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We generalize a recently developed scheme for monitoring coherent quantum dynamics with good time
resolution and low backaction [Reuther et al., Phys. Rev. Lett. 102, 033602 (2009)] to the case of more complex
quantum dynamics of one or several qubits. The underlying idea is to measure with lock-in techniques the
response of the quantum system to a high-frequency ac field. We demonstrate that this scheme also allows one
to observe quantum dynamics with many frequency scales, such as that of a qubit undergoing Landau-Zener
transitions. Moreover, we propose how to measure the entanglement between two qubits as well as the collective
dynamics of qubit arrays.
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I. INTRODUCTION

A most fascinating question in quantum mechanics is how
much a measurement acts back on a quantum system and
thus influences the state of the latter.1–3 According to the
classic measurement postulate, the projective measurement
of a quantity causes a collapse of the wave function into an
eigenstate of the corresponding operator. However, quantum
mechanics only allows probabilistic statements about the state
into which the wave function collapses. This evolution into a
mixture can be modeled by coupling the quantum system via
the measurement operator to a measurement apparatus, that
is, to a macroscopic environment which provokes dissipation
and decoherence. A natural interpretation of this process is
that information about the quantum system leaks into the
environment, while the system acquires entropy. Since the
environment is perceived as a classical object, one may assume
that the pointer of a measurement apparatus corresponds to a
collective environment coordinate.4 Then the question arises
of how the quantum system and this collective coordinate
influence each other. In other words, what information about
the quantum system is contained in the collective coordinate
and how strong is the backaction of the environment on the
system?

A specific example for such a measurement device is a
low-frequency “tank circuit” coupled to a superconducting
qubit.5,6 There, one makes use of the fact that the resonance
frequency of the oscillator depends on the qubit state which,
in turn, influences the phase of the oscillator response. This
allows one to measure both the charge and the flux degree
of freedom of superconducting qubits. The drawback of
this scheme, however, is that the coherent qubit dynamics
is considerably faster than the driving. Thus, one can only
observe the time average of the qubit state, but not time resolve
its dynamics. Measuring the qubit directly by driving it at
resonance is possible as well.7 This, however, induces Rabi
oscillations and, thus, alters the qubit dynamics significantly.8,9

In Ref. 10, we proposed to probe a quantum system with
a weak high-frequency drive acting directly upon the qubit.
We found that the reflected signal possesses a time-dependent
phase shift which is related to a qubit observable. This relation

was validated for a charge qubit formed by the lowest energy
eigenstates of a Cooper-pair box. In particular, it was shown
that coherent oscillations of this qubit are visible in the
reflected signal, while the driving-induced backaction stays
at a tolerable level. This enables time-resolved monitoring of
the coherent qubit dynamics.

In this article we demonstrate that this measurement scheme
is applicable also to more complex quantum dynamics, and
even the evolution of entanglement between two qubits
can be observed in this way. In Sec. II, we introduce the
underlying system-bath model and describe how we quantify
measurement fidelity and backaction. Moreover, we derive a
relation between the reflected ac signal and the monitored
time-dependent expectation value of the quantum system.
This relation, which constitutes our measurement scheme, is
numerically tested in Sec. III for the case of a qubit undergoing
Landau-Zener sweeps. In Sec. IV, we present a protocol for
monitoring entanglement between two qubits. Finally, we
derive in Sec. V how the collective dynamics of a qubit array
enhances the signal.

II. HIGH-FREQUENCY RESPONSE
OF A QUANTUM SYSTEM

A. System-bath model

We consider a quantum system interacting with a dissi-
pative environment, as depicted in Fig. 1. The system-bath
Hamiltonian is given by11–13

H = H0 +
∑

k

(
ϕ2

k

2Lk

+ (qk − λkQ/ωk)2

2Ck

)
. (1)

Here H0 denotes the system Hamiltonian and Q is the system
operator that couples to the environment. To be specific, we
assume that Q is the system excess charge. In the realm of
circuit QED, the bath is typically modeled by a transmission
line by means of LC circuits with charges qk and conju-
gate fluxes ϕk , where Ck and Lk are effective capacitances
and inductances, respectively. Furthermore, ωk = (LkCk)−1/2

denotes the angular frequency of mode qk , and λk are the
corresponding coupling constants in units of frequencies. The
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FIG. 1. (Color online) Sketch of the input-output formalism.
A quantum system described by a Hamiltonian H0 is coupled via
its charge degree of freedom Q to an environment in the form of
a transmission line with ohmic effective impedance Z0. When the
system is probed by an input signal ξin, the output signal ξout contains
information about the bare system dynamics.

system-bath interaction is fully characterized by the spectral
density

I (ω) = π

2

∑
k

λ2
k

√
Lk

Ck

δ(ω − ωk), (2)

which is assumed to be ohmic with an effective impedance
Z0, that is, I (ω) = ωZ0.13–15 Assuming a weak system-bath
interaction, we obtain the Bloch-Redfield master equation
for the reduced system density operator ρ by standard
techniques,16,17

ρ̇ = L0ρ = − i

h̄
[H0,ρ] − 1

h̄
[Q,[Q̂,ρ]] − i

Z0

h̄
[Q,[Q̇,ρ]+],

(3)

where [A,B]+ = AB + BA denotes the anticommutator, Q̇ =
i[H0,Q]/h̄, and

Q̂ = 1

π

∫ ∞

0
dτ

∫ ∞

0
dω S(ω) cos(ωτ )Q̃(−τ ). (4)

Here S(ω) = I (ω) coth(h̄ω/2kBT ) denotes the Fourier trans-
form of the symmetrically ordered equilibrium bath correlation
function at temperature T . The shorthand notation X̃(t)
represents the interaction-picture operator U

†
0 (t)XU0(t), where

U0 denotes the system propagator.

B. Input-output formalism

The central concept of our measurement scheme is to
relate the quantum dynamics of the externally probed central
circuit to a response via the transmission line. In order to quan-
tify the response, we employ the input-output formalism.18,19

We start from the Heisenberg equation of motion (operator
label H ) for the environmental mode k,

q̈H
k + ω2

kq
H
k = λkωkQ

H , (5)

which is linear in the bath operators. Its formal solution for
initial time t0 = 0 reads

qH
k (t) = qk(0) cos(ωkt) +

√
Ck

Lk

ϕk(0) sin(ωkt)

+ λk

∫ t

0
dτ sin[ωk(t − τ )]QH (τ ). (6)

It depends on the history of the system, which gets expressed
through the convolution integral in the second line of Eq. (6).

Inserting the obtained solution into the Heisenberg equation
of motion for any system observable X yields

ẊH = i

h̄
[HH

0 ,XH ] + i

h̄
[(QH )2,XH ]

∑
k

√
Lk

Ck

λ2
k

2ωk

− i

h̄
[QH ,XH ]

∑
k

λ2
k

√
Lk

Ck

×
∫ t

0
dτ sin[ωk(t − τ )]QH (τ ) − i

h̄
[QH ,XH ]

×
∑

k

λk

(√
Lk

Ck

qk(0) cos(ωkt) + ϕk(0) sin(ωkt)

)
. (7)

At this point we define the operator

ξ qm
in (t) =

∑
k

λk

(√
Lk

Ck

qk(0) cos(ωkt) +ϕk(0) sin(ωkt)

)
, (8)

which allows a convenient notation. It is fully determined
by the bath correlation function and, following the preceding
equation of motion [Eq. (7)], only depends on the environment
operators at initial time. Therefore, it can be interpreted as a
signal entering via the transmission line, that is, it describes
the input noise acting upon the system.

After a partial integration of the third term of Eq. (7),
the counterterm proportional to [(QH )2,XH ] is canceled.
Likewise, the resulting initial value term proportional to
QH (t = 0)Z0δ(t) is neglected for asymptotic times beyond
the decay time of initial correlations. Furthermore, for the
ohmic spectral density I (ω) = ωZ0, Eq. (7) becomes local in
time, and one arrives at the quantum Langevin equation20–22

ẊH = i

h̄

[
HH

0 ,XH
] − iZ0

h̄
[QH ,XH ]Q̇H − i

h̄
[QH ,XH ]ξ qm

in (t).

(9)

It contains the input field ξ
qm
in (t) and an ohmic dissipative term

∝ Z0Q̇
H .

It is also possible to express the quantum Langevin equation
in terms of the outgoing fluctuations. This can be achieved by
solving Eq. (5) for the bath modes starting at a later time t1 > t .
The solution is the time-reversed counterpart of Eq. (6) and
reads

qH
k (t) = qk(t1) cos[ωk(t − t1)] +

√
Ck

Lk

ϕk(t1) sin[ωk(t − t1)]

− λk

∫ t1

t

dτ sin[ωk(t − τ )]QH (τ ). (10)

According to Eq. (8), we define the sum over all modes k

with respect to the first two terms on the right-hand side of
Eq. (10) as the outgoing noise ξ

qm
out (t). In contrast to ξ

qm
in (t), it

is influenced by the system at earlier times t < t1 and, thus,
contains information about the system dynamics.18 Proceeding
as previously, we obtain the time-reversed Langevin equation

ẊH = i

h̄

[
HH

0 ,XH
]

+ iZ0

h̄
[QH ,XH ]Q̇H − i

h̄
[QH ,XH ]ξ qm

out (t). (11)
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Its characteristic is a negative damping term; that is, it is
formally obtained from the quantum Langevin equation (9)
via the substitution Z0 → −Z0. This corresponds to backward
propagation in time, as Eq. (11) only accounts for the
environment at later times t1 > t .

The difference between the two Langevin equations relates
the input to the output fluctuations as18

ξ
qm
out (t) − ξ qm

in (t) = −2Z0Q̇
H = −2iZ0

h̄

[
HH

0 ,QH
]
. (12)

The last equality has been obtained from the Heisenberg
equation of the charge operator, Q̇H = (i/h̄)[HH

0 ,QH ], which
is independent of the environment since Q commutes with the
system-bath coupling Hamiltonian. Equation (12) determines
the influence of the system on its environment and, thus, repre-
sents the central relation of the input-output formalism. At this
stage, it is worth emphasizing that the environment possesses
many degrees of freedom, which all acquire information about
the quantum system. Therefore, the collective bath coordinates
ξ

qm
in/out(t) are classical in the sense that their expectation values

can be interpreted as the outcome of a single measurement.4

C. Response to high-frequency driving

The central idea of our scheme is to excite the system by a
classical ac drive and to measure the resulting system response.
Physically, the driving enters like the quantum noise via the
transmission line. Therefore, it can be modeled as a coherently
and highly excited bath mode in the classical limit weakly
coupled to the system.17 This means that the input fluctuations
are augmented by a deterministic ac contribution. Hence
they become ξin(t) = ξ

qm
in (t) + A cos(
t) and, accordingly,

ξout(t) = ξ
qm
out (t) + A cos(
t). The deterministic terms also

affect the input-output relation (12), which now reads

ξout(t) = ξ qm
in (t) + A cos(
t) − 2iZ0

h̄

[
HH

0 ,QH
]
. (13)

In the corresponding expectation value, where we return to
the Schrödinger picture for convenience, the fluctuation ξ

qm
in

vanishes, such that

〈ξout(t)〉 = A cos(
t) − 2iZ0

h̄
〈[H0,Q]〉t . (14)

This expresses the expectation value of the output field in terms
of the input field and a system expectation value, 〈· · ·〉t =
tr[ρ(t) · · ·]. The latter contains information about the system
dynamics and is the central quantity of interest.

The quantum Langevin equations (9) and (11) have been
convenient for deriving the relations between the input and the
output fields [Eqs. (12) and (13)]. For the actual computation
of the system expectation value on the right-hand side
of Eq. (14), by contrast, such stochastic, operator-valued
equations are less practical. Therefore, we derive in addition
an equivalent quantum master equation which not only serves
for numerical computations, but will also provide an analytical
high-frequency approximation.

We start by noticing that a classical ac drive A cos(
t)
coupled to the system charge Q corresponds to a Hamiltonian
QA cos(
t). Thus, the system Hamiltonian H0 has to be

replaced with

H (t) ≡ H0 + QA cos(
t). (15)

A key requirement of our measurement scheme is that the
driving must not significantly alter the system dynamics. Thus,
we assume that the amplitude A is sufficiently small, which
allows us to treat the driving perturbatively.23 In doing so, we
use the ansatz ρ(t) = ρ0(t) + ρ1(t), where ρ0(t) describes the
dynamics of the system without ac driving and ρ1(t) denotes
the correction to the system state. With this ansatz, the master
equation reads

ρ̇(t) = [L0 + L1(t)][ρ0(t) + ρ1(t)], (16)

where the perturbative driving is manifest in the Liouvillian

L1(t)ρ(t) = − i

h̄
A[Q,ρ(t)] cos(
t). (17)

To lowest order in A, the correction ρ1 obeys

ρ̇1(t) = L0ρ1(t) − i

h̄
A[Q,ρ0(t)] cos(
t). (18)

This linear inhomogeneous equation of motion can be solved
formally in terms of a convolution between the propagator of
the undriven system and the inhomogeneity,

ρ1(t) = eL0tρ1(0)

− i

h̄

∫ t

0
dτ eL0(t−τ )A[Q,ρ0(τ )] cos(
τ ), (19)

with ρ1(0) = 0. If the driving frequency 
 is much larger
than all relevant system frequencies, the preceding integral
can be simplified by time-scale separation: First, we split
it into a sum of integrals over complete periods and a final
one over the remaining time. Assuming that the slow ρ0(t) is
practically constant during one oscillation period of 2π/
, the
integrals over complete driving periods vanish, while the last
contribution can be evaluated using ρ0(τ ) ≈ ρ0(t). In this way,
we obtain the solution for the time evolution of the reduced
density matrix

ρ(t) = ρ0(t) − iA

h̄

[Q,ρ0(t)] sin(
t), (20)

where eA/h̄
 is identified as the necessarily small perturbation
parameter. Within this approximation for the density operator,
the expectation value of the output [Eq. (14)] becomes

〈ξout(t)〉 = A cos(
t) − 2iZ0

h̄
〈[H0,Q]〉0,t

+2AZ0

h̄2

〈[[H0,Q],Q]〉0,t sin(
t), (21)

where the subscript in 〈· · ·〉0,t = tr[ρ0(t) · · ·] refers to the
undriven dynamics.

At this point we note that 〈ξout(t)〉 contains both
low-frequency components stemming from the pure system
dynamics, as well as high-frequency components induced by
the external driving. The latter corresponds to the second term
of Eq. (20). Now, in an experiment, it is feasible to single out
the high-frequency components of the outgoing signal using
a lock-in technique, where the incoming signal represents
the reference oscillator. This removes the second term on the
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right-hand side of Eq. (21), such that the outgoing signal
becomes〈
ξ hf

out(t)
〉 = A cos(
t) + 2AZ0

h̄2

〈[[H0,Q],Q]〉0,t sin(
t). (22)

Since the second term is a perturbative correction, it has to be
small so that Eq. (22) can be written as〈

ξ hf
out(t)

〉 = A cos
[

t − φ0

hf(t)
]
, (23)

with the time-dependent phase shift

φ0
hf(t) = 2Z0

h̄2

〈[[H0,Q],Q]〉0,t . (24)

This relation constitutes the basis of our measurement scheme.
It connects a phase shift φ0

hf(t) between the high-frequency
input and the output signals to the low-frequency dynamics
of a system observable. In other words, Eq. (24) allows
time-resolved monitoring of an open quantum system by
measuring the phase shift φ0

hf(t) with lock-in techniques. We
emphasize that our measurement scheme is rather generic and
can, in principle, be applied to any open quantum system.

It is important to note that there are situations in which
the phase shift φ0

hf(t) is independent of the system dynamics
or even vanishes. The latter is obviously the case when Q

commutes with the system Hamiltonian. A constant phase
shift is obtained for an harmonic oscillator H0 = h̄ω0(a†a +
1/2) that couples via its position, that is, Q ∝ a + a†, as one
easily obtains by evaluating the double commutator in Eq. (24).
This is evident from the superposition principle which holds
for a linearly driven harmonic oscillator. However, already a
coupling Q ∝ (a + a†)2 is sufficient for obtaining a nontrivial
response.

D. Measurement fidelity and backaction

As broached above, the relation between the phase of
the output signal and a system observable relies on a
high-frequency approximation. In an experiment, the driv-
ing frequency is finite, however. Thus, the experimentally
obtained phase φ

exp
out (t), which is actually recorded by the

lock-in amplifier, may differ from the theoretically predicted
phase φ0

hf(t) ∝ 〈[[H0,Q],Q]〉0,t . During lock-in amplifying,
the high-frequency components of 〈ξ hf

out(t)〉, and with it φexp
out (t),

are extracted from the output signal 〈ξout(t)〉, where the
classical incoming signal 〈ξin(t)〉 = A cos(
t) serves as the
reference oscillator. Here, we have to mimic the action of
the lock-in amplifier numerically instead, as described in
Sec. III in the second paragraph after Eq. (32).

Thus, it is crucial to test with a numerical simulation how
well both phases agree in a realistic case. As a criterion,
we employ the measurement fidelity which we define as the
normalized overlap,

F = (
φ

exp
out ,φ

0
hf

) ≡
( ∫

dt
[
φ

exp
out (t)

]2
∫

dt
[
φ0

hf(t)
]2

)−1/2

×
∣∣∣∣
∫

dt φ
exp
out (t) φ0

hf(t)

∣∣∣∣, (25)

with time integration over the duration of the measurement.
The ideal value F = 1 corresponds to perfect proportion-
ality between the measured phase φ

exp
out (t) and φ0

hf(t) ∝

〈[[H0,Q],Q]〉0,t . Note that φ0
hf(t) is computed in the

absence of the ac driving, while φ
exp
out (t) is obtained in its

presence.
Furthermore, for any quantum measurement, one has to

worry about backaction on the system in terms of decoherence.
In our measurement scheme, decoherence plays a particular
role, because both the driving and the ohmic environment
couple to the central system via the same mechanism. This
is reflected by the fact that the predicted phase (24) is
proportional to the dissipation strength Z0. In terms of the
generalized, dimensionless dissipation strength α = e2Z0/h̄,
it is required that α � 0.1 in order to preserve a predominantly
coherent time evolution. In this context, our measurement is
weak, but yet destructive in the sense that it relies on the
naturally provided interaction with a dissipative environment
causing decoherence. This marks a significant difference to
conventional quantum nondemolition (QND) measurement
schemes.1,3 Here, by contrast, the additional decoherence due
to the driving is minor. This is obvious from the fact that within
first-order approximation the system purity is not affected,

Tr(ρ2) = Tr
(
ρ2

0

)
, (26)

which follows readily from Eq. (20). Only in this sense,
our measurement scheme can be considered as being of
nondemolition character.

As a concrete measure for how much the driving perturbs
the system, we use in our numerical investigations the time
average D̄ of the trace distance2

D(t) = 1
2 Tr|ρ(t) − ρ0(t)|. (27)

In the ideal case, D̄ vanishes, while D̄ = 1 if both density
operators are completely unrelated.

III. MONITORING LANDAU-ZENER SWEEPS

In Ref. 10, we investigated the quality of our measurement
scheme using the dynamics of a decaying qubit state as an el-
ementary example. Here we go a step further and demonstrate
that it is applicable to more complex coherent dynamics.

As an example, we consider a Landau-Zener tunneling
process between the states of a charge qubit prepared in
a Cooper-pair box (CPB),24,25 a paradigmatic example of
complex quantum dynamics in a seemingly simple system.
In particular, it can be used for state preparation26,27 and
entanglement generation28,29 in a qubit-resonator system. In
recent experiments30,31 multiple Landau-Zener sweeps were
performed with a charge qubit coupled to a low-frequency
tank oscillator whose resonance frequency depends on the
time-averaged qubit state. This enabled the measurement of
the accumulated phase which is determined by the qubit
state. Here, by contrast, we demonstrate that a time-resolved
observation of the complex dynamics during a single Landau-
Zener transition is possible as well.

We employ the CPB Hamiltonian

H CPB
0 = 4EC(N̂ − Ng)2 − δ

2

∞∑
N=−∞

(|N+1〉〈N | + H.c.),

(28)
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where N is the number of excess Cooper pairs in the box. The
charge operator reads Q = 2eN̂ = 2e

∑
N N |N〉〈N | with

e being the elementary charge. The charging energy EC is
determined by the various capacitances of the CPB, while the
scaled gate voltage Ng and the effective Josephson energy δ

are controllable. If the charging energy is sufficiently large,
and Ng approaches a charge degeneracy point determined
by the half-integer value N

deg
g = N0 − 1/2, for some integer

number N0, only the two lowest charge states |N0 − 1〉 ≡ |↓〉
and |N0〉 ≡ |↑〉 matter and form a qubit, while the energy
gap to the higher charge states is much larger than the qubit
splitting.5,13,32 Within two-level approximation, the qubit is
described by the Hamiltonian

H
qb
0 = − 1

2εσz − 1
2δσx . (29)

The Pauli matrices σi are defined in the qubit subspace
and ε = 8EC(N0 − Ng), where Ng ranges in the interval
[N0 − 1,N0], is the effective qubit bias. Moreover, Qqb = eσz

while by virtue of relation (24) the phase of the output signal
is linked to the qubit observable σx according to

φ0
hf(t) = −4e2Z0δ

h̄2

〈σx〉0,t . (30)

Thus, the high-frequency component of 〈Q̇〉, which is manifest
in the phase of the outgoing signal (12), contains information
about the low-frequency qubit dynamics in terms of the
unperturbed 〈σx〉0. It is worth mentioning that the preceding
discussion equally applies to the case of a flux or phase qubit
with an inductive coupling to the transmission line.

The qubit undergoes a Landau-Zener transition when the
gate voltage in terms of the background charge Ng in the
Hamiltonian (28) is swept from a large positive to a negative
finite value through the charge degeneracy point at N

deg
g with

constant velocity, Ng(t) = N0
g + vgt . Accordingly, the qubit

Hamiltonian (29) depends on time and can be written as

H0(t) = −v(t − t0)

2
σz − δ

2
σx, (31)

where we have defined v = 8ECvg and t0 = −N0
g /vg. Hamil-

tonian (31) is a valid approximation under the condition that
the sweep ends timely prior to a subsequent anticrossing in the
CPB spectrum.

Even if the qubit approximation describes the CPB faith-
fully for large charging energies, EC � δ, one must take into
account excitations of higher charge states by the ingoing
signal; see also the discussions in Ref. 10. In our simulations,
we operate at N0 = 6 and truncate the CPB Hilbert space
at Ns = 12 states, which turned out to be sufficient to reach
numerical convergence.

Figure 2(a) illustrates the time evolution of the CPB
observable

Q̇ = ieδ

h̄

∞∑
N=−∞

(|N〉〈N + 1| − |N + 1〉〈N |), (32)

during a Landau-Zener transition between the two lowest
states; see inset of Fig. 2(a). Within two-level approximation,
this operator reads Q̇ = (−eδ/h̄)σy . The parameters are cho-
sen such that the final populations of the two states are roughly
equal, because in this crossover regime between the adiabatic

(b)
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FIG. 2. (Color online) Monitoring the dynamics of a dissipative
Landau-Zener sweep of a qubit, which is initiated in a weakly
probed CPB with Ns = 12 states, operated at N0 = 6. The selected
anticrossing lies at Ng = N0 − 1/2 = 5.5, and the initial qubit state
is |N = 6〉 ≡ |↑〉, while |↓〉 ≡ |N = 5〉. The other parameters are
Ec = 2.6 δ, vg = 0.125 δ/h̄, A = δ/e, α = 0.05, and 
 = 50 δ/h̄. (a)
Time evolution of the output signal 〈Q̇〉t ∝ 〈ξout(t)〉 − 〈ξin(t)〉 of the
full CPB and its lock-in amplified phase φ

exp
out (t) (frequency window

�
 = 16δ), compared to the estimated phase φ0
hf(t) ∝ 〈σx〉0,t in the

qubit approximation. Fast oscillations with frequency 
 = 50δ/h̄

stemming from the input signal are barely resolved. The inset shows
the three lowest CPB eigenenergies as a function of Ng(t). (b) Power
spectrum of 〈Q̇〉 for the driven systems, comparing the full CPB
Hamiltonian (solid line) and in two-level approximation (dashed line).

and the nonadiabatic dynamics, coherent oscillations are most
pronounced. Note that since we plot the time derivative of the
charge, 〈Q̇〉 ∝ 〈σy〉, the final population of the upper state,
[1 + 〈σz〉(t → ∞)]/2, given by the Landau-Zener probability
PLZ = exp(−πδ2/2h̄v) ≈ 0.546, is not part of the information
depicted in Fig. 2(a).

The backaction of the weak driving signal on the system
dynamics in terms of a weak modulation of 〈Q̇〉t is barely
visible. The associated spectrum in terms of 〈Q̇〉ω, depicted
in panel (b), nevertheless reflects the driving in terms of a
small peak at the driving frequency 
 = 50δ/h̄. Due to the
time-dependent qubit splitting, the spectrum exhibits a broad
range of frequencies centered at zero, reflected in the sideband
structure around 
. In the time domain these sidebands
correspond to a signal 〈ξ hf

out(t)〉 = A cos[
t − φ
exp
out (t)].

As is indicated above in Secs. II C and II D, the phase
φ

exp
out (t) can be retrieved by lock-in amplification of the output

signal in an experiment. We mimic this procedure numerically
in the following way:33 We only consider the spectrum of
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〈ξout(t)〉 in a frequency window 
 ± �
 around the driving
frequency and shift it by −
 in order to center it at zero. The
inverse Fourier transformation of the spectrum cutout to the
time domain yields the time-dependent phase φ

exp
out (t) which is

expected to agree with φ0
hf(t); see the discussion in Sec. II D.

According to Eq. (24), this phase reflects the unperturbed time
evolution of 〈σx〉0 with respect to the qubit.

Figure 2(a) shows that the numerically extracted phase
φ

exp
out (t) is indeed in very good agreement with φ0

hf(t) ∝ 〈σx〉0,t

for an appropriate choice of parameters. This holds even if
the condition of high-frequency probing, that is, 
 exceeding
all relevant system frequencies by far, is not strictly fulfilled.
Appropriate values for 
 need to be determined from the
width of the sideband distributions. These can be estimated
from the duration τLZ of a Landau-Zener transition, which
is τLZ ≈ 20h̄/δ here. Consequently, the spectral peak has the
width vτLZ/h̄ ≈ 20δ/h̄. Thus, in order to avoid any overlap
between both distributions, the driving frequency must fulfill

 � 20δ/h̄. In the present case, Eqs. (22) and (24) are
corroborated already for 
 ≈ 50δ/h̄.

Furthermore, we require small dissipation, α � 0.1, to keep
the time evolution predominantly coherent. In this context,
one needs to take care of the interplay of decoherence and the
external sweep velocity and its impact on the LZ probability
and dynamics.29,34,35

Toward the end of the sweep, one notices a deviation
between the predicted phase φ0

hf(t) and φ
exp
out (t), which becomes

curved upward. This stems from the presence of higher charge
states, which get slightly populated as soon as Ng reaches the
next half-integer value N

deg
g + 1, that is, the subsequent level

anticrossing in the CPB spectrum. Accordingly, as is visible
in Fig. 2(b), the spectrum 〈Q̇〉ω contains more pronounced
frequency components than the one of the two-level approxi-
mation 〈Q̇qb〉ω. However, the deviations between both spectra
are minor, which corresponds to the good agreement between
φ

exp
out (t) and φ0

hf(t).
The measurement fidelity defect δF = 1 − F between

φ
exp
out (t) and φ0

hf(t), computed with Eq. (25), is depicted in
Fig. 3(a) as a function of the driving frequency. Apparently,
resonant excitations to non-qubit CPB states play a minor role
here since, in contrast to the case of a time-independent qubit
energy,10 we do not observe characteristic resonance peaks in
δF . Since all CPB frequencies are varied in time during the
LZ sweep, the driving-induced population of non-qubit states
is minor. Furthermore, the fidelity only slightly increases after
the driving frequency 
 has exceeded a minimal value of
vτLZ/h̄. This corroborates that 
 ≈ 50δ/h̄ is a good choice.

With regard to the driving amplitude, one has to find a
compromise. The phase contrast of the outgoing signal (21)
obviously increases with A, whereas the driving perturbs more
and more the low-frequency dynamics. Here the choice of A =
δ/e yields a maximum fidelity of F � 0.9 for the preceding
driving frequency. This apparently low value essentially stems
from the discussed deviation between φ

exp
out (t) and φ0

hf(t). Far
from a subsequent LZ sweep, the system is faithfully described
with only the qubit levels. All in all, for these values, eA/h̄
 ≈
0.01–0.1, which justifies our perturbative treatment.

The small-dissipation condition α � 0.1 together with the
preceding conditions on the driving amplitude and frequency
provides phase shifts of roughly φ

exp
out ≈ 0.1◦, which is small

2 . 10− 5

5 . 10− 5

1 . 10− 4

2 . 10− 4

D

40 50 100 200
Ω [δ/ ]

0.1

0.2

0.5

1

δ
F

=
1

−
F

A= 0.01 δ/e
A= 0.1 δ/e
A= 0.5 δ/e
A= 1.0 δ/e

∝ 1/Ω

(a)

(b)

FIG. 3. (Color online) (a) Fidelity defect δF = 1 − F and (b)
time-averaged trace distance D between the density operators of a
driven and an undriven CPB during a LZ sweep. Both quantities are
depicted for various driving amplitudes A as a function of the driving
frequency 
. All other parameters are the same as in Fig. 2.

but still measurable with present technologies. In particular,
the constraint of large driving frequencies 
 for monitoring a
LZ sweep reduces the maximum visibility of the oscillations
encoded in the phase shift. In contrast, a smaller value of 
, if
applicable, may result in a visibility of the order of 1◦. We turn
back to these quantitative issues in Sec. V where we discuss
the collective dynamics of equal quantum systems.

Generally, decoherence may be influenced by ac driving.23

Here, however, we do not observe a significant change of
decoherence. We conclude this from Fig. 3(b), which depicts
the time-averaged trace distance, computed with Eq. (27)
as a function of the driving frequency for various driving
amplitudes. For intermediate amplitudes, we find roughly
D ∝ A/
, unless A is very small, which agrees with relation
(26). This states that at high frequencies, the driving does
not add decoherence, which confirms the picture drawn by
investigating the measurement fidelity F .

Our model Hamiltonian does not consider the excitation
of quasiparticles in the superconductor. Therefore, it is valid
only as long as the driving frequency stays below the gap
energy. Thus, in a setup made of aluminum the driving is
limited to 
 � 100 GHz. With a typical Josephson energy of
the order of some GHz, the driving frequency required to
monitor the dynamics of a LZ sweep already comes close to
this limit. An implementation with niobium, whose energy
gap is considerably larger36 and which has been used in circuit
QED experiments,37 should be less critical.

IV. TWO-QUBIT ENTANGLEMENT

When considering a second qubit, it may be entangled with
the first one. In the present context, this raises the question of
whether our measurement scheme is sensitive to this property.
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In order to delve into this question, we focus on a system of
two charge qubits described by the Hamiltonian

H2q,0 = ω

2

(
σ (1)

z + σ (2)
z

) + gσ (1)
x σ (2)

x , (33)

where the upper indices label the qubits. Here we assume
that both qubits possess the same energy splitting ω and are
mutually coupled with strength g. A qubit coupling scheme
as described here is effectively realized in the case of, for
example, two CPBs within a two-level approximation which
are capacitively coupled to a transmission line resonator.
In analogy to the preceding discussions, our measurement
scheme can be applied under the condition that the driving
field is not in resonance with transitions to higher energy levels
of the underlying physical system.10 If the qubit-resonator
interaction is dispersive, that is, if the resonator is far detuned
with respect to the qubits, it mediates an effective qubit-
qubit XX coupling,38 such that the two-qubit system can be
described by the effective Hamiltonian (33). Alternatively, an
effective XX coupling between two qubits can be mediated by
a third, dispersively detuned qubit.39

Both charge qubits couple capacitively to a common
environment via their charge operator

Q2q = e
(
σ (1)

z + σ (2)
z

)
. (34)

An adequate measurement of the qubit-qubit entanglement is
the concurrence

C = max{χ1 − χ2 − χ3 − χ4,0}, (35)

where the χj denote the ordered square roots of the eigenvalues
of the matrix ρ(σ (1)

y σ (2)
y )ρ∗(σ (1)

y σ (2)
y ) with ρ denoting the two-

qubit density matrix.40

For later convenience we express the system operators in
terms of the four maximally entangled Bell states,

|�±〉 = 1√
2

(|00〉 ± |11〉), (36)

|�±〉 = 1√
2

(|10〉 ± |01〉). (37)

In the basis {|�+〉,|�−〉,|�+〉,|�−〉} the two-qubit Hamilto-
nian (33) reads

H2q,0 = 1
2

⎛
⎜⎝

g −ω 0 0
−ω −g 0 0
0 0 g 0
0 0 0 −g

⎞
⎟⎠, (38)

while the charge operator becomes

Q2q = 2e

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠. (39)

This representation of the coupling to the environment
evidences that neither the system-bath coupling nor the ac
driving generate transitions between the subspaces spanned
by the states {|�±〉} and {|�±〉}, respectively. Concerning
the latter states, it is even such that they are not coupled to
the environment at all, that is, they form a decoherence-free
subspace.41,42 For this reason, we henceforth focus on initial

preparations in the subspace spanned by {|�±〉}. In this
particular case, the concurrence is given by

C{|�±〉}(t) = 2|ρ0011(t)| ≡ 2|Tr{ρ(t)|00〉〈11|}|, (40)

that is, by an off-diagonal density matrix element in the product
basis. In terms of the pseudospin operators σ ′

z and σ ′
x defined

in the basis {|�+〉,|�−〉}, the Hamiltonian and the charge
operator become

H ′
2q,0 = gσ ′

z − ωσ ′
x, (41)

Q′
2q = 2eσ ′

x, (42)

respectively.
At this point, we recall Eq. (24), which relates the phase

of the outgoing signal to a particular observable of the
undriven system. Inserting the subspace Hamiltonian and
charge operator, Eqs. (41) and (42), we obtain

φ0
hf(t) = 32gα

h̄

〈σ ′

z〉0,t , (43)

with the dimensionless damping strength α = e2Z0/h̄, and

〈σ ′
z〉0,t ≡ Tr{ρ0(t)σ ′

z} = 2Re
{
ρ0

0011(t)
}
. (44)

In other words, the phase of the outgoing signal is proportional
to the real part of the density matrix element ρ0

0011(t) of the
unperturbed system. Figure 4 demonstrates that this relation
holds sufficiently well: It compares the numerically calculated
phase of the lock-in measurement, φ

exp
out (t), to the phase

φ0
hf(t) ∝ 〈σ ′

z〉0,t predicted by the measurement relation (24).
We find an excellent agreement between both quantities, while
the maximum angular visibility reaches values of around 1◦.
Thus, we find that it is possible to access directly the key
density matrix element needed to reconstruct the concurrence
C{|�±〉}(t) for the subspace {|�±〉}.

Monitoring Re{ρ0
0011(t)} already provides a lower bound for

the entanglement and may even provide a good estimate for
it. Nevertheless, it is desirable to measure also its imaginary

− 1 °

− 0.5 °

0 °

0.5 °

1 °

10 20 30 40 50 60
t [ /ω]

φ exp
out (t) °

φ 0
hf

(t) ° ∝ Re{ ρ 0
0011 (t)}

FIG. 4. (Color online) Monitoring the entanglement evolution
of two coupled qubits with initial state |�+〉. The lock-in amplified
phase φ

exp
out (blue dashed line) is compared to the estimated phase φ0

hf(t)
(red solid line), which is proportional to the real part of the density
matrix element ρ0

0011(t). The latter is needed for reconstructing the
concurrence C(t) = 2|ρ0

0011(t)| of the unperturbed system. Parameters
are 
 = 15 ω, g = 0.1 ω, A = 0.1 ω, and α = 0.08.
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part. For this purpose, one has to rotate the basis of the second
qubit by applying the phase gate

U
(2)
phase =

(
1 0
0 i

)
. (45)

This local unitary transform does not alter the two-qubit
entanglement at the time it is applied. For small values of g, it
approximately commutes with the total time evolution operator
of the system, exp(iH t/h̄); that is, [exp(iH t/h̄),U (2)

phase] = 0
for g = 0. In analogy to Eq. (44), the relation for the phase
shift then becomes

φ0
hf(t) ∝ Im

{
ρ0

0011(t)
}
. (46)

Thus, we have access to both the real and the imaginary
parts of the density matrix element ρ0

0011(t). One just needs
to initiate two copies of a pure entangled state in the subspace
{|�±〉}, apply the gate of Eq. (45) to one of them, and monitor
their dissipative time evolution. The difference between the
two-qubit dynamics in either case due to the phase gate U

(2)
phase

is relevant only at large times when the qubits approach their
stationary state. For the transient stage depicted in Fig. 4, we
have verified that the phase of the output signal indeed reflects
the imaginary part of the concurrence (not shown). This, in
turn, enables one to reconstruct the characteristics of the
concurrence C{|�±〉}(t) and thus of the amount of entanglement
between the two qubits, according to Eq. (40).

In a similar way, one finds access to the entanglement when
the system is initially prepared in the subspace |�±〉. This can
be done by applying the so-called Pauli-X gate to the second
qubit,

U
(2)
X ≡ σ (2)

x =
(

0 1
1 0

)
, (47)

effectively leaving us in the |�±〉 subspace again, from where
one can pursue as described above. Like this, it is possible
to monitor the time evolution of entanglement between other
two-qubit states, as long as the subspaces {|�±〉} and {|�±〉}
are not mixed.

Admittedly, the relation between the entanglement and φ0
hf ,

manifest in Eqs. (43) and (44), holds only if the concurrence
can be expressed as the expectation value of an observable
providing the required off-diagonal matrix element of the
density operator. Obviously, this does not always apply.
However, two qubits prepared in a Bell state represent such a
case which is of relevance and interest.

So far, we have addressed initially pure entangled states,
which constitutes an idealization and is not always achievable
in an experiment. A more realistic scenario copes with the
drawback that one starts from a mixed state which naturally
possesses less entanglement. Moreover, the concurrence is
then no longer determined by a single off-diagonal matrix
element [cf. Eq. (40)], but rather has to be computed from the
definition of the two-qubit concurrence [Eq. (35)]. In order
to test how much information about the concurrence C(t) is
nevertheless contained in the measurement signal (43), we
study the time evolution for the preparation in an unpolarized

0

0.025

0.05

0.075

0.1

0 0.05 0.1 0.15 0.2
p

δF = 1 − F

δFmax

FIG. 5. (Color online) Fidelity defect δF = 1 − F of the
concurrence curves C{|�±〉}(t) and C(t) in dependence of the degree of
depolarization, p. The function overlap is integrated over the decay
time of the two-qubit state. As discussed in the text, the upper bound
δFmax = 0.03 marks the largest acceptable value of p. All other
parameters as in Fig. 4.

mixture or Werner state,43

ρW = (1 − p)|�+〉〈�+|
+ p

3
(|�−〉〈�−| + |�+〉〈�+| + |�−〉〈�−|), (48)

where p denotes the degree of depolarization. A perfect
initial preparation in the fully entangled state |�+〉 is then
characterized by p = 0. For p > 0.5, the state is separable. In
the realm of circuit QED, a polarization degree of p = 0.1 has
already been achieved,44 while in a quantum optical context,
even the much lower value p � 0.01 could be reached.45

Our goal is now to compare the concurrence C(t) with
C{|�±〉}(t) which holds for preparation in a Bell state. As a
measure for the agreement, we use again the fidelity F defined
as the scaled overlap between both quantities, that is, by
Eq. (25) but with the phases replaced by the concurrences.
Figure 5 shows the resulting fidelity defect δF = 1 − F as
a function of the initial degree of depolarization. From a
numerical comparison of the concurrence curves C(t) and
C{|�±〉}(t) for different values of δF (not shown), we set
the threshold for the maximum acceptable fidelity defect to
δFmax = 0.03. The investigation of several examples showed
that, beyond a fidelity defect of this order, both curves no
longer appear similar. Thus, it appears that the measured phase
shift captures the concurrence dynamics satisfactorily only
for a δF below this threshold. Remarkably, the latter is not
reached until an initial depolarization of p � 0.1. From this,
we conclude that our measurement protocol allows one to gain
information about qubit-qubit entanglement in circuit QED
even for depolarized initial states.

V. COLLECTIVE QUANTUM DYNAMICS

The typical signal that can be reached with our protocol,
as regards measurements of single quantum systems, is a
phase shift of the order 1◦, as estimated in Sec. III. Of
practical interest is whether this already marks the maximum
reachable. In the following, we propose how to increase
the visibility by monitoring the collective dynamics of a
large number of identical quantum objects at the same time.
For this purpose, we exemplarily investigate an “atomic
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cloud” containing a large number of atoms as described in
Ref. 46. There, an ensemble of cold atoms interacting with a
superconducting cavity, described by the Dicke model, was
investigated. Provided that it is possible to single out one
particular atomic transition, the cloud represents an ensemble
of identical two-level atoms. This gives rise to the N -qubit
Hamiltonian

HNq,0 = ε

N∑
j=1

σ (j )
z + δ

N∑
j=1

σ (j )
x . (49)

The interaction between the electromagnetic field in the cavity
and the atoms is assumed to be dipole-like and can be cast
into the operator QNq(a + a†). Here, the collective coupling
operator QNq is chosen dimensionless and given as

QNq =
N∑

j=1

σ (j )
z =

√
NSz, (50)

and Sz = ∑N
j=1 σ

(j )
z /

√
N denotes the collective spin of the

cloud.
In the case where an open transmission line is employed in

the setup rather than the (closed) cavity, a continuum of modes
replaces the single-cavity mode in the modeling. In this sense,
the transmission line can be understood as a one-dimensional
heat bath. The dipole interaction between the cloud and the
environment becomes Hint = QNq

∑
k ck(a†

k + ak). Thus, one
naturally ends up with the Caldeira-Legget model of Eq. (1)
where, formally, ck = λkωk/Ck .

Assuming an ohmic environment, the phase shift (24) then
becomes

φ0
hf(t) = 2α

h̄

〈[[HNq,0,QNq],QNq]〉0,t , (51)

where α denotes the dimensionless damping strength, and αδ

is the coupling strength to the environment per atom. Inserting
HNq,0 and QNq into the measurement relation (51) yields

φ0
hf(t) = 4αδ

√
N

h̄

〈Sx〉0,t , (52)

with Sx = ∑N
j=1 σ

(j )
x /

√
N . Thus, the phase signal scales with√

N as compared to Eq. (29). By virtue of this relation,
monitoring the collective dynamics of N two-level systems via
the total spin paves the way toward a higher angular visibility.

Since the validity of the measurement relation (51) is
restricted to small angles, the visibility may be enhanced up
to the order 10◦. In order to be specific, we evaluate φ0

hf for
the parameters46 δ/2πh̄ = 6.8GHz, α = 6 × 10−5, 
/2π =
20 GHz. This yields an effective single-atom coupling to
the ohmic environment of αδ/2πh̄ ≈ 0.4 MHz. Despite this
very small system-bath interaction strength per atom, the
estimated phase resolution for N = 106 atoms in the cloud
reaches φ0

hf = 4◦–5◦. At the same time, atomic decoherence
is drastically reduced. Under these conditions, which are
experimentally achievable,46 the real-time monitoring of an
atomic ensemble constitutes a major improvement in angular
visibility in comparison with the single-qubit case.

VI. CONCLUSIONS

We have derived a scheme for monitoring the low-frequency
dynamics of a quantum system, where a particular focus has
been put on quantum circuits. The central idea is to couple the
quantum system capacitively to a high-frequency ac field and
to measure the reflected signal. We have shown that the phase
of the latter contains information about a particular expectation
value of the central system. In an experiment, this information
can be extracted with lock-in techniques. This scheme has
some similarities to the qubit readout via a tank circuit5,6 or
a quantum point contact.47 The essential difference is that
the proposed high-frequency driving enables a time-resolved
measurement.

The underlying relation (24) between a particular expec-
tation value and the phase shift of the reflected signal relies
on a time-scale separation. This constitutes an approximation,
which has to be validated. In so doing, we have demonstrated
that the measurement fidelity is rather good. As an example,
we have studied a qubit undergoing Landau-Zener transitions.
Owing to the time-dependent level splitting of the qubit,
its dynamics possesses a broad frequency spectrum. Thus,
it represents a more challenging test case than the coherent
oscillations considered in Ref. 10. Also for the present case,
the measurement fidelity turned out to be rather good.

A further relevant issue is the backaction of the measure-
ment on the system. The relevant backaction is decoherence,
which here is unavoidable because the driving and the
environmental degrees of freedom couple to the system via
the same mechanism. This is reflected by the fact that the
phase shift being the recorded signal is proportional to the
decoherence rate. Thus, a stronger coupling to the driving can
be achieved only at the expense of more decoherence.

Concerning possible applications in solid-state quantum
information processing, the generalization toward systems
with two or more qubits is rather important. For the case of
two qubits, we have demonstrated that it is possible to monitor
the time evolution of their entanglement, provided that one
can access the relevant density matrix elements via the phase
shift of the reflected signal. Even though the entanglement
decays due to the unavoidable decoherence, it is still possible
to monitor an appreciable number of cycles between entangled
and separable states of interacting qubits. Furthermore, our
protocol produces reliable results even in the case where the
monitored state is mixed rather than pure.

Finally, we have also addressed the question of how much
stronger the measurement signal can be if the single qubit is
replaced by a whole array of qubits that undergo the same
dynamics. The result is that the signal scales with the square
root of the number of qubits. This even leaves some room
for improving the fidelity and reducing the coupling to each
qubit. As a consequence, decoherence becomes less relevant,
which is encouraging, in particular when attempting a proof-
of-principle realization.
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