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Abstract. Noisy saltatory spike propagation along myelinated axons is studied
within a stochastic Hodgkin-Huxley model. The intrinsic noise (whose strength is
inversely proportional to the nodal membrane size) arising from fluctuations of the
number of open ion channels influences the dynamics of the membrane potential
in a node of Ranvier where the sodium ion channels are predominantly localized.
The nodes of Ranvier are linearly coupled. As a measure for the signal propagation
reliability, we focus on the ratio between the number of initiated spikes and the
transmitted spikes. This work supplements our earlier study [A. Ochab-Marcinek,
G. Schmid, I. Goychuk and P. Hänggi, Phys. Rev E 79, 011904 (2009)] towards
stronger channel noise intensity and supra-threshold coupling. For strong supra-
threshold coupling the transmission reliability decreases with increasing channel
noise level until the causal relationship is completely lost and a breakdown of the
spike propagation due to the intrinsic noise is observed.

1 Introduction

As the fast propagation of action potentials along the axon is of fundamental importance in
the nervous system, e.g. for the successful evolution to large body sizes of organisms, or the in-
formation processing in the brain, the study of the propagation mechanisms is of great interest
for neuroscientists, physiologists and physicists [1]. Since the empirical modeling proposed by
Hodgkin and Huxley in 1952 [2], the neuronal firing dynamics with respect to spike genera-
tion and signal propagation are successfully studied within this deterministic model. In recent
years, issues related to the constructive role of noise in stochastic variants of these models were
addressed [3,4]. The noise-assisted enhancement in weak signals transmission, transduction, or
detection has been investigated, e.g. in the context of noise supported wave propagation in
sub-excitable media [5] or in excitable systems [4]. The conductance fluctuation of the neu-
ronal membranes which arises from random channel opening and closing can, a priori not be
neglected [6,7]. Indeed, it was shown, that this intrinsic channel noise [3] can lead to gener-
ation of so-called spontaneous action potentials, to synchronization phenomena like stochastic
resonance [8–12] and coherence resonance [13,14] and to synchronization of ion channel clus-
ters [15,16].
Even the saltatory spike propagation, which results from a highly non-uniform distribution

of the ion channel, can benefit from intrinsic channel noise as we have shown recently in Ref. [17].
The saltatory spike propagation occurs in myelinated axons where the activating sodium ion
channels are concentrated at the nodes of Ranvier, which are separated by segments sheathed
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Fig. 1. Sketch of the myelinated axon: Each node of Ranvier is treated within a stochastic generalization
of the Hodgkin-Huxley model and is bi-linearly coupled to the nearest neighboring nodes of Ranvier.

with myelin. This results in a much faster propagation speed in myelinated axons than that in
unmyelinated axons with constant ion channel density [18,19].
With this work, we extend our prior study [17] on the effect of channel noise on the propaga-

tion of action potentials along myelinated axons. In terms of transmission reliability we discuss
the influence of the coupling strength between neighboring nodes of Ranvier and that of strong
intrinsic noise.

2 Model

In order to model the signal transmission along myelinated axons, we consider a compartmental
stochastic Hodgkin-Huxley model [17]. Accordingly, each node of Ranvier is modeled by a
stochastic generalization of the Hodgkin-Huxley model, which extends the applicability of the
original Hodgkin-Huxley model [2] towards stochastic dynamics of the membrane potential
of finite-size ion channel clusters [3,20]. Each node of Ranvier couples linearly to its nearest
neighbors. Consequently, the membrane dynamics Vi at the ith node of Ranvier reads (with
i = 0, 1, 2, . . . , N − 1, where N corresponds to the total number of axonal nodes of Ranvier):

C
d

dt
Vi = Ii,ionic(Vi) + Ii,inter(t) + Ii,ext(t) , for i = 0, 1, 2, ..., N − 1 , (1a)

with the ionic membrane current (per unit area) within the ith node of Ranvier given by the
Hodgkin-Huxley model [2]

Ii,ionic(Vi) = −GK(ni) (Vi − EK)−GNa(mi, hi) (Vi − ENa)−GL(Vi − EL) , (1b)

the inter-nodal currents

Ii,inter(t) =

⎧
⎪⎨

⎪⎩

κ (Vi+1 − Vi) for i = 0 ,

κ (Vi−1 − Vi) for i = N − 1 ,
κ (Vi−1 − 2Vi + Vi+1) elsewhere

(1c)

and the external current stimuli Ii,ext(t) at the ith node of Ranvier. In Eq. (1a), C denotes

the capacity of the axonal membrane per unit area and is given by C = 1μF/cm
2
. The cou-

pling strength between neighboring nodes is characterized by κ, cf. Eq. (1c). According to the
Hodgkin-Huxley model [2], reversal potentials for the sodium, potassium, and leak current are
ENa = 50mV, EK = −77mV, and EL = −54.4mV, respectively. The conductances per unit
area are given by:

GK(ni) = g
max
K n4i , GNa(mi, hi) = g

max
Na m

3
ihi (2)

and the constant leakage conductance GL = 0.3mS/cm
2. In Eq. (2), gmaxK and gmaxNa denote

the maximum potassium and sodium conductances per unit area, when all ion channels within
the corresponding node are open. For simplicity, we assume that every axonal node has the
same kinetics, i.e. the same number of sodium and potassium ion channels. So, the maximum
potassium and sodium conductances gmaxK = 36mS/cm2 and gmaxNa = 120mS/cm

2 are identical
constants for every node of Ranvier.
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The gating variables ni, mi and hi in Eqs. (1b) and (2), describe the open probabilities of
the ion channel gates in the ith node, and undergo a stochastic process which stems from a
birth-and-death-like process of the gating dynamics. The dynamics of the gating variables are
voltage dependent, and are governed by the set of (Ito)-stochastic differential equations [20–22],

d

dt
xi = αx(Vi) (1− xi)− βx(Vi) xi + ξi,x(t) , (3)

with x = m,h, n. Here, ξi,x(t) are Gaussian white noise with vanishing mean and vanishing
cross-correlations. For the same node with the nodal membrane size A, the non-vanishing noise
correlations take the following form:

〈ξi,m(t) ξi,m(t′)〉 = 1

AρNa [αm(Vi) (1−mi) + βm(Vi)mi] δ(t− t
′) , (4a)

〈ξi,h(t) ξi,h(t′)〉 = 1

AρNa [αh(Vi) (1− hi) + βh(Vi)hi] δ(t− t
′) , (4b)

〈ξi,n(t) ξi,n(t′)〉 = 1

AρK [αn(Vi) (1− ni) + βn(Vi)ni] δ(t− t
′) , (4c)

where the ion channel densities are ρNa = 60μm
−2 and ρK = 18μm−2. The noise strength

is determined by the nodal membrane size A which is the same for all nodes. In Eq. (3),
the dynamics of the opening and closing rates αx(V ) and βx(V ) (x = m,h, n) are taken at
T = 6.3 ◦C. They depend on the local membrane potential V and read (with numbers given in
units of [mV ]) [2,23]:

αm(V ) =
0.1(V + 40)

1− exp {− (V + 40)/10} , (5a)

βm(V ) = 4 exp {− (V + 65)/18} , (5b)

αh(V ) = 0.07 exp {− (V + 65)/20} , (5c)

βh(V ) =
1

1 + exp {− (V + 35)/10} , (5d)

αn(V ) =
0.01(V + 55)

1− exp {− (V + 55)/10} , (5e)

βn(V ) = 0.125 exp {− (V + 65)/80} . (5f)

3 Spike transmission

In order to analyze the transmission reliability, we exemplary consider a chain consisting of ten
nodes of Ranvier, i.e. N = 10 and numerically simulated Eq. (1). By applying a constant current
stimulus on the first node only, i.e. we set I0,ext = 12μA/cm

2 and Ii,ext = 0 for i = 1, ..., N − 1,
we find that action potentials are periodically produced that propagate along the transmission
line. We define the transmission reliability coefficient R in steady state by the ratio of the
number of action potentials arriving at the terminal node N9 to those generated in the initial
node N0:

transmission reliability coefficient: R = N9N0 . (6)

The occurrence of a spike in the membrane potential Vi(t) is identified by an upward-crossing
of the detection barrier at 0.0mV (further details on the numerics can be found in Ref. [17]).

The spike instances tji with j = 1, ...,Ni define point processes ui(t) =
∑Ni
j=1 δ(t − tji ). Here,

Ni indicates the number of spikes on the ith node.
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Fig. 2. Deterministic transmission reliability: The dependence of the transmission reliability R
on the inter-nodal coupling strength κ is depicted for the deterministic case. For sub-threshold
κ � 0.067mS/cm2, no spike propagation is observed, i.e. R = 0. Perfect spike transmission, i.e. R = 1,
is found for the supra-threshold case κ � 0.136mS/cm2. In the intermediate range rational numbers
k : l for the transmission reliability are found.

3.1 Deterministic dynamics

We start with the deterministic limit which is formally achieved in the limit A → ∞, using
N = 10. In this case, the transmission reliability R depends solely on the inter-nodal coupling
strength κ and exhibits distinguished transmission patterns [17].
The dependence of the transmission reliability R on the coupling strength is depicted in

Fig. 2. For sub-threshold coupling, i.e. κ � 0.067mS/cm2 the ratio equals zero and no spike
propagation to the final node is observed. Contrary, for sufficiently large coupling parameter,
i.e. κ � 0.136mS/cm2, each generated action potential propagates along the axon and arrives at
the final node, i.e. R = 1. Discrete, rational transmission patterns k : l appear for intermediate
values of the coupling parameter.

3.2 Channel noise effects

When considering finite sizes A of the nodes of Ranvier, the staircase-like dependence of the
transmission reliability parameter R, which is depicted in Fig. 2 for the deterministic case (i.e.
for the case of an infinite size of the nodes of Ranvier), turns into a continuous dependence (not
shown).
In the limit of strong intrinsic noise, i.e. for the finite size of the nodes of Ranvier approaching

formally zero, the channel noise reigns the dynamics of the membrane potential of each node
and the influence of the bi-linear coupling becomes negligible. Consequently, in this limit the
causal relationship between spiking in the first node and that one in the terminal node is lost.
The number of spike occurrences at the final node does not markedly depend on the actual
value of the coupling parameter, and the ratio R tends to a value independent of coupling
strength κ, cf. Fig. 3. Note that in this case, the information transfer from an initial to a final
node fades towards zero as the correlation between spikes in the initial and the final node
diminishes. Moreover, the spontaneous spikes stimulate via the coupling the neighboring nodes
and, consequently, a transmission to both sides occurs, cf. Fig. 4 (c). In the limit κ → 0, the
initial and the terminal node are spiking independently. Consequently, R is given by the ratio
of the number of spontaneous spikes occurring within the non-stimulated, stochastic Hodgkin-
Huxley dynamics and the number of spikes occurring within the stochastic Hodgkin-Huxley
dynamics complemented by a constant current stimulus of I = 12μA/cm2. Certainly, the causal
relationship is lost in this case. This becomes evident when considering the cross-correlation
between the spiking of the initial and that of the final node (see below).
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Fig. 3. (Color online) Transmission reliability in presence of channel noise: The transmission reliability
coefficient R is plotted against the membrane size of the node of Ranvier for different strengths of the
inter-nodal coupling (the coupling strengths are given in units of mS/cm2). The data confirm the results
for noise-assisted spike propagation for sub-threshold coupling (see dashed red line) [17]. Moreover, the
minimum in R indicates the cross-over from a stochastic, uncorrelated spiking of the initial and final
nodes towards a causal, noisy spike transmission from the initial to the final node.
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Fig. 4. Spatio-temporal transmission patterns of spike propagation: the spatio-temporal evolution of
the membrane dynamics at different axonal nodes of Ranvier is plotted for an intermediate coupling
strength κ = 0.08mS/cm2 and various nodal membrane sizes: (a) A = 3 · 104 μm2 (low channel noise
level); (b) A = 100μm2 (intermediate channel noise level) and (c) A = 10μm2 (high channel noise
level). Next to each panel, there is a grayscale bar indicating the actual value of the membrane potential.
The action potentials are created by a current stimulus at the initial node (“0”). In the case of low
noise level, cf. panel (a), the deterministic transmission pattern of 2 : 1 is clearly visible. In contrast,
in the strong noise limit, due to the dominating spontaneous spiking, irregular transmission is found.

With increasing size of the nodes of the Ranvier A, i.e. with decreasing channel noise
strength, the transmission becomes more regular, cf. Fig. 4(a) and (b). The causal relationship
is restored in this limit and the transmission coefficient R tends to its deterministic limit. This
cross-over from the stochastic non-causal firing regime to the regime of noisy spike transmission
depends on the coupling strength. For smaller coupling strengths, this cross-over occurs at larger
nodal membrane sizes A, cf. Fig. 3.
Starting out from the weak noise limit, an increase in the noise strength results in a noise-

assisted spike propagation phenomenon for sub-threshold coupling as pointed out before with
Ref. [17]. The transmission reliability exhibits a maximum, indicating an optimal, noise assisted
spike propagation, cf. Fig. 3. In this case the coupling between the nodes does not result in
an efficient propagation of the spikes and the presence of intrinsic noise is necessary to over-
come the threshold for excitation. However, for the supra-threshold coupling, the channel noise
leads to noise-induced propagation failures and the transmission reliability coefficient R first
decreases with increasing noise level, cf. Fig. 3. The observed increase of R for strong intrinsic
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Fig. 5. (Color online) Initial-final-node spiking correlation: The spike correlation C0,9(τ) between the
spiking at the initial node and that of the final node, cf. Eq. (9), is plotted for different coupling
strengths κ and membrane sizes A: In panel (a), for sub-threshold coupling κ = 0.066mS/cm2 and
membrane sizes A = 10μm2 (blue solid line), A = 800μm2 (black dotted line), A = 3 · 103 μm2 (green
dash-dotted line), and A = 5 · 105 μm2 (red dashed line); In panel (b), for supra-threshold coupling
κ = 0.08mS/cm2 and membrane sizes A = 10μm2 (blue solid line), A = 100μm2 (black dashed line),
A = 3 · 104 μm2 (red dash-dotted line). For weak intrinsic noise, the sharp peak indicates a strong
correlation. In contrast, in the strong noise limit the causal relationship is lost and the correlation
function does not exhibit a peak. Interestingly, for the sub-threshold case a shift of the peak towards
shorter times is observed, i.e. there is a speed up of the signal transmission with increasing noise level.

noise is attributed to the cross-over to the stochastic, non-causal firing regime accompanied by
uncorrelated spiking in the initial and final nodes.
In order to analyze the spike correlation between the initial and final node, we first segment

the point processes u0(t) and u9(t + τ) in segments of width Δt. For Δt smaller than the
refractory time, there is either no spike or one spike observable in each segment. For our
analysis, we chose Δt = 1.5ms. In a second step, we determine the number of spike coincidences
N0,9(τ) between the initial node and the final node in the segments of width Δt, i.e. the spike
coincidences between the two point processes u0(t) and u9(t+ τ):

N0,9(τ) = Δt
∫ T

0

dt f0(t)f9(t+ τ) , (7)

where the point process ui(t) is approximated by

fi(t) =

∫ t+Δt

t

dt′ui(t′)/Δt for i = 0, 9 . (8)

In Eq. (7), T denotes the total integration time. Note that the above definition corresponds to
a cross-correlation measure. Thirdly, we relate this number N0,9(τ) to the number of initiated
spikes at node “0”, i.e. N0, and the bin-width Δt. We obtain the probability density C0,9(τ):

C0,9(τ) =
N0,9(τ)
ΔtN0 =

1

N0
∫ T

0

dt f0(t)f9(t+ τ) . (9)

Note that due to the periodic spike initiation at the first node, C0,9(τ) is periodic, cf. Fig. 5.
The normalization to the total number of initiated spikesN0 ensures that the integral of C0,9(τ)
over one period results in the transmission coefficient R defined by Eq. (6).
A sharp peak in C0,9(τ) indicates a high correlation. For supra-threshold coupling and

weak intrinsic noise, the correlation measure C0,9(τ) exhibits a sharp peak for a τ -value, which
corresponds to the propagation time modulo the period of the spiking in the initial node, cf.
Fig. 5(b). With increasing noise level, the width of the peak increases and the height of the peak
compared to the background level decreases until the total disappearance of the peak in the
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background showing the lost of any causal correlation. Interestingly, for the sub-threshold case,
not only a broadening and flattening of the peak can be observed with increasing noise level,
but also a shift of the peak towards smaller τ -values showing a speed up of the transmission,
cf. Fig. 5(a). The latter can be explained by the same line of reasoning as was used in the
discussion of anticipated synchronization in Ref. [24].

4 Conclusion

We numerically studied the saltatory spike propagation along a myelinated axon using a multi-
compartmental stochastic Hodgkin-Huxley model. The channel noise affecting the dynamics of
the bi-linearly coupled nodes of Ranvier originates in the random ion channel gating. For the
spike propagation in terms of transmission reliability (ratio of the number of spike observed in
the terminal node to the number of spikes initiated in the first node), we found a reduction of
reliability with increasing channel noise level for supra-threshold coupling. This is due to the
noise-induced propagation failures. A further increase of the channel noise level leads to the
total loss of the spiking correlation between the first and last node of Ranvier in the axonal
chain. In the case of sub-threshold coupling and moderate channel noise level, the channel noise
can constructively contribute to the spike propagation, and the effect of noise-assisted spike
propagation is recovered. Both, the transmission reliability as well as the propagation speed can
increase with increasing channel noise level. This behavior is quite similar to the phenomenon
of stochastic resonance [8–10] with an intrinsic noise source [11,12] with the internodal coupling
playing the role of a nodal stimulus.

The authors like to applaud and warmly thank Lutz Schimansky-Geier for his continuous engagement
in furthering stochastic physics within the statistical physics community worldwide and for his many
elucidative discussions with us in pursuing stochastic physics. He is still young and strong enough to
appreciate and to contribute great science.
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