
                               
                            

Geometric phase as a determinant
of a qubit– environment coupling
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Abstract We investigate the qubit geometric phase and its properties in depen-
dence on the mechanism for decoherence of a qubit weakly coupled to its environ-
ment. We consider two sources of decoherence: dephasing coupling (without exchange
of energy with environment) and dissipative coupling (with exchange of energy).
Reduced dynamics of the qubit is studied in terms of the rigorous Davies Markovian
quantum master equation, both at zero and non–zero temperature. For pure dephasing
coupling, the geometric phase varies monotonically with respect to the polar angle
(in the Bloch sphere representation) parameterizing an initial state of the qubit. More-
over, it is antisymmetric about some points on the geometric phase-polar angle plane.
This is in distinct contrast to the case of dissipative coupling for which the variation
of the geometric phase with respect to the polar angle typically is non-monotonic,
displaying local extrema and is not antisymmetric. Sensitivity of the geometric phase
to details of the decoherence source can make it a tool for testing the nature of the
qubit–environment interaction.

                                                        
            

1 Introduction

One of the key obstructions of an effective implementation of quantum algorithms is
related to the ubiquitous problem of decoherence in real quantum objects [1]. Quantum
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decoherence is generic as it results from the imperfect isolation of the quantum system
from its environment. Decoherence can be diminished under very special conditions
such as e.g. the presence of the decoherence free subspaces [2,3] or via the applica-
tion of tailored, external control schemes [4]. A promising novel direction in quantum
information relates to so called holonomic or topological quantum computations [5,6]
allowing for a substantial reduction of decoherence [7,8]. The essence of this method
consists in encoding the information in the holonomy related to the geometric phase
of the quantum evolution [9,10]. The geometric phase can be expressed as a path inte-
gral and via the Stokes theorem, can be converted into a surface integral. Therefore, it
behaves like a geometric area. A quantity like an area is less dependent on the details of
time evolution and therefore is less affected by changes of environmental conditions or
an imperfect control, and hence, is typically more robust. This is the key attribute that
makes geometric phases attractive for the implementations of fault-tolerant quantum
computation. Some suggestions have been presented to realize this objective, e.g. in
NMR experiments [7], ion traps [11], neutral atoms in cavity QED [12], quantum dots
[13] or Josephson junction devices [14,15]. The performance of holonomic quantum
gates under various conditions has been studied recently [16,17].

The quantum evolution in the presence of decoherence is generically non-unitary.
Therefore, the notion of geometric phase needs to be extended. There are several
extensions of the geometric phase concept for systems which are either in a mixed
state or/and undergo a non-unitary evolution. The first attempt towards this goal is
given in Uhlmann [18], being rather of mathematical character. The other are based
on quantum trajectories [19,20], quantum interferometry [21–25] and the state puri-
fication (kinematic approach) [26,27]. For non-unitary quantum evolution there is no
commonly accepted scheme of defining the geometric phase in open quantum sys-
tems [28–32]. Here we use the approach based on state purification as proposed in
Ref. [27]. This so defined geometric phase has been extensively studied in various
contexts [33–37]. One of the appealing ‘advantages’ of studying the phase defined in
Tong et al. [27] is that it can be measured with a carefully prepared interferometric
experiment [21–25,27]. Our reasoning is thus guided by its potential for experimental
implementation.

There is no unique method of describing the time evolution of open quantum sys-
tems and there are several schemes to treat such systems which however typically
give rise to non-equivalent dynamics [38,39]. One scheme consists in the derivation
of a reduced system dynamics, via tracing over the degrees of freedom of the envi-
ronment. Except some few exactly solvable models [38,40,41] it is not clear how to
relate the reduced dynamics to the microscopically first principles dynamics based
upon the Hamiltonian structure of quantum dynamics [38,42]. The exactly solvable
model of pure dephasing has been applied for studying quantum channels [43] or in
exploring the dynamics of quantum entanglement [44–48]. Despite its simplicity the
highly non–trivial properties of geometric phase of qubits has also been discussed
[49–52]. One of the most successful examples of constructing reduced dynamics is
the Davies approximation scheme [53]. Within this approach, starting with the gen-
eral ‘system-bath-interaction’ Hamiltonian, one obtains, in a mathematically rigorous
way, a Markovian master equation form of a quantum system weakly coupled to the
environment which preserves positivity and yields the correct equilibrium Gibbs state
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[54,55]. This approach has been applied to various problems of statistical physics,
quantum optics, solid state physics and quantum information, e.g. for studying entan-
glement dynamics in bipartite systems [56].

In this paper we apply the Davies master equation to study the geometric phase
of the qubit coupled to the bosonic bath. Various families of a coupling and different
coupling strength are shown to result in a qualitative and quantitative modification of
the geometric phase. This behavior could suggest a method to resolve the nature of the
qubit–bath coupling: In particular, the dephasing coupling presents not only a mere
theoretical construction but can be realized in experiments within tailored regimes
[57]. In order to keep this study self-contained, we briefly review the notion of the
geometric phase for a non-unitarily evolving qubit and then present the qubit master
equation derived from the Davies theory.

2 Geometric phase

Generally, the time evolution of the qubit reduced density matrix ρ(t) is neither unitary
nor Markovian [38,42]. It is constructed as the mapping

ρ(t) = Λ(t, t0)ρ(t0) (1)

obeying some properties depending on the specific circumstances and approximations
such as e.g. the celebrated complete positivity condition [58]. In order to exploit the
approach to the geometric phase based on state purification [27] we have to present
the reduced density matrix Eq. (1) in the spectral-decomposition form

ρ(t) =
2∑

i=1

pi (t)|wi (t)〉〈wi (t)|, (2)

where pi (t) and |wi (t)〉 are the eigenvalues and the eigenvectors of the matrix ρ(t),
respectively. The geometric phase Φ(t) associated with such an evolution is defined
as follows [27]:

Φ(t) = arg

[
2∑

i=1

[pi (0)pi (t)]1/2〈wi (0)|wi (t)〉

× exp

⎛

⎝−
t∫

0

〈wi (s)|ẇi (s)〉ds

⎞

⎠

⎤

⎦ , (3)

where arg denotes the argument of the complex number, 〈wi |w j 〉 is a scalar product
and the dot indicates the derivative with respect to time s. For convenience, we assume
the initial time being t0 = 0. For the sake of completeness we sketch here, following
Ref. [27], the derivation of Eq. (3). The mixed state defined by the density matrix (2)
can be lifted to a pure state |Ψ (t)〉 in a larger Hilbert space, i.e.,
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|Ψ (t)〉 =
2∑

i=1

√
pi (t)|wi (t)〉 ⊗ |ai 〉, (4)

where the vectors |ai 〉 span the Hilbert space of an arbitrary ancilla. This is known as
a purification of the density matrix ρ(t) in the sense that ρ(t) is a partial trace of the
density matrix |Ψ (t)〉〈Ψ (t)| over the ancilla Hilbert space. With the time evolution of
the purified system one can associate the ‘Pancharatnam’ relative phase

α(t) = arg〈Ψ (0)|Ψ (t)〉 (5)

which contains both the gauge-dependent part (a dynamical phase) and a gauge-inde-
pendent part. The central result of Tong et al. [27] is to extract from Eq. (5), by a
proper choice of the ‘parallel transport condition’, the purification-independent part
which can be termed a geometric phase because it is gauge invariant and reduces to
the known results in the limit of an unitary evolution [59,60]. The final result is then
given by Eq. (3).

As mentioned in the Introduction, this phase-contrary to other attempts of extend-
ing the notion of geometric phase for a non-unitary evolving quantum system—has a
direct physical meaning as it can be measured via interferometric experiments [27], i.e.
one can construct the purification of the quantum system such that the relative phase
Eq. (5) reduces to the geometric phase Eq. (3) after suitably defined ‘compensating
unitary’ cutting of the dynamical part of the relative phase [27].

3 Weak coupling regime of qubit reduced dynamics

The evolution operator Λ(t, t0) defined by Eq. (1) or its infinitesimal generator L
defined by the equation

d

dt
ρ(t) = L{ρ(t)} (6)

can be obtained in a few cases only; namely for stylized, exactly solvable models or
in the limiting regimes such as the weak coupling limit or the singular coupling limit
[58]. We consider a qubit coupled to a bosonic environment at temperature T . The
Hamiltonian of such a system is chosen in the form [38]:

H = HQ ⊗ I + I ⊗ HB + HI ⊗ VB, (7)

HB =
∞∫

0

E(k)a†(k)a(k)dk, (8)

VB =
∞∫

0

g(k)[a†(k) + a(k)]dk. (9)
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The operators a†(k) and a(k) denote the creation and annihilation boson operators,
respectively. The qubit Hamiltonian and the interaction are assumed to take the form

HQ = ε

2
σz, HI = h̄μxσx + h̄μzσz, (10)

where σi are the Pauli operators, ε is the qubit energy splitting and the dimension-
less parameters μx and μz are coupling constants. Let us remark that if μx ≡ 0 the
qubit energy operator HQ is an integral of motion, i.e. it commutes with the total
Hamiltonian H leaving the expectation value of the corresponding energy observable
unchanged. This situation defines the well known exactly solvable model of pure
dephasing [40,41]. A non-vanishing μx is then characteristic for exchange of energy
and related dissipation processes.

For an uncorrelated initial state ρ(0) ⊗ w(β) taken as a product of an arbitrary
qubit density matrix ρ(0) and the equilibrium Gibbs state of the environment w(β) =
exp(−βHB)/Tr[exp(−βHB)] with β = 1/kB T (kB is the Boltzmann constant), the
Davies approximation for the Markovian kernel yields the following Markovian master
equation [53–55]

d

dt
ρ(t) = LH {ρ(t)} + LR{ρ(t)}, (11)

where the ‘conservative’ and ‘dissipative’ parts read as follows

LH {ρ(t)} = − i

h̄

⎡

⎣

⎛

⎝HQ +
1∑

k,l=−1

h̄s(Ωkl)A†
kl Akl

⎞

⎠ , ρ(t)

⎤

⎦ , (12)

LR{ρ(t)} = 1

2

1∑

k,l=−1

c(Ωkl)

×
([

Aklρ(t), A†
kl

]
+

[
Akl , ρ(t)A†

kl

])
, (13)

where, see in Refs. [56,58],

Akl = Pk HI Pl , P±1 = | ± 1〉〈±1|,
Ωkl = (λk − λl)/h̄, λ±1 = ±ε/2. (14)

The states |1〉 and |− 1〉 denote the excited state and ground state of the qubit, respec-
tively. The quantity c(ω) is the Fourier transform of the autocorrelation function of
the bath operator VB calculated in the Gibbs state w(β) of the bath, namely,

c(ω) =
∞∫

−∞
e−iωt Tr

[
w(β)VBei t HB/h̄ VBe−i t HB/h̄

]
dt (15)
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and its Hilbert transform defines the function s(ω) in the following way

s(ω) = P

2π

∞∫

−∞

c(x)

x − ω
dx, (16)

where P indicates the Cauchy principal value of the integral.
In order to treat the complex qubit–environment interaction encoded in g(k) in

Eq. (9) it is convenient to introduce the spectral density

D(ω) =
∫

dk|g(k)|2δ(ω(k) − ω). (17)

We further limit our consideration to the strictly Ohmic environment for which this
spectral density is linear with respect to ω for small frequencies and exhibits an expo-
nential cut-off frequency ωc, thereby exhibiting no non-physical ultraviolet diver-
gences. Explicitly, this spectral density reads

D(ω) = α

2
ω exp(−ω/ωc), (18)

where the dimensionless parameter α characterizes the strength of the environmental
influence on the qubit.

Within this choice [56,58]

c(ω) = πα

2

(
|ω|exp(βh̄|ω|) + 1

exp(βh̄|ω|) − 1
+ ω

)
exp(−|ω|/ωc) (19)

and s(ω) is determined via the relation in Eq. (16).
In principle one can solve Eq. (11) using the Bloch vector formalism to obtain

the coupled evolution equations for mean values 〈σk(t)〉, k = x, y, z to obtain the
reduced density matrix as ρ(t) = (1/2)[1 +〈σx (t)〉σx +〈σy(t)〉σy +〈σz(t)〉σz]. This
form allows to extract the spectral decomposition Eq. (2) and the phase Φ(t). Such
an explicit form of the geometric phase result is, however, rather cumbersome with-
out exhibiting much physical insight. We thus refrain from presenting such analytical
details, but present here the full analysis of the geometric phase by numerical means.

4 Analysis of geometric phase

From Eqs. (1)–(3) it follows that in order to determine the geometric phase at arbitrary
time t > 0, we must specify the initial state of the qubit. We consider the following
class of initial states

|θ〉 = cos(θ/2)|1〉 + sin(θ/2)| − 1〉, (20)
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where θ is the polar angle in the Bloch sphere representation. The corresponding initial
statistical operator ρ(0) takes the form

ρ(0) = |θ〉〈θ |. (21)

One of the eigenvalues of this operator is zero, say p2(0) = 0 in Eq. (3), and it does
not contribute to the geometric phase. This simplifies Eq. (3) in that only one term
of the sum survives. The evolution of the freely evolving qubit, with μx = μz = 0
in Eq. (10), is cyclic with the time-period T = 2π h̄/ε and it acquires the geometric
phase [60]

Φ0 = π [1 + cos(θ)], mod(2π), (22)

which can serve as a reference for studying the influence of the environment. In the
case of a coupling to an environment, the evolution of the qubit is not cyclic any longer.
However, below we consider the phase Φ = Φ(T ) after the time T = 2π h̄/ε in order
to study the role of coupling to the environment and for comparison with Eq. (22).

The simplest situation occurs for pure dephasing; i.e. when μx = 0 so that the qubit
energy does not change. The results presented in Fig. 1 show that the geometric phase
plotted as a function of the initial state of the qubit (i.e. as a function of the parameter
θ in Eq. (20)) approaches zero (modulo 2π ) with increasing coupling strength μz . We
observe that it varies drastically in the regime near θ = π/2 and varies weakly outside
this region. Moreover, the phase vanishes for θ → 0 (i.e. for the initially excited state
|1〉) and θ → π (i.e. for the ground state | − 1〉). This finding corroborates the results
for the phase in the exactly solvable model of pure dephasing with arbitrary (not only
weak) coupling [49–52]. For the presentation as in Fig. 1, we note that the function
Φ (θ) is antisymmetric about the point {θ,Φ} = {π/2, π}, i.e. the relation

Φ
(π

2
+ θ

)
= 2π − Φ

(π

2
− θ

)
for θ ∈ [0, π/2] (23)

holds. It can be interpreted as a rotation symmetry around the point {θ,Φ} = {π/2, π}.
A most intriguing behavior on the role of the environment emerges when μx 	= 0;

i.e. when the qubit–environment interaction is allowed to exchange energy with the

Fig. 1 (Color online)
Dependence of the geometric
phase Φ = Φ(T ) on the initial
state of the qubit which is
parameterized by the angle θ on
the Bloch sphere. The qubit is
coupled to a purely dephasing
Ohmic environment, i.e. μx = 0
in Eq. (10). The remaining
parameters are: α = 10−2,

h̄ωc/ε = 102 and T = 0
 0
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Fig. 2 (Color online)
Geometric phase Φ = Φ(T )

versus initial polar angle θ for
selected values of the dissipative
qubit–Ohmic environment
coupling strength μx . The
dephasing coupling strength is
set at μz = 0 in Eq. (10), and the
remaining parameters are the
same as in Fig. 1
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qubit system. The results depicted in Fig. 2 show the qualitative changes in the geo-
metric phase properties for increasing dissipation coupling strength μx as a function
of the polar angle θ . Note that the geometric phase Φ in Fig. 2 is plotted differently
from Fig. 1 with Φ/π varying within the interval (−1, 1). We have decided to make
this change in order to avoid confusing jump-like behavior of Φ(θ) in vicinity of the
polar angle θ = π/2. E.g. the curve corresponding to the case μx = 0.05 in Fig. 2
is very similar to the curve corresponding to the case μz = 0.1 in Fig. 1. However,
presented in the Φ/π ∈ (−1, 1) interval it exhibits jump-like behavior which is an
artefact of the way the plot is done. Let us recall again here that the phase Φ is defined
modulo 2π .

For small values of μx , the geometric phase is close to that for the isolated qubit, cf.
μx = 0.05 in Fig. 2 when compared with Fig. 1 but with Φ varying there Φ/π ∈ (0, 2).
When μx increases the function Φ(θ) exhibits a local maximum and minimum, see
the case μx = 0.3 in Fig. 2. For larger value of the coupling strength μx (the case
μx = 0.4 ) the geometric phase is an increasing function of the polar angle θ till to the
value θ = π/2 reaching a local maximum. Next, it decreases as θ → π . In compar-
ison to the dephasing coupling, in this case we can find at least three distinguishing
features of the geometric phase. Firstly, we note breaking of antisymmetry of Φ(θ),
being in distinct contrast to the case of pure dephasing (μx = 0), cf. Fig. 1. Secondly,
the dependence of the phase on the initial state parameterized by θ is non-monotonic,
exhibiting a local maximum and a minimum. Thirdly, the geometric phase Φ vanishes
for θ → π (i.e. for the ground state) but not necessary so for θ → 0 (i.e. for the
excited state).

One can observe that for a fixed μx , the dephasing process controlled by μz does
not change the qualitative properties of the geometric phase Φ, see Figs. 1 and 3.
Pure dephasing affects only the off-diagonal elements of the density matrix, becom-
ing closer to the maximally mixed qubit state. The geometric phase in a quantum
evolution of such states vanishes. In a general energy-exchanging process the time
dependence of the density matrix is more complex and the geometric phase Φ seem-
ingly quantifies this fact. Moreover, the stability of geometric phase with respect to
decoherence is crucial for effectiveness of holonomic quantum computation [5,13]. It
is evident that the stability of phase can be significantly improved via a proper choice
of the initial state determined by θ in Eq. (20).
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Fig. 3 (Color online) Role of a qubit–environment coupling on the geometric phase Φ = Φ(T ) versus
initial state preparation θ for a qubit that is coupled to an Ohmic environment. The dissipative coupling
strength is set at μx = 0.3. The influence of dephasing is depicted for four different coupling strengths μz .
The remaining parameters are the same as in Fig. 1

Fig. 4 (Color online) The
influence of varying temperature
T on the geometric phase Φ(T )

versus initial state preparation θ

is depicted for a dissipative qubit
with μx = 0.3 and zero
dephasing, i.e. μz = 0. The
remaining parameters are the
same as in Fig. 1. Temperature is
measured in units of ε/kB
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Thus far we considered zero temperature, T = 0. The effect of increasing temper-
ature is depicted in Fig. 4. Firstly, we observe that if temperature increases the phase
does not vanish for θ → π while it tends to zero for θ → 0. Secondly, the main
properties remain similar: In all presented cases a minimum and a maximum exist.
However, the maximum diminishes with increasing temperature.

5 Concluding remarks

No realistic physical quantum system is in perfect isolation from its environment.
At best one can achieve a weak coupling between the system and the environment.
In this weak coupling regime it is possible to extract the reduced dynamics of the
open quantum system in a mathematically satisfactory and controlled way by using
a Markovian reduced dynamics following the Davies scheme. In this work we have
analyzed the geometric phase of a qubit in the presence of a weak coupling to a bosonic
environment. We have investigated the relation between the geometric phase Φ and
the mechanism for decoherence of the qubit for either the case of pure dephasing with
μx = 0 or in presence of dissipative energy relaxation, i.e. μx 	= 0. The latter situa-
tion allows for a significant variation of the emerging geometric phase upon varying
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the coupling strength μx . A variation of the pure dephasing coupling, i.e. μz 	= 0
with μx = 0, between qubit and environment barely affects the geometric phase. This
feature is distinct from other set-ups, such as the emergence of quantum entanglement
in open systems, where this dephasing-coupling mechanism can play a dominant or a
similar role as an energy relaxation-coupling.

Nowadays, the geometric phase plays a crucial role in a variety of physical problems
and has observable consequences in a wide range of systems. Under various aspects,
this concept occurs in geometry, astronomy, classical mechanics, and quantum theory.
The impressive recent progress in nanotechnology and experimental techniques allows
one to test the fundamentals of quantum dynamics and details of interactions modeled
by Hamiltonians. The geometric phase is not a quantum mechanical observable, i.e.
it is not represented by a Hermitian operator. However, it can be experimentally mea-
sured, cf. Refs. [61–63]. It can be used to encode information on systems. E.g. it has
been proposed as an order parameter for quantum phase transitions [64]. The results
obtained here suggest that one can also exploit the geometric phase as a quantifier
characterizing a nature of the system-environment coupling. Indeed, three features of
the geometric phase Φ = Φ(T ) allow one to distinguish the character of qubit–
environment coupling (i.e. pure dephasing vs. dissipation): (i) rotation symmetry
around some points on the θ−Φ plane or equivalently antisymmetric dependence of Φ

upon θ about some points, (ii) non-monotonic behavior of Φ with respect to θ and (iii)
the behavior of Φ for θ → 0 (i.e. for the qubit prepared in the excited state). We have
verified that all these three features are manifest also at times t = nT (n = 2, 3, 4)

for the measurable quantifier Φ = Φ(nT ). This feature of the geometric phase Φ

thus presents an additional suitable tool in exploring characteristics of open system
interactions at the quantum scale.
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