ+�� f = 1;� f� = 0,2�

� �̂�� f = 1;� f� = 0,2� �A4�

and eigenvalues

E��� f = 1;� f� = 0,2�

=
1

2
��e��1e + �2e� + ��2f − �1f� � ���2f − �1f�2 + 4� f

2�

�A5�

for subspaces II. Here the many-electron eigenstates of the
uncoupled sites are given by
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�̂�1,0� = � �01g,02g,01e,12e�
�01g,02g,11e,02e�� ,

�̂�0,1� = � �01g,12g,01e,02e�
�11g,02g,01e,02e�� ,

�̂�1,2� = � �11g,12g,01e,12e�
�11g,12g,11e,02e�� ,

and

�̂�2,1� = � �01g,12g,11e,12e�
�11g,02g,11e,12e��

Taking the expectation value of the current, Eq. �26�, we
get


I� =
2e

� � �
�f�=0,2;f

� f Im 	−+�� f = 1;� f�� − �
��

Im 	���1,1�

� �Ŷ+�1,1��̃+�1,1���ebe + �gbg��̃�1,1�Ŷ�1,1����� ,

�A6�

where we put r2
f =R2

f for � f =1 and � f�=0,2 that follows from
Eq. �A1� and used 
R2

f �� f =1;� f�=0,2��=Tr�	̂2	�
=2 Im 	−+�� f =1;� f�=0,2�. Indices + and − in Eq. �A6� cor-
respond to the functions +�1,�g� and −�1,�g�, respec-
tively, in table.

2. Unitary transformation for subspace III

The calculation of Ŷ+�1,1� is more involved. Consider for
brevity a homodimer bridge with �ng=0, �ne=�e, and �g=0.
Bearing in mind future generalizations of our model to N
sites, we shall transform the Paulion operators �b f

+ ,b f� to
fermion operators �� f

+ ,� f� through the Jordan-Wigner
transformation,41,49,50

�e = be, �e
+ = be

+, �g = exp�i�be
+be�bg,

�g
+ = bg

+ exp�− i�be
+be� . �A7�

Then Ĥwire, Eqs. �3� and �20�, can be rewritten for subspace
III in terms of the fermion operators as

Ĥwire��e = �g = 1� = �e − �e��e
+ + �e� − �J��e

+�g + �g
+�e� .

�A8�

Equation �A8� is a quadratic in Fermi operators and can be

diagonalized in two stages. Its “excitonic” part Ĥex
=−�J��e

+�g+�g
+�e� is readily transformed to satisfy the con-

dition Ĥex=� j�� ja j
+a j if we take49

a j = �2/3��g sin
�j

3
+ �e sin

2�j

3
� ,

� j = − 2J cos
�j

3
, j = 1,2, �A9�

where a j are also Fermi operators. The corresponding occu-
pation number basis set contains 22=4 eigenfunctions of the

system. The single-excited states are given by a j
+�0�

=� f� j f�f�=�1 /2��g�+ �−1� j−1�e��, where �0���11g ,02g ,11e ,
02e� is the “vacuum” state, and �g���01g ,12g ,11e ,
02e� and �e���11g ,02g ,01e ,12e� are the states with the corre-
sponding donor-acceptor pair excited. The eigenstate with
two excitations can be written down in terms of the Slater
determinant

a j1
+ a j2

+ �0� = �� j1e � j1g

� j2e � j2g
� �eg� =

1

2
��− 1� j2 − �− 1� j1��eg�

�A10�

with energy �1+�2=0 equal to that of the vacuum state
where �eg���01g ,12g ,01e ,12e�. The wire Hamiltonian can be

written down in terms of a j as Ĥwire��e=�g=1�=�e+� jĤ j,

where Ĥ j = F̂ j + �−1� j�Ja j
+a j, F̂ j = �−1� j��e /�2��a j

++a j� is the
“hopping” operator with the only nonzero matrix elements
involving states which differ by a single excitation:


0�F̂ ja j
+�0�= �−1� j�e /�2 and 
0�a j2

F̂ j1
a j1

+ a j2
+ �0�= �−1� j1�e /�2.

The eigenstates and eigenvalues of Ĥwire��e=�g=1� can be

calculated now as follows. ̂�1,1�=Y+�1,1��̂�1,1�, where
Y+�1,1� is given by Eqs. �31� and �32�,

�̂�1,1� =�
�0�
�e�
�g�
�eg�
� ,

and

̂�1,1� =
1
�2�

��0� + �eg��sin � − ��e� + �g��cos �

��e� + �g��sin � + ��0� + �eg��cos �

��e� − �g��cos � + ��0� − �eg��sin �

��0� − �eg��cos � − ��e� − �g��sin �
�

��
�1�
�2�
�3�
�4�

� . �A11�

Substituting Eq. �31� into Eq. �A6� for the current, we get
Eq. �33� for �g=0.

APPENDIX B: UNITARY TRANSFORMATION FOR
SUBSPACE III FOR INTERACTING

ELECTRONS AT A SITE

In the limit of strong Coulomb repulsion, the operator

Ŷ+�1,1� is reduced to that defined by Eq. �35� in accordance

with Eqs. �A9� since the hopping operator F̂ j
= �−1� j��e /�2��a j

++a j� has no nonzero matrix elements in-
volving states with a single excitation �e� and �g� �see
Appendix A�.

Substituting Eq. �35� into Eq. �A6� for the current, we get
Eq. �36� for �g=0.
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APPENDIX C

The steady-state solution of Eqs. �8� and �27� in the RWA
approximation gives for the case under consideration

	�0,0� = 	�0,2� = 	++�0,1� = 	+−�0,1� = 	−+�0,1� = 0

�C1�

and 	−−�0,1� and 	�2,0� are arbitrary. Putting 	−−�0,1�
=	�2,0�=0, we get

	−+�1,0� =
i�

− 8�e
��1g Tr 	�1,0� + �2g Tr 	�1,1�	

�C2�

and Tr 	�1,0�= ��2g /�1g�Tr 	�1,1�. Then using the normal-
ization condition

Tr 	�1,0� + Tr 	�1,1� = 1 �C3�

and Eq. �36�, we obtain Eq. �40� of Sec. V.

APPENDIX D

Evaluate the nondiagonal elements of the density matrix

on the RHS of Eq. �33�. Using Eq. �8� with Ŵ=0 and Eq.

�27�, we get for the large imposed voltage bias and steady-
state condition when �1f =�2f =�

� i

�
�E� − E�� + 2�	��

= ��
f
� �

����,����

	�����ĉ1f ,���
+ ĉ1f ,��� + ĉ2f ,���ĉ2f ,���

+ �

−
1

2 �
��,����

�ĉ1f ,���ĉ1f ,����
+ + ĉ2f ,���

+ ĉ2f ,�����	���

−
1

2 �
����,��

	����ĉ1f ,����ĉ1f ,���
+ + ĉ2f ,����

+ ĉ2f ,����� .

�D1�

Evaluating the RHS of Eq. �D1� as �, we get

Im 	���1,�g� �
− �E� − E����

�E� − E��2 + 4�2�2 , �D2�

where �g=0,1 ,2.
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