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Abstract. We investigate electron transport through a mono-atomic wire which is tunnel coupled to two
electrodes and also to the underlying substrate. The setup is modeled by a tight-binding Hamiltonian and
can be realized with a scanning tunnel microscope (STM). The transmission of the wire is obtained from
the corresponding Green’s function. If the wire is scanned by the contacting STM tip, the conductance
as a function of the tip position exhibits oscillations which may change significantly upon increasing the
number of wire atoms. Our numerical studies reveal that the conductance depends strongly on whether
or not the substrate electrons are localized. As a further ubiquitous feature, we observe the formation of
charge oscillations.

1 Introduction

Mono-atomic wires of metal atoms fabricated on a sur-
face are the ultimately small conductors and may be used
in nanoelectronics to connect nanodevices such as quan-
tum gates, qubits, or nanotransistors. Thus their elec-
tronic properties are of crucial interest. One-dimensional
mono-atomic wires can be fabricated using mechanically
controlled break junctions [1,2]. Such wires are freely sus-
pended and, thus, do not interact with any substrate. For
the same reason, they are somewhat unstable, and it con-
sequently represents a challenge to form long wires. Simi-
lar but more stable structures can be fabricated on vicinal
surfaces and investigated with scanning tunneling micro-
scopes (STM) [3–5], see Figure 1. Well ordered and even
longer examples are double stranded gold wires grown on
silicon vicinal surfaces such as Si(335) and Si(557) [4–6].
The geometry and the electronic structure of these setups
are sufficiently stable such that measurements can be re-
peated many times. Notice that STM experiments mainly
focus on the electron transport from the STM tip to the
surface (perpendicular transport) and, thus, are not con-
cerned with the transport from one end of the wire to the
other end. The latter type of STM experiments would re-
quire some modifications of the setup as is discussed in
references [7–10].

The conductance of ideal or disturbed wires has been
investigated both experimentally and theoretically. For
example, it has been predicted that the conductance of
an atom chain depends on whether the number of atoms
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Fig. 1. (Color online) Schematic view of a quantum wire on a
surface (electrode S) contacted at sites 1 and 4. The contacts
is established by (a) one fixed electrode and one STM tip or
(b) two STM tips. In both configurations, the right electrode
can be moved.

is even or odd [11–15]. These even-odd oscillations have
been confirmed experimentally [1]. Conductance oscilla-
tions with larger periods may occur as well [16–19]. They
stem from a Fabry-Perot like resonance of electrons with
Fermi wavelength in the chain, which eventually changes
the chain filling factor [16,18,19]. Moreover, the formation
of charge waves inside a wire was observed for both, non-
magnetic [20] and magnetic wires [21]. The fact that the
resonance condition depends on the presence of further
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atoms beyond the contact also leaves its fingerprints in
the conductance, where interference effects can be ob-
served [22–27].

In this work, we consider setups in which one lead is
realized by a movable STM tip by which an atom of choice
can be contacted; see Figure 1. We describe the atom chain
by a tight-binding Hamiltonian and obtain the conduc-
tance within a Green’s function approach [15,18,28–33].
It will turn out that the conductance oscillations are in-
fluenced by small leakage currents from the wire to the
substrate. In our substrate model, the spatial separation
of the wire atoms is taken into account by considering local
tunnel couplings. A relevant parameter of this model is the
Fermi wavelength of the substrate electrons, which allows
one to interpolate between two limits: in the one limit,
each wire atom couples individually to a substrate with
localized electrons, while in the other limit, the substrate
represents a reservoir of delocalized electrons. These two
setups may be interpreted as an insulating and a conduct-
ing substrate, respectively, or the coupling to a molecule
with according localization properties [34].

The paper is organized as follows. In Section 2 we
present our model and a scattering formalism. Moreover,
we derive an analytical expression for the retarded Green’s
function of a wire coupled to a surface. With these ex-
pressions at hand, we investigate in Section 3 both con-
ductance oscillations and charge oscillations. The main
conclusions are drawn in Section 4.

2 Theoretical model and formalism

We consider the setups sketched in Figure 1 which both
consist of a quantum wire connected to two metallic elec-
trodes. The wire may exchange electrons also with the sur-
face which, thus, represents a further, weakly connected
electrode. One of these electrodes may be fabricated by
epitaxy or grown on the surface and is fixed [10]. The
other electrode is movable and contacts an atom of choice.
Alternatively, both electrodes may be realized by an STM
tip as is sketched in Figure 1b.

The model Hamiltonian for a wire with N atom sites
can be written in the form H = H0 + Htun, where

H0 =
∑

kα=L,R,S

εkαa+
kαakα +

N∑

i=1

εia
+
i ai (1)

describes the electrons in the wire and in the leads. Elec-
tron transitions between the leads and the wire are estab-
lished by the tunnel Hamiltonian

Htun =
∑

k

VkLa+
kLam +

∑

k

VkRa+
kRan

+
N−1∑

i=1

Via
+
i ai+1 + h.c. (2)

Here, m and n label the atom connected to the left and
to the right lead, respectively. It is worth mentioning

that if the left STM electrode couples to the first wire
site, m = 1 and the right electrode to the last site,
n = N , the system corresponds to the break junction ge-
ometry of references [1,13–15,18]. The operators ai and
a+

i create and annihilate, respectively, an electron at site
i = 1, . . . , N , while akα and a+

kα are the according lead
operators. The tunnel matrix elements Vk� enter the ex-
pressions for the current only via the spectral densities
Γ � = 2π

∑
k |Vk�|2δ(ε − εk�), � = L, R, which we model

within a wide-band approximation as energy independent.
With the above Hamiltonian we assume that electron-

electron interactions do not lead to correlation effects and
can be captured by an effective shift of the onsite ener-
gies. This requires that we have to restrict our study of
the conductance to relatively short wires with weak inter-
action, such that no zero-bias anomalies [35,36] emerge.
Then both spin directions are independent of each other,
such that the spin need not be considered explicitly. For
Au or Pb chains on vicinal silicon surfaces, these condi-
tions are met reasonably well. Generally, this should hold
for non-magnetic wire atoms [37]. It has also been shown
that electron-electron correlations do not change the pe-
riod of conductance oscillations [19,38,39] and still permit
Friedel oscillations [40].

In order to describe electron leakage from the wire to
the surface, we consider the surface as a further, weakly
coupled electrode. Thus, we introduce the wire-surface
tunneling Hamiltonian

Hw-s =
∑

k

V s
ika+

k ai + h.c., (3)

where V s
jk = V s

k exp(ikRj) is the tunnel matrix element
for atom j [41,42]. The phase factor reflects the position of
atom j and has the consequence that the leakage depends
on the spatial separation of the atoms. Assuming equal
distances a between neighboring atoms, while mainly sub-
strate electrons with Fermi wavelength are important, we
obtain V s

jk = V s
k exp(ikF ja). As for the leads, the influ-

ence of the substrate can be subsumed in a spectral den-
sity. It turns out that the relevant quantity reads

Γ S
ij = Γ S sin(kF a|i − j|)

kF a|i − j| , (4)

with the effective leakage strength Γ S. We have assumed
that only substrate electrons close to the Fermi surface
play a role. As a consequence, the dimension of the sub-
strate and the energy dependence of the tunnel matrix
element are hidden in the prefactor Γ S. This is consis-
tent with the frequently assumed wide-band limit which
we also used for the wire-lead couplings Γ �.

A formally similar coupling and spectral density has
been used to describe decoherence of spatially separated
qubits coupled to a bosonic environment [43–45]. While
the fermionic case can still be treated within scattering
theory, the bosonic model gives rise to memory effects
which may be considered within a non-Markovian master
equation approach [46–48].

Two limiting cases are worth being discussed: (i) if
kF a � 1, the spectral density is rather small unless i = j.
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This means that we can employ the approximation Γ S
ij =

Γ Sδij . This describes a substrate with a very short mean
free path such as a semi-conductor or an insulator. Then
an electron that tunnels from a particular atom to the
substrate can re-enter only at the same site. Obviously,
this scheme corresponds to a model in which each wire
atom is coupled to an individual additional electrode. (ii)
In the opposite limit, kF a � 1, we obtain Γ S

ij = Γ S .
Physically this means that the wire electrons tunnel to
a delocalized substrate orbital, as is the case for metallic
surfaces.

In order to obtain the linear conductance between the
electrodes L and R and the local density of states at site i,
ρi, one needs to compute the Green’s function for the total
Hamiltonian. The linear conductance at zero temperature
is given by the Landauer formula [28–31,33]

G =
e2

h
T (EF ) =

2e2

h
Γ LΓ R|Gr

mn(N, EF )|2, (5)

where T (EF ) is the electron transmission at the Fermi en-
ergy which we choose to be EF = 0. Using the equation of
motion for the retarded Green’s function Gr

mn, one finds
the elements Gr

mn from the relation Gr
mn = (Â−1)mn,

where the matrix Â is given by

(Â)ij = (ε − εi)δi,j − Vi(δi,j+1 + δi+1,j)

+ i
Γ L

2
δi,mδm,j + i

Γ R

2
δi,nδn,j + i

Γ S
ij

2
. (6)

Below, when presenting specific results, we will always as-
sume that both leads couple equally strong to the wire,
yielding Γ L = Γ R = Γ , and that all onsite energies and
intra-wire tunnel matrix elements are position indepen-
dent, εi = ε0 and Vi = V . These assumptions are quite
reasonable for a wire consisting of one atom species in an
equidistant arrangement on the surface.

In the absence of wire-surface tunneling, i.e. for Γ S =
0, the matrix Â becomes tri-diagonal and its inverse,
the Green’s function, can be computed analytically. Af-
ter some algebra we find

Gr
mn = (−V )n−m det AN−n

0

{
det AN

0 + i
Γ

2
Φm,n

− Γ 2

4
det Am−1

0 det AN−n
0 det An−m−1

0

}−1

, (7)

where

Φn1,n2 = det An1−1
0 det AN−n1

0 + det An2−1
0 det AN−n2

0 ,
(8)

while AN
0 denotes the tri-diagonal N × N matrix for

Γ S = Γ = 0, i.e. for the isolated wire. The determinant of
this matrix can be evaluated to read detAN

0 = V NuN (φ),
where uN (φ) is the Nth Chebyshev polynomial of the sec-
ond kind and φ = arccos{(ε− ε0/2V )} plays the role of a
Bloch phase [20]. Note that det A0

0 = 1 and det A1
0 = ε−ε0.

For a wire-surface coupling in the limit (i), the ad-
ditional self-energy is proportional to the unit matrix,

Γ S
ij = Γ Sδij , such that Â−1 can still be computed ana-

lytically. Then we obtain again the Green’s function (7),
but with ε − ε0 replaced by ε − ε0 − iΓ S/2.

The local density of states at wire site i is determined
by the retarded Green’s function Gr

ii owing to the relation
ρi(ε) = − Im (cof ÂN

ii /π det ÂN ), where cof ÂN
ii denotes

the algebraic complement of the matrix ÂN
ii , the so-called

cofactor. The charge localized at site i can be obtained
by integrating the local density of states up to the Fermi
energy,

Qi =
∫ EF

−∞
ρi(ε)dε. (9)

Note, that due to wire-surface coupling, analytical formu-
las for the local density of states or charge density Qi can-
not be simplified further. Thus equation (7) is the most
general analytical expressions for the retarded Green func-
tions for arbitrary wire length.

3 Conductance oscillations

The conductance of a quantum wire is governed by the
electron wave functions at the Fermi surface. In particu-
lar for short wires, it may even be such that a single orbital
in the relevant energy range dominates. Its overlap with
the electrodes may change significantly with the length of
the wire and, thus, the conductance changes as well. Typ-
ically this change appears as periodic oscillation [11–19].
For a break junction geometry, i.e., when the left elec-
trode is connected to the first atom (m = 1), and the
right electrode to the last atom (n = N), the period M of
the oscillation can be determined analytically: writing the
transmission T (EF ) in terms of the Green’s function (7),
one imposes that this transmission for a wire of length N
must be the same as for a wire of length N + M . This re-
sults in the condition cos(πl/M) = (EF − ε0)/2V , where
l = 1, ..., M − 1 [18]. Notice that this matching condition
is not affected by the coupling to the surface.

3.1 Quantum wire isolated from the substrate

Before addressing the influence of a substrate, we study
the conductance oscillations of a wire that couples only
to the electrodes, but not to the substrate. In particular,
we focus on the influence of the wire atoms beyond the
STM tips. The presence of these atoms modifies the wave
functions of the wire electrons and, consequently, it may
affect the overlap between the relevant wire states and the
electrodes. In all our numerical studies presented below,
we use the Fermi energy EF = 0 as reference point and
assume a fixed left electrode, i.e. m = 1. All energies are
measured in units of the wire-electrode coupling Γ , such
that formally Γ L = Γ R = 1, while the conductance G is
plotted in units of the conductance quantum G0 = e2/h,
such that it becomes identical to the dimensionless trans-
mission T (EF ).

Figure 2 depicts the conductance of wires with var-
ious lengths N as a function of the tip position n; cf.
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Fig. 2. The conductance (in units of [e2/h] so that G
.
= T )

as a function of the STM tip position n for the wire lengths
N = 8, 9, 10, 11 in the absence of wire-substrate coupling, i.e.,
for Γ S = 0. The onsite energies are (a) ε0 = 0, (b) ε0 = V ,
and (c) ε0 =

√
2V . These values correspond to conductance

oscillations with periods M = 2, 3, 4. The intra-wire tunnel
matrix elements is V = 4Γ . The lines serve as a guide to the
eye.

Figure 1a. The onsite energies are position independent,
εi = ε0, and chosen such that they satisfy the oscillation
condition for period M = 2, 3, 4 (panels a, b, and c, respec-
tively). A most prominent feature is that the amplitude
of the emerging oscillations depends strongly on the total
wire length N , or put differently, on the number of atoms
beyond the right electrode. A closer look at the results for
periodicity M = 2 (panel a) reveals that the amplitude
changes with each additional wire atom from a large to
a small value and back. For odd N , the conductance os-
cillates with a very large amplitude, whereas for an even
number of atoms, these oscillations are very small. Note,
that the conductance obtained for any even N is hardly
distinguishable form the one for N = 10. The same holds
for any odd N and N = 9.

For the periods M = 3 and M = 4, we find large os-
cillation amplitudes for the wire lengths N = 5, 8, 11, . . .
and N = 3, 7, 11, . . ., respectively. For other lengths, the
conductance still oscillates, but its value never exceeds
10% of the conductance quantum. The bottom line of
these numerical investigations is that we observe strong
oscillations with period M provided that the wire has
length N = Mk − 1, where k = 1, 2, 3, . . . is any natural

Fig. 3. (Color online) Local density of states at atom wire
sites i = 1, 2, 3, 4 for wires that consist of (a) N = 9 and (b)
N = 10 atoms. The onsite energies are ε0 = 0, such that the
conductance obeys oscillations with period M = 2, i.e. even-
odd oscillations. The other parameters are as in Figure 2. The
horizontal lines mark the Fermi energy.

number [18]. Thus for periods M = 2, 3, 4 as considered in
Figure 2, maximal amplitudes of the conductance oscilla-
tions are observed for

N =

⎧
⎪⎨

⎪⎩

1, 3, 5, . . . for M = 2,
2, 5, 8, . . . for M = 3,
3, 7, 11, . . . for M = 4.

(10)

Some insight about the physical origin of the conductance
oscillations is provided by considering the local density of
states ρi(ε). For a case with even-odd oscillations (M = 2),
this is shown in Figure 3 for the wire sites i = 1, 2, 3, 4. The
magnitude of the conductance can be understood from the
fact that for N = 9 (panel a), the density of states pos-
sesses a peak at the Fermi energy. Thus, electrons from the
Fermi surface of the left electrode can tunnel to the wire
resonantly, which facilitates transport. For length N = 10
(panel b), by contrast, the density of states at the first site
vanishes, such that transport is practically blocked. The
density of states at the further sites changes with period
M = 2. Applying the same arguments to the right STM
tip explains that the conductance must oscillate with the
same period. In the second case (even N), however, the
value of the conductance is small due to the small local
density of states at the Fermi energy on the left STM tip.
This directly translates to a small oscillation amplitude
of the conductance. In the same way one can explain the
conductance oscillations with other periods. In general,
the conductance is maximal when both STM electrodes
are connected to sites that possess a large local density of
states at the Fermi level.

A possible application of our results is the experimen-
tal estimate of the onsite energy ε0 which strongly influ-
ences the oscillation periods. However, since also the wire
length N and the tip position n have significant impact on
the conductance, it would be necessary to perform several
measurement with wires that differ only in length but are
identical otherwise.
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Fig. 4. The conductance in units [e2/h] as a function of the
STM position n for a wire consisting of N = 9 atoms with
onsite energies ε0 = 0. The wire-surface coupling strength is
Γ S = 0 (dashed line), ΓS = 0.2Γ (thin solid), and Γ (solid).
The other parameters are as in Figure 2. (a) Short wavelength
limit kF a = ∞, such that each atom couples to an individual
environment and Γ S

ij = Γ Sδij . (b) kF a = 0, such that all atoms

couple collectively to the substrate and, thus, Γ S
ij = Γ S.

3.2 Influence of the substrate

The influence of the wire-substrate tunneling can be ap-
preciated in Figure 4 where we compare the conductance
oscillations for two values of Γ S with those obtained in
the absence of the substrate, i.e. for Γ S = 0. Let us first
consider the limiting cases in which the substrate electrons
are perfectly delocalized (kF a = 0) or perfectly localized
(kF a = ∞). We find two significant features: the oscilla-
tion period is practically not influenced by the leakage,
while the oscillation amplitude decreases with increasing
coupling strength.

Let us now turn to the more realistic intermediate case
of finite kF a and its influence on the conductance oscilla-
tions, Figure 5. Typically this parameter is in the range
kF a = 1 . . . 10 [42]. The onsite energies are chosen such
that the oscillation period is M = 2 or M = 3. The re-
sults interpolate those for the limiting cases discussed in
the previous paragraph. Thus, we can conclude that the
value of kF a leaves the oscillation decay qualitatively un-
changed, despite the fact that the quantitative difference
may be significant.

In Figure 6, we compare the conductance decay for
perfectly localized substrate electrons (kF a = ∞) and per-
fectly delocalized electrons (kF a = 0) with the one for the
intermediate value kF a = 1.3. One notices that the de-
cay is weaker the more localized the substrate electrons
are. It is even such that for kF a = 0, the conductance
does not decay entirely, but converges to a finite value.
This reminds one to the incomplete decay of entanglement
and coherence between delocalized qubits coupled to sub-
strate phonons [44,45]. A qualitative explanation for the
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Fig. 5. The conductance in units [e2/h] as a function of the
STM position n, for a wire with N = 9 atoms and ε0 = 0
(left panels) and for N = 11 atoms and ε0 = V (right panels)
for intermediate wavelength such that kF a = 5 (upper panels)
and kF a = 1 (lower panels). All other parameters are as in
Figure 4.
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Fig. 6. Decay of the conductance oscillation with the wire-
substrate coupling strength Γ S for a substrate with delocalized
electrons (kF a = ∞), with localized electrons (kF a = 0) and
for kF a = 1.3. The other parameters are N = 9, n = 5, and
ε0 = 0.

observed dependence on kF a is that an electron is being
lost to a delocalized substrate orbital may tunnel back to
its former state at any site. In the case of a substrate with
localized electrons, by contrast, the lost electron may tun-
nel back only to the very same wire site. The rates at which
these processes occur should differ roughly by a factor N ,
i.e., by the number of wire atoms. This crude estimate
agrees roughly with our numerical results provided that
Γ L and Γ R are of the same order.

3.3 Charge oscillations

We already mentioned that the conductance oscillations
relate to oscillations of the charge density, which can be
observed with STM techniques [49]. Similar charge waves
have been predicted for a wire with break junction ge-
ometry [20,21]. Thus, one may suspect that the leakage
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Fig. 7. Localized onsite charge Qi as a function of the atom
position i for a wire consisting of N = 18 atoms with onsite
energies (a) ε0 = V and (b) ε0 =

√
2V . The substrate Fermi

wavelength is kF a = ∞ (thin solid line), kF a = 0 (thick solid
line), and kF a = 5 (dashed). The dotted lines are obtained in
the absence of the substrate (Γ S = 0), while the other curves
are the substrate-wire coupling is Γ S = Γ . The other parame-
ters are as in Figure 2.

affects the charge oscillations as well. Figure 7 depicts the
localized onsite charge as a function of the wire atom po-
sition i for different surfaces and the oscillation periods
M = 3 (panel a) and M = 4 (panel b). Interestingly,
with increasing leakage, the charge oscillations fade away
stronger than the conductance oscillations. Also here, the
influence of the leakage is more pronounced the more local-
ized the substrate electrons are. A further common feature
is that tunneling to the substrate affects only the oscilla-
tion amplitude, while the period remains the same.

4 Conclusions

Using a scattering approach, we have studied conductance
and charge oscillations of a quantum wire in contact with a
movable electrode. As a particular feature, we considered
electron leakage from the wire to various types of sub-
strates. Our model for the latter allows for both strongly
localized, weakly localized, and perfectly localized sub-
strate electrons.

As a main feature, we have found that both the con-
ductance oscillations and the localized onsite charge are
fading away due to the influence of the substrate. Inter-
estingly, this influence is weaker the more localized the
substrate electrons are. For our model, the localization
parameter kF a, i.e., Fermi wavelength times the distance
of the wire atoms leads to a monotonic transition between
the limiting cases of perfect localization and delocaliza-
tion. In all cases, the oscillation amplitude is smaller than
in the absence of the substrate. Thus, leakage represents
an obstacle for the experimental observation of conduc-
tance oscillations. Nevertheless, a piece of good news is

that leakage does not influence the oscillation period. This
is rather encouraging, because it implies that conductance
oscillations can be observed with wires that are grown on
surfaces, despite their unavoidable contact to the wire.
We thus are confident that our results will stimulate STM
experiments with wires grown on vicinal surfaces.
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