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Introduction. – Anomalous diffusion and transport
processes possess a rich variety of applications span-
ning many different research fields from plasma physics
and nonlinear dynamical systems to condensed-matter
physics, biophysics, epidemiology, and even quantitative
finance [1–3]. There are several very different theoret-
ical approaches to describe anomalous diffusion, from
continuous time random walks (CTRW) [4] including
Levy flights and Levy walks [1,2] to the Generalized
Langevin Equation (GLE) [5–20]. CTRW-based anom-
alous diffusion involves such unusual concepts as fractal
time and subordination to a random clock which does
not possess a finite mean period. In the continuous space
limit it is often associated with Fractional Fokker-Planck
Equations (FFPEs) [1]. The corresponding Langevin
equations are local in random time [21] and describe a
doubly random process with infinite memory. These latter
Langevin equations should not be confused [14] with the
Fractional Langevin Equations (FLEs) [8,11–14,17,20].
Random time clocks without mean period entail the
remarkable phenomenon of weak ergodicity break-
ing [22,23]. The position, or velocity increments in this
approach are independent in all basic models. Ergodicity
can also be broken in other approaches, e.g. in nonlinear
Brownian motion [24]. Furthermore, GLEs including FLEs
present a quite different approach incorporating long-time
correlations or anti-correlations of the position increments,

similar to the fractional Brownian motion (fBm) devised
by Mandelbrot and van Ness [25] which can also be derived
from a FLE [14]. This is a benchmark feature [16,20] of
the latter approach. Another one is that this approach
does not rely on the concept of random time with
divergent mean clock period [16] and is almost always
ergodic, except for ballistic GLE diffusion [10,16–19].
Generally such non-Markovian processes are not char-

acterized completely by a master equation for conditional
probabilities, or Fokker-Planck equations [26]. However,
the corresponding Langevin equations specify the stochas-
tic process completely, containing all the information on
trajectories. Phenomenologically, the GLE

mẍ+

∫ t
−∞
η(t− t′)ẋ(t′) dt′+ ∂V (x, t)

∂x
= ζ(t), (1)

formally presents a Newtonian equation of motion for a
particle with mass m and coordinate x (we consider a
one-dimensional model), subjected apart from a regular
force, f(x, t) =−∂V (x, t)/∂x, to a zero-mean stochastic
force ζ(t) (which adds energy to the Brownian particle)
and a non-local in time frictional, or dissipative force
(which takes off energy from the Brownian particle).
Both processes are balanced at thermal equilibrium, i.e.
Brownian motion never ceases and obeys the fluctuation-
dissipation theorem, FDT. In (1), the dissipative force is
assumed to have the form of a linear velocity-dependent

20002-p1



             

friction with its memory characterized by the integral
kernel η(t). The FDT is obeyed, when the noise is
Gaussian [27] and the memory kernel and the noise
autocorrelation function are related by the fluctuation-
dissipation relation (FDR) [5] reading

〈ζ(t)ζ(t′)〉= kBTη(|t− t′|) (2)

with T being the environmental temperature.
Apart from this phenomenological justification, the

GLE can be derived microscopically from a Hamiltonian
model involving coupling of the diffusing particle to a ther-
mal bath of harmonic oscillators obeying initially canoni-
cal distribution at temperature T [6,7,9]. Anomalous diffu-
sion can be related to a power law memory kernel

η(t) =
|sin(πα/2)|
π/2

Γ(α)ηαRe(it+1/ωc)
−α, (3)

which we write with a short-time cutoff 1/ωc correspond-
ing to the largest frequency of the bath oscillators ωc,
α> 0, and Γ(x) is the gamma-function. By eq. (2), for 0<
α< 2 such η(t) corresponds in the singular limit ωc→∞
to a fractional Gaussian noise ζ(t) with the Hurst expo-
nentH = 1−α/2 [25]. Then the solution of the GLE yields
a fractional Brownian motion in the limit m→ 0 [14]. In
the case of free diffusion (f(x, t) = 0) and for 0<α< 2
independently of ωc the noise-averaged position vari-
ance σ2(t) = 〈∆x2(t)〉= 〈[x(t)−〈x(t)〉]2〉 grows with time
asymptotically as σ2(t)∼ 2kBTtα/[ηαΓ(1+α)] [9]. This
corresponds to sub-diffusion in the case 0<α< 1 (sub-
linear growth, sub-Ohmic thermal bath), normal diffu-
sion for α= 1 (linear growth, Ohmic bath), and superdif-
fusion for 1<α< 2 (super-linear growth, super-Ohmic
bath). In terms of the integral frictional strength, η̃(0) =∫∞
0
η(t′)dt′, these behaviors are intuitively clear: subdiffu-

sion corresponds to η̃(0)→∞, normal diffusion to η̃(0) =
const and superdiffusion to η̃(0)→ 0. For α> 2, the free
diffusion is always ballistic, σ2(t)∼ t2, and nonergodic
because the velocity autocorrelation function (VACF)
does not decay to zero. Therefore, the emergence of hyper-
diffusion σ2(t)∼ tλ, with λ> 2 within the GLE model is
rather surprising. All these results can be easily obtained
from a general expression for the stationary VACF, found
for an arbitrary memory kernel first by Kubo [5] and
reading K̃v(s) = kBT/[ms+ η̃(s)] in the Laplace space,
by taking into account that the position variance is the
twice-integrated VACF. One has to remark at this point,
that the Laplace-transformed η(t) is η̃(s) = ηαs

α−1 in this
model in the limit ωc→∞. However, the inverse Laplace
transform for η̃(s) = ηαs

α−1 only exists for α� 1, i.e. for
normal and subdiffusive friction. For 1<α< 2 and a finite
ωc, the kernel η(t) in eq. (3) starts from a positive part
and then becomes negative so that its total integral is
zero, independently of ωc. When the cutoff frequency tends
to infinity, the memory kernel becomes singular, starting
from a positive singularity and being negative otherwise.
The frictional term can be recast in this limit with the help
of a fractional Riemann-Liouville derivative, see below.

For example, a spherical particle of radius R moving
with velocity v(t) = ẋ(t) in an incompressible liquid of
kinematic viscosity µ and density ρ experiences a hydro-
dynamic force [28]

Fv(t) = −2πρR3
(
1

3
ẍ+
3µ

R2
ẋ

+
3

R

√
µ

π

∫ t
−∞

ẍ(τ)√
t− τ dτ

)
. (4)

This classical result due to Boussinesq and Basset [11]
generalizes the well-known by Stokes. The first term yields
a mass renormalization of the Brownian particle m→m+
∆m with ∆m= 2πρR3/3, which is assumed to be implic-
itly done. It is present also in the absence of dissipation,
i.e. for µ→ 0. The second term corresponds to the Stokes
friction, and the third term is due to a finite relaxation
time τr =R

2/µ of the disturbed velocity field of the liquid.
It reflects hydrodynamic memory. An interesting mathe-
matical interpretation of this term can be given within the
formalism of fractional derivatives [1,11]. Namely, using
the definition of the Riemann-Liouville fractional deriva-

tive, t0D̂
γ

t f(t) :=
1

Γ(1−γ)
d
dt

∫ t
t0
dt′f(t′)/(t− t′)γ , 0< γ < 1,

acting on some test function f(t), it can be recast in the
form [11]

Fad(t) =−ηα −∞D̂α−1t ẋ(t) (5)

with ηα = η1R/
√
µ and α= 3/2, where η1 = 6πRµρ is the

Stokes friction coefficient. The corresponding GLE was
termed FLE [11]. Independently of this interpretation
it is known [29] to yield the famous power law decay
of the VACF, which was revealed in molecular-dynamic
simulations by Alder and Wainwright [30].
The presence of a normal Stokes friction term makes the

corresponding diffusion asymptotically normal. However,
anomalous superdiffusive motion can emerge on a tran-
sient time scale t < τr =R

2/µ for light particles [11]. If
to neglect ad hoc the Stokes term and to set ẋ(t) = 0 for
t < t0 = 0 (i.e. the particle starts to move at t= 0) the
corresponding superdiffusive FLE reads [8,11],

mẍ+ ηα 0D̂
α−1
t ẋ(t)+

∂V (x, t)

∂x
= ζ(t) (6)

with α= 1.5. This FLE serves as one of the basic models
for superdiffusion with 1<α< 2. It corresponds to a GLE
with a singular memory kernel, which in mathematical
sense is a generalized function. As discussed above, this
kernel starts from a positive singularity at t= 0 and then
is negative, decaying to zero in accordance with a power
law t−α, so that its total integral is zero.
The presence of a nonlinear time-dependent force

f(x, t) =−∂V (x, t)/∂x modifies this well-established
picture considerably. Since general analytical results are
then scarce and most likely generally nonexistent, the
reliability of numerical simulations is a key issue. In
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particular, numerically tractable models can be obtained
by approximating the given power law memory kernel
by a finite sum of exponentials, see in [13,16,18]. By
means of this approximation it is possible to represent
the non-Markovian dynamics in the (x, v)-plane as a
projection of a fully Markovian dynamics in a hyperspace
of dimension D=N +2, where N is the number of
exponentials in the approximation [13,16,18]. Then the
central point is that one can propagate the corresponding
Markovian dynamics locally in time by very reliable
algorithms with a well-controlled numerical precision and
by increasing N one can approximate the FLE dynamics
ever better. Surprisingly one finds that the practical
embedding dimension D need not be large to achieve
an excellent approximation within statistical errors of
stochastic simulations. Moreover, this approach can be
used independently of the FLE with some advantages:
i) The stochastic propagation is local in time and can
readily be continued beyond end point. There is no
need to generate a realization of long-correlated noise
ζ(t) for the whole time span of simulation fixed in
advance (without a possibility to continue) and solving
the intregro-differential equation numerically for any
such noise realization. This dramatically saves computer
memory and enables extremely long simulations with
appreciably small statistical errors. ii) The corresponding
multi-dimensional Fokker-Planck equation is known
explicitly for arbitrary f(x, t) which can be used to
develop an analytical theory for nonlinear dynamics.

Model. – We generalize the modeling of viscoelastic
subdiffusion in ref. [16] to superdiffusive case, 1<α< 2,
and approximate the superdiffusive memory kernel as

η(t) =
ηαCα(b)

|Γ(1−α)|

[
2

N∑
i=1

(ν0
bi

)α−1
δ(t)

−
N∑
i=1

(ν0
bi

)α
exp
(
−ν0
bi
t
)]
. (7)

The first singular term mimics the positive singularity in
the memory kernel of the FLE (6). The sum of exponen-
tials obeys a fractal scaling with negative weights and
approximates the power law decay [2] of this memory
kernel; i.e., η(t)∝−t−α, for t > 0, so that η̃(0) = 0. Choos-
ing ν0 = ωc, the power law regime extends in this approx-
imation from a short-time (high-frequency) cutoff, τl =
ω−1c , to a large-time (small-frequency) cutoff, τh = τlbN ,
where b is a scaling dilation parameter. Such a fit is known
to exhibit logarithmic oscillations superimposed on the
power law [2]. Their amplitude is, however, small and
can be controlled by the choice of b. By adjusting b and
N for a given α one can approximate t−α over about
r=N log10 b− 2 time decades between two time cutoffs,
which are always physically present, beyond FLE model-
ing. Figure 1 illustrates the quality of the approximation
of t−1.5 with the parameters: ν0 = 103, b= 5, N = 13, and
Cα(b) = 1.78167. One can detect a good agreement over

10−8

10−4

100

104

10−2 100 102 104 106

tt

multi-exponential fit
t−1.5

Fig. 1: (Color online) Approximation of the power law
behavior of the friction kernel by a sum of exponentials
Cα(b)

∑ N
i=1

(
ν0/b

i
)α
exp
(−ν0t/bi

)
(see eq. (7)) with the para-

meters: N = 13, ν0 = 10
3, b= 5, and Cα(b) = 1.78167.

about r≈ 7 decades in time. Clearly, with decreasing b
and increasing N , one can further improve and control the
quality of the approximation [16] which should be consis-
tent with statistical errors of Monte Carlo simulations to
avoid unnecessary numerical load.
Next, we introduce N auxiliary variables ui and the

corresponding multi-dimensional Markovian dynamics in
the hyperspace of dimension D=N +2,

ẋ(t) = v(t)

mv̇(t) = −V ′(x, t)−
N∑
i=1

ui(t)− η0v(t)+
√
2kBTη0ξ0(t)

u̇i(t) = −ηiv(t)− νiui(t)+
√
2kBTηiνiξi(t), (8)

where νi=ν0/b
i, ηi=Cα(b)ηαν

α
i /|Γ(1−α)|, for i=1, . . . , N ,

and η0 =
∑N
i=1 ηi/νi. Furthermore, ξ0(t) and the ξi(t)

are N +1 delta-correlated white Gaussian noise sources
of zero-mean and unit intensity. N of them are totally
uncorrelated, 〈ξi(t)ξj(t′)〉= δijδ(t− t′), for i, j = 1, . . . , N ,
and for i= 0, j = 0. However, the noise ξ0(t) is chosen as a
weighted, normalized sum of the other independent noises,

ξ0(t) =

N∑
i=1

√
ηi

νiη0
ξi(t) . (9)

In the limiting case N = 1, our present model yields
the minimal 3-dimensional embedding of ballistic GLE
superdiffusion developed in refs. [19,31] and presents thus
a generalization of this earlier model to the sub-ballistic
case. Given the lower integral limit t0 = 0 in the GLE
(instead of minus infinity), the exact reduction requires
that the ui(0) are independently Gaussian distributed
with zero-mean and variance 〈ui(0)uj(0)〉= kBTηiδij to
ensure the stationarity of the noise ζ(t) and FDR (2) for
all times.
Furthermore, on the time scale t > τh, the diffusion

becomes ballistic in our modeling. However, τh becomes
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exponentially larger with increasing N , which ensures,
that the practical embedding dimension can be reasonably
small (D= 15 in simulations below). When speaking about
asymptotic behavior below we yet assume that t < τh, but
choose τh so that it cannot be reached numerically. This
procedure is similar to the subdiffusive case [16].

Numerical simulations. – Below, we investigate
superdiffusion with α= 1.5 in a tilted washboard poten-
tial of the form V (x) =−V0 cos(2πx/x0)−Fx. For the
sake of convenience we transform the equations above
into dimensionless units by scaling time t in units of
τ0 = (ηα/m)

1/(α−2), distance in x0, energy (which applies
to V0, kBT and Fx0) in ∆E =m(x0/τ0)

2 and ui in
mx0/τ

2
0 . As a consequence of the time scaling, ν0 must

be scaled in 1/τ0, which implies, that η0/m is scaled in
1/τ0 and ηi/m in 1/τ

2
0 . We integrated the dimensionless

equations with a standard stochastic Euler algorithm
using a combination of Mersenne-Twister and Box-Muller
algorithms to generate the Gaussian random numbers.
In each simulation an ensemble of 104 particles was
propagated with a time step ∆t= 10−4 to achieve (weak)
convergence of the ensemble averaged results. The end
point of simulations is tmax = 10

4. We used the friction
kernel parameters of the approximation shown in fig. 1
and distributed the particle velocities initially thermally
with 〈v(0)〉= 0 and 〈v2(0)〉= kBT/m= v2T . All particles
were set initially to the position x(0) = 0.

Free superdiffusion. We first test our method by
comparison of the numerical results for free superdiffu-
sion, i.e., V0 = 0 and F = 0, with the available analytical
solution of FLE [12],

〈∆x2(t)〉= 2v2T t2E2−α,3[−(t/τ0)2−α]. (10)

Here, Eα,β(t) =
∑∞
n=0 t

n/Γ(αn+β) is the generalized
Mittag-Leffler function. Furthermore, for η(t) in eq. (7)

the Laplace-transformed variance σ̃2(s) is a rational
function which can also be inverted to the time domain.
The agreement in fig. 2 among the analytical FLE result,
the analytical result for the Markovian embedding and
the simulation results is indeed very good. Initially, the
diffusion is always ballistic, 〈∆x2(t)〉 ∼ t2, turning over
into the asymptotic behavior 〈∆x2(t)〉 ∼ t1.5.
Superdiffusion in a tilted periodic potential. Next,

we study superdiffusion in a tilted periodic potential, for
which no analytical solution is available. Similar to the
free case, the superdiffusion starts again with ballistic
diffusion and asymptotically again yields, 〈∆x2(t)〉 ∼ t1.5,
cf. fig. 3 for F = 10. However, on an intermediate time scale
a hyperdiffusive regime is developed, with 〈∆x2(t)〉 ∼ tλ,
where λ> 2. Such an puzzling intermediate regime (note
that free superdiffusion cannot be faster than ballistic
within the GLE description) with a highly enhanced power
law dependence of the position variance was also found
recently for ballistic superdiffusion, see [19], and seems
to be a generic feature of driven superdiffusion in non-
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Fig. 2: (Color online) Comparison of the analytical FLE
solution for the mean-squared displacement in eq. (10) with
the analytical results for the Markovian embedding and the
corresponding numerical results, α= 1.5.
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Fig. 3: (Color online) Position mean square displacement of
particles in a tilted washboard potential for several different
values of the bias strength F and the fixed potential amplitude
V0 = 1 and the bath temperature T = 1. The dotted line
corresponds to the free case.

confining potentials. Within the GLE description with a
power law memory kernel and a quite different numerical
approach (not based on Markovian embedding), such a
hyperdiffusion was revealed first in ref. [15]. However, it
was perceived there as an asymptotic regime probably
because of insufficiently long time propagation. It is clear
from fig. 3 that for a sufficiently small bias F = 0.25 we also
cannot arrive at the asymptotic regime within two weeks
of simulations. For larger bias strengths this is, however,
possible. The mean velocity of diffusing particles also
grows with time and when the corresponding mean kinetic
energy becomes so large that the periodic potential ceases
to play a role, the diffusion attains asymptotically the
regime of free superdiffusion. However, on an intermediate
time scale such a confined superdiffusion can be much
faster than the free one. This surprising phenomenon
somewhat resembles giant acceleration of normal diffusion
in washboard potentials [32], but has a distinctly different
origin [19].
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Fig. 4: (Color online) Mean square fluctuation of the particles
velocity for the diffusion of fig. 3.

The intermediate behavior of the position mean-
squared displacement (MSD) is a consequence of a
transient heating of the particles from the bath temper-
ature T to the kinetic temperature Tkin, which we
define [19] via the width of the velocity distribution
kBTkin(t)/2�m〈∆v2(t)〉/2, ∆v(t) = v(t)−〈v(t)〉. Such
a kinetic temperature should not be confused with the
thermodynamic temperature. Nevertheless, it presents
a very helpful concept characterizing the kinetic energy
of the disordered motion, when the kinetic energy of
the directed motion is subtracted from the mean kinetic
energy, in accordance with the physical meaning of
temperature.
Figure 4 shows the time evolution of the veloc-

ity variance for the diffusion in fig. 3. One can
immediately see that the transient hyperdiffusion is
related to the transient kinetic heating. To explore
this relation in more detail we notice that the posi-
tion MSD equals the twice-integrated VACF, i.e.,

〈∆x2(t)〉= 2 ∫ t
0
dt′
∫ t′
0
dt′′〈∆v(t′)∆v(t′′)〉. Introducing a

normalized VACF Kv(t
′′, t′) = 〈∆v(t′)∆v(t′′)〉/〈∆v2(t′′)〉,

one can rewrite the integrand as 〈∆v(t′)∆v(t′′)〉=
〈∆v2(t′′)〉Kv(t′′, t′) and single out the evolution of the
velocity variance. If Kv(t

′, t′+ τ) remained constant, or
it tended asymptotically to a constant with increasing
τ (indicating the breaking of ergodicity), then a power
law increase of the kinetic temperature with time,
Tkin(t)∼ tβ , would yield to a hyperdiffusive law for the
position MSD 〈∆x2(t)〉 ∼ Tkin(t)t2 ∼ t2+β . This is what
occurs for ballistic superdiffusion in tilted washboard
potentials which is nonergodic [19]. There, the kinetic
temperature increases until it saturates at a large final
value [19]. In contrast, the studied generalized Brownian
motion is ergodic. Its free motion VACF does decay to
zero. It also decays in the tilted washboard potentials,
see in fig. 5 for the case F = 1.5 in figs. 3, 4. However,
this decay is enormously retarded in the transient regime,
cf. fig. 5. This retardation explains qualitatively the
quasi-nonergodic origin of hyperdiffusion also in the

0.1

0.2

0 5

1

K
v
(t

0
0

+
τ
)

K
v
(t

0
0

+
τ
)

0.01 0.1 1 10
ττ

t0 = 4
t0 = 40
t0 = 9500
free diffusion

0 1

0 2

0.5

1

K
v
(t

0
,t

0
+

τ
)

K
v
(t

0
0

+
τ
)

0 01 0 1 1 10
ττ

t0 = 4
t0 = 40
t0 = 9500
free diffusion

Fig. 5: (Color online) Normalized velocity autocorrelation
function for the free superdiffusion (dotted line, analytical
result) and for the biased diffusion of fig. 3 for F = 1.5. One can
see, that the latter decays much more slowly in the transient
regime, for two values of t0, which correspond to the start of the
ascent of the velocity variance in fig. 4, t0 = 4, and the descent,
t0 = 40. In the asymptotic regime, t0 = 9500, the VACF is again
the same as in the free case.

present case. Indeed, if Kv(t
′, t′+ τ) were a constant,

then the hyperdiffusion power law exponent would be
λ= 2+β ≈ 2.8 for the velocity variance growth depicted
in fig. 4. This is not much different from the observed
value λ≈ 3 in fig. 3. However, very different from the case
of ballistic memory kernel [19], the kinetic temperature,
associated with the velocity variance, starts to decline
towards the bath temperature, see in fig. 4. This is
because the motion is ergodic and after the periodic
potential ceases to play a role the velocity ACF has to
decay to zero much faster (like in the free case). Since
the dissipation is much stronger than in the ballistic
case, the particles are not strictly accelerated by the
bias F . Their mean velocity grows rather sublinearly,
〈v(t)〉 ∼ Ftα−1 and one can show that for any α< 2 the
mean kinetic energy of particles becomes negligible in the
course of time as compared with the work done by the
biasing force F on its increase. This is very different to
the ballistic case, where asymptotically a finite portion
of work is used for the heating (see online supplement
of ref. [19]), and leads eventually to the decline of the
kinetic energy of disordered motion, cooling back to the
bath temperature T . If our explanation of the transient
hyperdiffusion in terms of a delayed decay of VACF is
correct, it should be able to explain another feature in
fig. 3. Namely, that the hyperdiffusive regime first turns
over into a transiently decelerated superdiffusion with
λ≈ 1.2<α (see for F = 1.5), before λ grows back to α.
Indeed, after reaching the maximum in fig. 4 the velocity
variance starts to decay in accordance with a power law
β ≈−0.9. Then, our reasoning with a strongly delayed
VACF decay yields λ= 2+β ≈ 1.1, which is close to the
observed λ≈ 1.2 in fig. 3. This confirms that our line of
reasoning is consistent.
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Summary and conclusions. – In this work we
proposed a general and simple method for Markovian
embedding of a superdiffusive non-Markovian GLE
dynamics and showed that it can be used to approximate
FLE dynamics over many time decades, serving also as
an independent approach to model superdiffusion. We
studied numerically such a superdiffusion with α= 1.5
in a tilted washboard potential. Concordant with our
prior findings for the ballistic diffusion case [19], a
hyperdiffusive transient regime was found. We gave a
simple physical explanation of this transient regime as
a kinetic heating effect in terms of the growing velocity
variance and a strongly delayed decay of the velocity
autocorrelation function. This is similar to the case of
nonergodic ballistic superdiffusion in washboard poten-
tials. The transient can be very long and superdiffusion
can become enormously accelerated, compared to the free
superdiffusion, during this transient regime. However,
very different from the ballistic case, the transient
heating is followed by a subsequent cooling back to the
temperature of the thermal bath, after the kinetic energy
of the particles, which grows in time, exceeds much the
potential energy. This cooling effect is due to the fact,
that the motion remains ergodic in the studied case and
the friction is sufficiently strong to take off the extra
part of the kinetic energy, which was built up during the
transient heating regime. During this transient cooling
regime the power law exponent of the diffusion becomes
less than the one of the free superdiffusion and gradually
grows to the latter in the course of time. Then the VACF
coincides asymptotically with the one of the free motion.
The influence of the periodic potential becomes forgotten,
very differently from the nonergodic ballistic case.
In conclusion, we expect that our general methodology

will be used in a number of future applications of anom-
alous GLE diffusion. Moreover, the surprising transient
heating/cooling effects are expected to attract a further
attention not only of theorists but also of the experimen-
tal community.
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