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Active motion assisted by correlated stochastic torques
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The stochastic dynamics of an active particle undergoing a constant speed and additionally driven by an overall
fluctuating torque is investigated. The random torque forces are expressed by a stochastic differential equation
for the angular dynamics of the particle determining the orientation of motion. In addition to a constant torque,
the particle is supplemented by random torques, which are modeled as an Ornstein-Uhlenbeck process with
given correlation time τc. These nonvanishing correlations cause a persistence of the particles’ trajectories and
a change of the effective spatial diffusion coefficient. We discuss the mean square displacement as a function
of the correlation time and the noise intensity and detect a nonmonotonic dependence of the effective diffusion
coefficient with respect to both correlation time and noise strength. A maximal diffusion behavior is obtained
if the correlated angular noise straightens the curved trajectories, interrupted by small pirouettes, whereby the
correlated noise amplifies a straightening of the curved trajectories caused by the constant torque.
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I. INTRODUCTION

Recent experimental studies evidenced that living beings,
such as bacteria [1], different water fleas [2], fish [3], birds [4],
and insects [5,6], are able to sustain a constant mean speed
over large time scales. Thus, these animals do not only perform
passive Brownian motion, but instead exhibit a so-called active
stochastic motion [7], occurring far from equilibrium.

Such systems form a large field of recent theoretical interest
[8,9], including the influence of fluctuations. One might relate
the sources of fluctuations on animal motion either in the food
supply [10] or in the propulsive engine [11] that drives the
unit or by assuming a molecular agitation imposed externally
outside [1]. In this approach one widely uses similarities
of the animal motion and Brownian motion, which Einstein
and Smoluchowski independently described in a probabilistic
theory [12,13]. Later on, Langevin encoded this theory of
stochastic systems into the Newtonian notation of equations of
motion [14], which present a first formulation of a stochastic
differential equation. This concept, completed by an active
element describing the self-propulsion, is nowadays widely
used for the description of fluctuating animal motion [7–11].
Of foremost interest are the specific effects of the random
impacts on the motion.

Our focus here is on agents subjected to a torque, resulting
in circular motions. This feature can be caused, for example,
by an external magnetic field with profound physiological
implications [15], or due to boundary conditions [3]. The
agents themselves may exhibit a preferred turning direction,
either caused by asymmetries in the propulsion as occurring
in the chemotaxis of sperm cells [16,17], as a search strategy
[18,19], or also by interaction with other agents, which leads
to the emergence of swarming characteristics [2,20].

We start out by studying the planar motion of active particles
with a constant velocity v0 subjected to a constant torque �.
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To take into account thermal or, more generally, the stochastic
influence of the surrounding, we first consider an additional
white Gaussian noise ξ (t) driving the angle dynamics and dis-
cuss the resulting effective diffusion coefficient Deff [21–24].
Next, we propose a more realistic model considering some
persistence in the motion. Therefore, we replace the white
Gaussian noise by a time-correlated Gaussian noise (colored
noise), namely an Ornstein-Uhlenbeck process (OUP) θ (t)
[25–30], which implies a memory for the curvature feature.
This generalization then allows applications reaching from
stochastic polymer dynamics [31] over spiral wave motion
[32] up to animal trajectories [3]. This present study using
a constant torque � can principally also be applied to a
different problem, namely the control of diffusion of electron
beams in drift chambers in the presence of additional magnetic
fields [33]. We want to mention that other noise statistics,
especially white Poissonian noise [11,30,34], are conceivable.
Their study would form an interesting future extension of the
present work.

In a driven motion with a constant speed v0 the correlations
with correlation time τc generate a persistence length lc of the
trajectory: lc = v0τc. As will be shown below, the inclusion of
correlations will hence characteristically modify the dynamics.
The resulting dynamics will be quantified by the spatial
diffusion coefficient Deff .

II. AGENTS DRIVEN BY WHITE GAUSSIAN NOISE

Our starting point is the equation of motion in two
dimensions with a constant velocity v0 and a random torque
with the mean value �. The dynamics for the position vector
�r(t) = {x(t),y(t)} derives from its velocity vector, reading

d

dt
�r(t) = v0�ev(t) = v0 (cos φ(t), sin φ(t)), (1)

with φ(t) denoting the orientation of the velocity vector.
This orientation φ(t), if governed by a constant torque and
supplemented by random fluctuations, yields a stochastic
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dynamics for φ(t)

d

dt
φ(t) = � +

√
2Dξ

v0
ξ (t) . (2)

We consider the noise ξ (t) to be a white Gaussian noise with
the corresponding noise intensity denoted by Dξ and with
vanishing mean. The 1/v0 in front of the random force is
caused by the fact that the tangential acceleration scales as v0φ̇.
It expresses the circumstance that fast agents cannot change
their direction as quickly as slower ones.

For a vanishing noise intensity the constant torque leads
to circular shaped motion, whose size is dictated by their
cyclotron radius R = v0/�. A nonvanishing noise intensity
on the other hand induces a more erratic behavior. The mean
square displacement (MSD) corresponding to this dynamics
can be directly calculated by using the shifted Gaussian
transition probability distribution P (�φ,τ ). Then the general
expression for the MSD of a particle with a constant velocity
v0, i.e.,

〈[�r(t) − �r0]2〉 = 2v2
0

∫ t

0
(t − τ )〈cos[(�φ(τ )])〉dτ, (3)

yields in the case of white Gaussian noise

〈[�r(t) − �r0]2〉white = 2v2
0

∫ t

0
(t − τ )e

− Dξ τ

v2
0 cos (�τ )dτ. (4)

For small times t a ballistic behavior ∝ t2 results while for
large times a crossover to diffusive motion ∝ t takes place.
The effective diffusion coefficient Deff in two dimensions is
related to the MSD via the well-known relation

Deff = lim
t→∞

〈[�r(t) − �r0]2〉
4t

. (5)

As a consequence we integrate Eq. (4) in the limit of large
times. Furthermore, we substitute a dimensionless integration
variable x = Dξv

−2
0 τ and obtain together with the new

parameters D0 = v4
0/(2Dξ ) and ω0 = �v2

0/Dξ an expression
for the effective diffusion coefficient, reading

Dwhite
eff = D0

∫ ∞

0
e−x cos(ω0x)dx = D0

1 + ω2
0

(6)

= Dξ

2
[(

Dξ

v2
0

)2
+ �2

] . (7)

Thus, we recover the result for a white Gaussian angle drive
with constant torque. This finding was obtained before in Ref.
[21] and has been readdressed with Ref. [22] (see [23] for more
detailed discussions). Obviously, the diffusion as a function of
the angular noise exhibits a maximum, with Deff = v2

0/(4�) at
Dξ = v2

0�, and vanishes for both Dξ = 0 and Dξ → ∞. This
is contrasted to the behavior of the diffusion without a torque,
D�=0

eff = v4
0/(2Dξ ) [35,36], which diverges for Dξ → 0.

The explanation is as follows: For small noise intensities,
agents subjected to a constant torque move in circles around
a fairly quasistationary center, whereas in the absence of a
torque the propagation proceeds along almost straight lines.
With noise included, both motion types perform diffusion.
This leads to a reduction of the mean square displacement in
case of zero torque. In contrast, agents subjected to a constant
torque start to spread over the space, which is expressed by the
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FIG. 1. (Color online) Effective diffusion coefficient Dwhite
eff ver-

sus intensity Dξ of the Gaussian white noise for different torque
strengths �, with the constant velocity v0 = 0.5 and Dξ = 0.01
within theory, see in Eq. (7).

numerator in Eq. (7), which grows linearly in Dξ . For large
noise intensities Dξ , this leads to a suppression of diffusion as
accounted for in Eq. (7).

We note that a finite torque always decreases Dwhite
eff , because

the cosine contribution in Eq. (4) suppresses the value of the
integral. This difference becomes most striking for small noise
intensity Dξ . In Fig. 1 the behavior of Eq. (7) is depicted as a
function of Dξ for several � values.

III. AGENTS DRIVEN BY AN ORNSTEIN-UHLENBECK
PROCESS

A. General outlines

As a physically more realistic extension of our model,
we next study time-correlated noise (i.e., colored noise) for
the angular drive instead of delta-correlated noise around its
mean �. Accordingly, we use an OUP as the most natural
continuous-valued colored noise [26–30]. Hence, our new
system with the constant velocity v0 and the torque � is
described by the modified angle dynamics, reading

φ̇(t) = � + 1

v0
θ (t), (8)

θ̇ (t) = − 1

τc

θ (t) +
√

2Dξ

τ n
c

ξ (t). (9)

This colored noise dynamics assumes one additional auxiliary
process, namely the OUP θ (t) with the correlation time τc,
the Gaussian white noise ξ (t), and the corresponding noise
intensity Dξ/τ

n
c .

Note that we included here a dependence of the correlation
time to the power n in the noise intensity implying a corre-
sponding change in dimension for Dξ as n changes. In doing
so, several different physical features can be addressed with
no need to perform additional calculations. For example, for
n = 0 the random variable θ (t) merges with the Wiener process
W (t) in the limit of infinite correlation times τc → ∞. In
specific detail: θ̇ = √

2Dξξ (t) ⇒ θ (t) = √
2Dξ

∫ t
ξ (t ′)dt ′ =√

2DξW (t). On the other hand, the case with n = 1 delivers a
variance of θ , which is independent of the correlation time [30].
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From a theoretical point of view, the case with n = 2 is of
utmost interest. The limit τc → 0 yields Gaussian white noise,
i.e., θ (t) → √

2Dξξ (t), and thus allows a comparison with the
findings taken from Sec. II.

The corresponding θ -correlation function reads in the
stationary limit

〈θ (t)θ (0)〉s = τ 1−n
c Dξe

− |t |
τc , (10)

depicting a strong n dependence of the variance (i.e., the factor
in front of the exponential).

To study the angular dynamics φ(t), we use the results of
Ornstein and Uhlenbeck [25], which were later generalized
by Chandrasekhar to motion in a higher dimensional space
[37]. Therewith we can write the probability distribution in
the stationary limit for a transition during τ from φ1 to φ2 and
conditioned by θ1 as

POUP(φ2,τ |φ1,θ1) =
√

v2
0

2πτ 3−n
c D(τ )

exp

{
−v2

0

[
φ2 − φ1 − �τ − θ1τc

(
1 − e− τ

τc

)]2

2τ 3−n
c D(τ )

}
. (11)

Here, the mean square increment of the angle holds

D(τ ) = Dξ

(
2τ

τc

− 3 + 4e− τ
τc − e− 2τ

τc

)
. (12)

This resulting Gaussian expression can be directly used to
calculate the mean square displacement of our angle dynamics
from Eq. (3), yielding with stationary Gaussian distributed
initial values φ1 and θ1

〈[�r(t) − �r0]2〉OUP = 2v2
0

∫ t

0
(t − τ )e−
(τ ) cos (�τ )dτ . (13)

The function in the exponent reads


(τ ) = 
0

(
τ

τc

− 1 + e− τ
τc

)
, (14)

wherein we define


0 = τ 3−n
c Dξ

v2
0

(15)

as a parameter that scales monotonously with τc and Dξ

and can therefore be used to discuss the asymptotic behavior
later on.

Without constant torque (� = 0) and with n = 0 this
reproduces the result of [38], where the motion of fish
was analyzed within a similar model. Furthermore, Eq. (13)
exhibits a crossover from a ballistic behavior ∝ t2 to diffusive
motion ∝ t . This can be seen by studying the following two
temporal limits

lim
t→0

d

dt
〈[�r(t) − �r0]2〉OUP = 2 v2

0 t , (16)

lim
t→∞

d

dt
〈[�r(t) − �r0]2〉OUP = 2v2

0

∫ ∞

0
e−
(τ ) cos (�τ ) dτ.

(17)

The right-hand side of Eq. (17) is obviously a nonvanishing
constant, which can be identified with the effective diffusion
coefficient via Eq. (5), yielding our central finding, namely

DOUP
eff = v2

0

2

∫ ∞

0
e−
(τ ) cos (�τ ) dτ. (18)

For further analytical discussions it will be helpful to use
a dimensionless representation of Eq. (18). To this end, we

substitute x = τ
τc


0 and introduce the rescaled variables

Dc = v4
0

2τ 2−n
c Dξ

and ωc = v4
0�

τ 2−n
c Dξ

, (19)

yielding

DOUP
eff = Dc

∫ ∞

0
e−xe
0(1−e−x/
0 ) cos (ωcx) dx. (20)

In comparison with the results for a white Gaussian angle drive
[cf. Eq. (7)] we notice different definitions of the constants Dc

and ωc and an additional exponential in the integrand, namely
e
0(1−e−x/
0 ). The latter converges to unity for 
0 → 0 and
increases monotonously with 
0. For n = 2, the parameters
ωc and Dc coincide with those defined in the white noise case,
respectively, with D0 and ω0. In this case 
0 describes the
deviation from the results under white noise.

Also note that the integral in Eq. (20) can be expressed
in a serial expansion. Substituting first z = 
0 exp(−x/
0)
as a new variable and expanding afterwards the remaining
exponential under the integral in a Taylor series, one can
calculate the integral in each summand, yielding

DOUP
eff = Dce


0

∞∑
k=0

(−1)k

k!

k+1

0


0 + k

(
0 + k)2 + (
0ωc)2
. (21)

The asymptotic behavior of the diffusion coefficient can be
readily derived: For vanishingly small 
0, the first item in the
sum with k = 0 dominates. Hence we obtain

lim

0→0

DOUP
eff = lim


0→0

Dc

1 + ω2
c

, (22)

which in particular recovers the white noise result of Eq. (7)
for the case n = 2.

The opposite asymptotics of large 
0 can be inspected by
looking at the original integral definition in Eq. (20), (see
also [38]) for the case without an applied torque and n= 0. In
this limit the major contributions to the integral stem from
values at the lower boundary x ∼ 0. Upon expanding the
double exponent until the second order finds

lim

0→∞

DOUP
eff ∝ lim


0→∞
Dc

√

0 exp

(
−
0ω

2
c

2

)
, (23)

which tends to zero much faster compared to the case without
torque with ωc = 0.
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B. Asymptotic behavior in the absence of torque: � = 0

First we study the crossover between the ballistic and
the diffusive behavior. Toward this aim we expand the two
exponentials in Eq. (13). A case differentiation, due to the
two corresponding exponential time dependencies, yields two
parameter-dependent regimes where the crossover between
ballistic motion and diffusion is realized

if 
0 < 1 → tcross ≈ v2
0τ

n−2
c

Dξ

, (24)

if 
0 > 1 → tcross ≈
√

v2
0τ

n−1
c

Dξ

. (25)

These crossovers are corroborated with our simulation results
and the numerical evaluations of Eq. (13) in Fig. 2. We see
that the ratio of crossover times where 
0 > 1 holds (with
the assumed parameters this is true for τc � 3), behaves
according to tcross(τc)/tcross(10τc) = √

10. In case 
0 < 1, the
ratio of crossover times increases severely to tcross(τc)/tcross

(10τc) = 102.
The different crossover behaviors thus reflect the different

scaling properties of Deff for the different regimes of 
0 in
agreement with the result that

if 
0 < 1 → Deff ≈ v4
0τ

n−2
c

2Dξ

, (26)

if 
0 > 1 → Deff ≈ v3
0

2

√
τ n−1
c

Dξ

. (27)

This all is in perfect accordance to the numerical results, as
depicted in Fig. 3. We notice the strong qualitative changes in
the motion of agents that are induced by different n. While for
n = 0 and n = 1, the effective displacement decreases with the
correlation time, it even increases with τc for n = 2. That the
diffusion coefficient increases unbounded with ∝ √

τc can be
seen also in Eq. (20) where, as mentioned in the last paragraph
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FIG. 2. (Color online) Mean square displacement 〈[�r(t) − �r0]2〉
for the dynamics given with Eqs. (8) and (9) for � = 0, Dξ = 0.01,
v0 = 0.5, and with n = 0. Simulations (points) agree well with the
theory [Eq. (13); dashed lines]. The left bar is ∝ t2, the right bar is
∝ t . For τc � 3, the ratio of subsequent crossover times behaves
according to tcross(τc)/tcross(10τc) = √

10, otherwise according to
tcross(τc)/tcross(10τc) = 102.
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FIG. 3. (Color online) The effective diffusion coefficients Deff

are depicted as a function of the correlation time τc for several n

values within simulations (points) and theory [Eq. (13); lines]. Other
parameters as in Fig. 2. While decreasing for n = 0 and approaching
a nonzero constant for n = 1, Deff diverges ∝ √

τc for n = 2
[see Eq. (27)].

above, the integrand increases monotonously with 
0, which
is the only parameter dependent on τc for n = 2.

On the other hand, regarding the limit τc → 0, Deff diverges
for n < 2. Only for n = 2, the diffusion coefficient remains
finite and converges to the result of Mikhailov and Meinköhn
[36]. We notice that the effective noise intensity to which
our particles are subjected (i.e., Dξ/τ

n
c ) increases with n for

correlation times smaller than one, and decreases with n for
correlation times larger than one. For τc = 1 the diffusion
coefficient of the three cases merge to the same value. In
case of n = 1,2 for smaller correlation times an effectively
larger noise changes the orientation of the particles repeatedly
compared to n = 0. That is why the diffusion coefficient is
reduced and is largest for n = 0. On the other hand, the
effective noise intensity acts in the opposite way for τc > 1
leading to a reduced diffusion in case of n = 0.

Figure 4 depicts different trajectories for a vanishing torque
and n = 1 within the τc region where Deff changes only
marginally (see Fig. 3). Thus, we recognize qualitative changes
of the motion, which are just induced by the growth in corre-
lation time, while the variance of the OUP Eq. (10) stays con-
stant. One sees that the structure of the trajectory changes from
an uncorrelated random sequence to a waltzlike motion where
longer straight pieces of the trajectory are interrupted by left-
and right-turning pirouettes. We can interpret this behavior as
an increment of the trajectories’ persistence as τc increases.

Figure 5 depicts trajectories for n = 2, while � = 0 still
holds. Conforming to the behavior shown in Fig. 3, the
displacement slightly increases for the larger correlation time,
due to the decreasing variance [see Eq. (10)], which induces a
straighter motion. Therefore, the curves also appear smoother
for increasing τc.

C. Phenomena of applying finite torque: � �= 0

We next turn to the effects arising from the application
of a constant torque. The effective diffusion coefficients are
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FIG. 4. Spatial trajectory within an angular OUP dynamics with
constant variance n = 1 for different correlation times τc with
� = 0, Dξ = 0.01, v0 = 0.5, and the time length tl = 1000. The
trajectories changes qualitatively from a random way being unori-
ented each moment to an agent performing a waltzlike dance. The
effective diffusion coefficient remains unchanged for the shown cases
(cf. Fig. 3).

displayed in Fig. 6 for different n values, together with
simulation results as a function of increasing color τc. We
observe that the time correlation induces upon varying τc a
maximal mean square displacement at a finite value of the
correlation time for all three cases. A similar graph could be
also displayed for the dependence on the noise intensity Dξ

(not shown, see also below).
In case that n = 0, where the integrated noise intensity

in the OUP dynamics becomes independent of the color τc,
the maximum is most pronounced. Corresponding trajectories
with constant torque are shown in Fig. 7. The curvature of these
trajectories reflects the combined influence of the constant
torque and of the temporal correlated random torque forces
inherent in θ (t).

For small color τc the motion is dominantly circular with
small random perturbations. This can be understood in view of
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FIG. 5. Spatial trajectories of an OUP-driven angle without
additional torque (� = 0) at constant n = 2, Dξ = 0.01, and v0 = 0.5
for different correlation times τc and the time length tl = 1000. We see
a slight growth in the effective displacement for the larger correlation
times as also presented in Fig. 3.
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FIG. 6. (Color online) Effective diffusion coefficient Deff versus
correlation time τc for several n-values, a constant torque � = 0.1,
the velocity v0 = 0.5 and Dξ = 0.01. Simulations (points) agree well
with the theory (lines).

Eq. (9), since small correlation times imply strong relaxation
so that random changes become essentially white noise with

θ (t) ∼
√

2Dξτ
2−n
c ξ (t) . (28)

Consequently, in the cases that n = 0 and n = 1 the white
noise sources tend to vanish. The trajectories follow the motion
with the constant torque � along trajectories with a fixed
curvature ∝ 1/� and therefore Deff decreases. In contrast to
this behavior, Eq. (28) shows that we recover for n = 2 a white
Gaussian angle drive in the limit of small correlation times.

For moderate correlation times a modified curled structure
emerges. For the stronger correlated systems one observes
longer stays at a certain curvature θ mixed with longer
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FIG. 7. Spatial trajectories of an OUP-driven angle with an
additional angular force � = 0.1, Dξ = 0.01, v0 = 0.5, and with
n = 0, for different correlation times τc and the time length tl = 500;
n = 0 is used in order to obtain the largest τc dependence of the
displayed graphs (cf. Fig. 6).
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straightening segments where the random torque and the
constant torque compensate each other. Thus we retrieve the
pirouettes, but now with the preferred curling orientation of
the applied constant torques. Thereby the straight segments
interrupted by the strongly curling pirouettes give rise to the
maximal diffusive behavior and the resonancelike structure
shown with Fig. 6.

Eventually, for very large correlation times τc we find a
decrease of the effective diffusion coefficient, much like in
the situation without torque [see Fig. (3)]. Deff converges to
zero for n = 0 and to a nonvanishing constant for n = 1. The
case n = 2 leads [i.e., due to Eq. (9)] to a dominant torque in
the limit of large τc, so that the effective diffusion coefficient
decreases toward 0.

These asymptotic behaviors for small (i.e., 
0 → 0) and
large correlation times (i.e., 
0 → ∞) in Fig. 6 can be
discussed analytically in greater detail: According to Eqs. (22)
and (23) we arrive at the following limiting behaviors:

if 
0  1 → Deff ≈ v4
0τ

n−2
c

2Dξ

1

1 +
(

v4
0�

τ 2−n
c Dξ

)2 , (29)

if 
0 � 1 → Deff ≈ v3
0

2

√
τ n−1
c

Dξ

e
− v6

0 τ
n−1
c �2

2Dξ . (30)

Thus, we find a vanishing effective diffusion coefficient
for correlation times approaching zero if n ∈ {0,1} and one
converging to Dwhite

eff if n = 2. For large correlation times τc,
on the other hand, we find with 
 � 1 that DOUP

eff converges
toward zero if n = 2 or n = 0. In distinct contrast, Deff

approaches a constant value for n = 1.
In comparison to the asymptotic behavior without constant

torque [cf. Eqs. (26) and (27)] we notice additional multipliers
with dependence on � on the right side of Eqs. (29) and (30).
Both multipliers map onto the interval (0,1). Thus, the effective
diffusion coefficient always decreases with a constant torque
� �= 0. This is depicted in Fig. 8 for n = 0. As both limits for
large and small correlation times fall to zero, a maximal value
for Deff occurs, which not only decreases for growing � but
also shifts to larger τc.
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FIG. 8. (Color online) Effective diffusion coefficient Deff versus
correlation time τc for different torques � at Dξ = 0.01, v0 = 0.5,
and n = 0, within simulations (points) and in theory [Eq. (13); lines].
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n at the velocity v0 = 0.5 and the torque � = 0.1. The inset shows
the maximal Deff for these parameter pairs, which does not depend
on n.

We now inspect how noise and correlation time influence
each other for different n. We have seen that the effective
diffusion constant exhibits a maximum for a finite nonzero
correlation time. Likewise, it has a maximum for a finite
nonzero noise intensity, as seen from the results with white
noise (see Fig. 1). If we follow the ridge line of the maxima for
fixed � in the (τc,Dξ ) parameter space, we obtain functional
dependencies for different n values, as depicted with Fig. 9.
The inset shows the height at the ridge line (i.e., the value for
the maximal effective diffusion coefficient as function of the
correlation time).

For small �, we find that the optimal noise intensity Dmax
ξ ,

which maximizes the effective diffusion coefficient at a given
correlation time, behaves according to Dmax

ξ ∝ τ n−2
c . Further

analysis shows that for increased � this relation gradually
shifts to Dmax

ξ ∝ τ n−1−ε
c , with a small finite ε. This shift can

be justified by the denominator in Eq. (21) in which the second
contribution dominates for larger �. Figure 9 depicts this
dependence for an intermediate value of �, since we observe a
roughly linear, but still sublinear, connection for n = 2, which
converges to the value given for a white angle drive as τc → 0.
For n = 0 and n = 1, we recognize the expected reciprocal
connection.

If we follow the ridge line, at a given correlation time each
has the same height for different n. We can understand this
by considering that the parameters 
0, ωc, and Dc, which
contribute to the effective diffusion coefficient in Eq. (20), are
all containing the same factor Dξτ

−n
c as sole n dependence

[cf. Eqs. (15) and (19)]. Hence, according to the discussion
above, Deff does not depend on n anymore while regarding
Dmax

ξ .

IV. CONCLUSIONS

With this work the stochastic dynamics of active particles
with a constant speed that are additionally driven by an overall
fluctuating torque has been studied. The cases of correlated and
uncorrelated angle dynamics were considered and analytical
results for the mean square displacement were derived. We
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discussed in this context the dependencies on characteristic
parameters of our system, such as the correlation time τc and
the corresponding noise intensity Dξ , to find maxima in the
mean square displacement. With respect to the correlation
time and to the noise intensity a maximum of the effective
diffusion coefficient Deff was identified. We also gave a
qualitative explanation of the maximal spreading of the agents
by an inspection of the individual trajectories. The random
composites of stretched and curved parts in the trajectories
can give rise to an increased mean square displacement.

It was also shown that the constant torque decreases
the mean square displacement. Therefore, the persistence of
motion and presence of a permanent torque are two appropriate
instruments to optimize the two-dimensional motion of active
agents.

In view of the fact that the displacement of an agent forms
a strong link between theoretical and experimental studies of
active particles, we hope that further work within this field
benefits from our theoretical reasoning presented here.

Identifying the trajectories of our studied dynamics with
the structure of a macromolecule, spinoff applications in the
field of polymer physics are conceivable. Especially, the white
Gaussian angle drive without a torque has its polymer analog in

the form of the famous wormlike chain model [31]. Moreover,
the similarities between the paths in Figs. 7 and 4 and corre-
lated animal movements are striking for the case of animals,
whose angle dynamics is determined by the past states.

Finally, a useful extension of our model would be the
adaptation to more realistic biological systems by accounting
as well for an additional velocity dynamics v(t). Simple
velocity models, wherein one can decouple the v and φ

dynamics, are leading thereby directly to the discussion in
[39], exhibiting a multicrossover structure of the mean square
displacement, which is due to the different time scales within
those systems.
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[16] B. M. Friedrich and F. Jülicher, New J. Phys. 10, 123025
(2008).
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