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Biased Brownian motion of point-size particles in a three-dimensional tube with varying cross-

section is investigated. In the fashion of our recent work, Martens et al. [Phys. Rev. E 83, 051135

(2011)] we employ an asymptotic analysis to the stationary probability density in a geometric

parameter of the tube geometry. We demonstrate that the leading order term is equivalent to the

Fick-Jacobs approximation. Expression for the higher order corrections to the probability density is

derived. Using this expansion orders, we obtain that in the diffusion dominated regime the average

particle current equals the zeroth order Fick-Jacobs result corrected by a factor including the

corrugation of the tube geometry. In particular, we demonstrate that this estimate is more accurate

for extremely corrugated geometries compared with the common applied method using a

spatially-dependent diffusion coefficient D(x, f) which substitutes the constant diffusion

coefficient in the common Fick-Jacobs equation. The analytic findings are corroborated with the

finite element calculation of a sinusoidal-shaped tube. VC 2011 American Institute of Physics.

[doi:10.1063/1.3658621]

Particle transport in micro- and nanostructured channel

structures exhibits peculiar characteristics which differ

from other transport phenomena occurring for energetic

systems. The theoretical modeling involves Fokker-

Planck type dynamics in three dimensions which cannot

be solved for arbitrary boundary conditions imposed by

the geometrical restrictions. Recently, much effort is

drawn on a reduction of the complexity of the problem

resulting in the so-called Fick-Jacobs approximation in

which (infinitely) fast equilibration in certain spatial

directions is assumed. Within the present manuscript, we

derive a reduction method which (i) corresponds in

zeroth order in the expansion parameter, which describes

the corrugation of the tube wall, to the celebrated

Fick-Jacobs result and (ii) extends the validity of

the Fick-Jacobs approximation towards extremely

corrugated tube structures.

I. INTRODUCTION

The transport of large molecules and small particles that

are geometrically confined within zeolites,2–4 biological5 as

well as designed nanopores,6–8 channels or other quasi-one-

dimensional systems attracted attention in the last decade.

This activity stems from the profitableness for shape and size

selective catalysis,9,10 particle separation and the dynamical

characterization of polymers during their translocation.11–15

In particular, the latter theme which aims at the experimental

determination of the structural properties and the amino acid

sequence in nucleic acids when they pass through narrow

openings or the so-called bottlenecks, comprises challenges

for technical developments of nanoscaled channel

structures.14–17

Along with the progress of the experimental techniques

the problem of particle transport through corrugated channel

structures containing narrow openings and bottlenecks

has given rise to recent theoretical activities to study diffu-

sion dynamics occurring in such geometries.18 Previous

studies by Jacobs19 and Zwanzig20 ignited a revival of

doing research in this topic. The so-called Fick-Jacobs
approach,18–20 accounts for the elimination of transverse sto-

chastic degrees of freedom by assuming a (infinitely) fast

equilibration in those transverse directions. The theme found

its application for biased particle transport through periodic

3D planar channel structures1,21–25 as well as for tubes7,26–28

exhibiting smoothly varying side-walls.

Beyond the Fick-Jacobs (FJ) approach, which is suitably

applied to channel geometries with smoothly varying

side-walls, there exist yet other methods for describing the

transport through varying channel structures like cylindrical

septate channels,29–32 tubes formed by spherical compart-

ments33,34 or channels containing abrupt changes of cross

diameters.35,36

In a recent work,1 we have provided a systematic treat-

ment by using a series expansion of the stationary probability

density in terms of a geometric parameter which specifies

the channel corrugation for biased particle transport proceed-

ing along a planar three-dimensional channel exhibiting

periodically varying, axis symmetric side-walls. We have

demonstrated that the consideration of the higher order

corrections to the stationary probability density leads to a

substantial improvement of the commonly employed Fick-

Jacobs approach towards extremely corrugate channels. The

object of this work is to provide an analytic treatment to bi-

ased Brownian motion in cylindrical three-dimensional tubes
with periodically varying radius.a)Electronic mail: steffen.martens@physik.hu-berlin.de.
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In Sec. II, we introduce the model system: A Brownian

particle in a confined tube geometry with periodically modu-

lated boundaries. The central findings, namely the analytic

expressions for the probability density are presented in

Sec. III. It turns out that the latter scales linearly with the

particle velocity derived within the FJ approach, cf. Sec. IV.

In Sec. V, we calculate the particle mobility and the diffu-

sion coefficient and we employ our analytical results to a

tube with sinusoidal varying cross-section. Section VI sum-

marizes our findings.

II. TRANSPORT IN CONFINED STRUCTURES

The present paper deals with biased transport of over-

damped Brownian particles in a cylindrical tube with peri-

odically varying cross-section, respectively, radius R(x).

A sketch of a tube segment with period L is shown in Fig. 1.

The particles budge within a static fluid with constant fric-

tion coefficient g. As the particle radius (assumed to be

point-like) is small compared to the tube radius, hydrody-

namic particle-particle interactions as well as hydrodynamic

particle-wall interactions can safely be neglected. Further the

particles are subjected to an external force with static magni-

tude F acting along the longitudinal direction of the tube ex,

i.e., the corresponding potential is U(x, r, /)¼�Fx.

The evolution of the probability density P(q, t) of find-

ing the particle at the local position q¼ (x, r, /)T at time t is

governed by the three-dimensional Smoluchowski equa-

tion,37,38 i.e.,

@tPðq; tÞ þ rq � Jðq; tÞ ¼ 0; (1a)

where

J q; tð Þ ¼ F

g
P q; tð Þex �

kBT

g
rqP q; tð Þ (1b)

is the probability current J(q, t)¼ (Jx, Jr, J/)T associated to

the probability density P(q, t). The Boltzmann constant is kB

and T refers to the environmental temperature. At the tube

wall the probability current obeys the no-flux boundary con-

dition (bc) caused by the impenetrability of the tube walls,

viz. J(q, t) � n¼ 0, where n is the out-pointing normal vector

at the tube walls. For a tube with radius R(x) the bc reads

R0ðxÞ Jx q; tð Þ ¼ Jr q; tð Þ; for r ¼ RðxÞ: (2a)

The prime denotes the derivative with respect to x. As a

result of symmetry arguments the probability current must

be parallel with the tube’s centerline at r¼ 0

Jr q; tð Þjr¼0 ¼ 0: (2b)

Further the probability density satisfies the normalization

condition
Ð

unit�cell
Pðq; tÞd3q ¼ 1 as well as the periodicity

requirement P(xþm L, r, /, t)¼P(x, r, /, t), 8m 2 Z.

Since the external force acts only in longitudinal direc-

tion the probability density P(q, t) is radial symmetric. This

allows a reduction of the problem’s dimensionality from 3D

to 2D by integrating Eq. (1a) over the angle /; yielding

@tP x; r; tð Þ ¼ kBT

g
@x e

�Uðx;rÞ
kBT @x e

Uðx;rÞ
kBT Pðx; r; tÞ

� �h i
þ kBT

g
1

r
@r r@rPðx; r; tÞ½ �; (3)

where the two-point probability density is defined as

Pðx; r; tÞ ¼ 1

2p

ð2p

0

d/ P x; r;/; tð Þ: (4)

Integrating Eq. (3) further over the cross-section and taking

the boundary conditions Eqs. (2) into account, one gets

@tPðx; tÞ ¼
kBT

g
@x

ðRðxÞ

0

dr r e�
Uðx;rÞ
kBT @x e

Uðx;rÞ
kBT Pðx; r; tÞ

� �h i
: (5)

Thereby the marginal probability density reads

Pðx; tÞ ¼ 1

2p

ðRðxÞ

0

dr r

ð2p

0

d/P x; r;/; tð Þ: (6)

In Ref. 1, we present a perturbation series expansion in terms

of a geometric parameter for the problem of biased Brownian

dynamics in a planar three-dimensional channel geometry.

Below we apply this method for Brownian motion in cylin-

drical three-dimensional tubes. In doing so we introduce

dimensionless variables. We measure the longitudinal length

in units of the period length L, viz. �x ¼ x=L. For the rescaling

of the r -coordinate, we introduce the dimensionless aspect

parameter e, i.e., the difference of the widest cross-section of

the tube, i.e., DX, and the most narrow constriction at the

bottleneck, i.e., Dx, in units of the period length, yielding

e ¼ DX� Dxð Þ
L

: (7)

The dimensionless parameter e characterizes the deviation of

the boundary from the straight tube corresponding to e¼ 0.

Several authors considered different choices for the expan-

sion parameter like the averaged half width25,39,40 or the

FIG. 1. Sketch of a segment of a cylindrical tube with sinusoidally varying

radius R(x) that is confining the motion of the overdamped, point-like

Brownian particle. The periodicity of the tube structures is L, the minimal

and maximal tube widths are Dx and DX, respectively. The constant force F
pointing in the direction of the tube is applied on the particles.
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ratio of an imposed anisotropy of the diffusion constants

e2¼Dy/Dx
24.

We next measure, for the case of finite corrugation

e= 0, the radius r in units of eL, i.e., r ¼ eL�r and, likewise,

the boundary function R(x)¼ eL h(x). Time is measured in

units of s¼L2g/(kBT) which is twice the time the particle

requires to overcome diffusively, the distance L at zero bias

F¼ 0, i.e. �t ¼ t=s. The potential energy is rescaled by the

thermal energy kBT, i.e., for the considered situation with a

constant force component in longitudinal direction, one gets

U :¼ Uðx; rÞ ¼ �Fx=ðkBTÞ ¼ �f �x, with the dimensionless

force magnitude21,23:

f ¼ FL

kBT
: (8)

After scaling the probability distribution reads p �q;�tð Þ
¼ e2L3P q; tð Þ. Below we shall omit the overbar in our

notation.

Further we concentrate only on the steady state, i.e.,

limt!1 p(x, r, t):¼ pst(x, r), which is in fact, the only state

necessary for deriving the key quantities of particle transport

like the average particle velocity _xh i

_xh i � lim
t!1

xðtÞh i
t
¼
ð1

0

dx

ðhðxÞ

0

dr r Jx
stðx; rÞ; (9)

and the effective diffusion coefficient Deff in force direction.

The latter is given by

Deff ¼ lim
t!1

x2ðtÞ
� �

� xðtÞh i2

2t
; (10)

and can be calculated by means of the stationary probability

density pst(x, r) using an established method taken from

Ref. 41.

At steady state, the Smoluchowski equation Eq. (3) in

dimensionless units becomes

e2@x e�U@x eUpstðx; rÞ
� �� 	

þ 1

r
@r r@rpstðx; rÞ½ � ¼ 0; (11)

and the no-flux boundary conditions Eqs. (2) read

0 ¼ @rpstðx; rÞ � e2h0ðxÞe�U@x eUpstðx; rÞ
� �� 	

r¼hðxÞ; (12a)

0 ¼ @rpstðx; rÞjr¼0: (12b)

III. ASYMPTOTIC ANALYSIS

We apply the asymptotic analysis1,40 to the problem

stated by Eq. (11) and Eqs. (12). In doing so, we use for the

stationary probability density pst(x, r) (the index st will be

omitted in the following) the ansatz

pðx; rÞ ¼
X1
n¼0

e2npnðx; rÞ (13)

in the form of a formal perturbation series in even orders of

the parameter e. Substituting these expressions into Eq. (11),

we find

0 ¼ 1

r
@r r@rp0ðx; rÞ½ � þ

X1
n¼1

e2n



1

r
@r r@rpnðx; rÞ½ �

þ @x e�U@x eUpn�1ðx; rÞ
� �� 	�

: (14)

The no-flux bc at the tube walls r¼ h(x), cf. Eq. (12a), turns

into

0 ¼ @rp0ðx; rÞ þ
X1
n¼1

e2n @rpnðx; rÞf

�h0ðxÞe�U@x eUpn�1ðx; rÞ
� ��

; (15a)

and the bc at the centerline of the tube r¼ 0, cf. Eq. (12b),

then reads

0 ¼
X1
n¼0

e2n@rpnðx; rÞ: (15b)

We claim that the normalization condition for the probability

density p(x, r) corresponds to the zeroth solution p0(x, r) that

is normalized to unity,

p0ðx; rÞh i ¼
ð1

0

dx

ðhðxÞ

0

dr r p0ðx; rÞ ¼ 1: (16)

Consequently the higher orders in the perturbation series

have zero average, hpn(x, r)i¼ 0, n¼ 1, 2, 3, …. Further each

order pn has to obey the periodic boundary condition

pn (xþm, r)¼ pn (x, r), 8m 2 Z.

In Sec. III A, we demonstrate that the zeroth order of the

perturbation series expansion coincides with the Fick-Jacobs

equation.19,20 Referring to21,42 an expression for the average

velocity _xh i0 is known. Moreover, in Sec. III B, the higher

order corrections to the probability density are derived.

Using those results we are able to obtain corrections, see in

Sec. V B, to the average velocity beyond the zeroth order

Fick-Jacobs approximation presented in Sec. III A.

A. Zeroth order: The Fick-Jacobs equation

For the zeroth order, Eq. (14) reads

0 ¼ 1

r
@r r@rp0ðx; rÞ½ � (17a)

supplemented with the corresponding no-flux boundary con-

dition at r¼ 0 as well as at r¼ h(x)

0 ¼ @rp0ðx; rÞ: (17b)

We make the ansatz p0(x, r)¼ g(x) e�U where g(x) is an

unknown function which has to be determined from the sec-

ond order O(e2) balance given by Eq. (14):

0 ¼ @x e�Ug0ðxÞ
� �

þ 1

r
@r r @r p1ðx; rÞð Þ½ �: (18)

Integrating the latter over the radius r and taking the no-flux

boundary conditions Eqs. (15) into account, one immediately

obtains
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0 ¼ @x e�AðxÞg0ðxÞ
� �

: (19)

The effective entropic potential A(x) is defined by

e�AðxÞ ¼
ðhðxÞ

0

dr r e�Uðx;rÞ; (20)

and for the problem at hand the latter looks explicitly

AðxÞ ¼ �fx� ln
h2ðxÞ

2


 �
: (21)

Note, that upon an irrelevant additive constant, i.e. ln(2p),

the effective entropic potential corresponds to that given in

Ref. 19.

Then the normalized stationary probability density

within the zeroth order reads37

p0ðx; rÞ ¼ e�UgðxÞ ¼
e�Uðx;rÞ Ð xþ1

x eAðx0Þdx0Ð 1

0
dxe�AðxÞ

Ð xþ1

x eAðx0Þdx0
; (22)

and, moreover, the marginal probability density, cf. Eq. (6),

becomes

p0ðxÞ ¼ e�AðxÞgðxÞ: (23)

Expressing next g(x) by p0(x), see Eq. (19), then yields the

celebrated stationary Fick-Jacobs equation

0 ¼ @x e�AðxÞ@x eAðxÞp0ðxÞ
� �h i

(24)

derived previously in Refs. 20 and 43.

Thus, we demonstrate that the leading order term of the

asymptotic analysis is equivalent to the FJ-equation. In the

FJ equation the problem of biased Brownian dynamics in a

confined 3D geometry is replaced by Brownian motion in

the tilted periodic one-dimensional potential A(x). In general,

the stationary probability density of finding an overdamped

Brownian particle budging in a tube with periodically vary-

ing cross-section is sufficiently described by Eq. (24) as long

as the extension of the bulges of the tube structures is small

compared to the periodicity, i.e. e� 1.

Then the average particle current is calculated by inte-

grating the probability flux Jx
0 over the unit-cell42,44,45

_xðf Þh i0 ¼
ð1

0

dx

ðhðxÞ

0

dr r Jx
0ðx; rÞ

¼ 1� e�fÐ 1

0
dx eAðxÞ

Ð x
x�1

e�Aðx0Þdx0
: (25)

In the spirit of linear response theory, the mobility in dimen-

sionless units is defined by the ratio of the mean particle cur-

rent Eq. (25) and the applied force f, yielding

l0 fð Þ ¼ _xðf Þh i0
f

: (26)

Note, that in order to obtain the mobility in physical units

one has to multiply l0 with the mobility for unconfined par-

ticles, i.e. 1/g.

Further, resulting from the normalization condition

Eq. (16), the average particle velocity Eq. (9) simplifies to

_xh i ¼ _xh i0�
X1
n¼1

e2n @xpnðx; rÞh i: (27)

Therefore, we derive that the average particle current is com-

posed of (i) the Fick-Jacobs result _xh i0, cf. Eq. (25) and (ii)

becomes corrected by the sum of the averaged derivatives of

the higher orders pn(x, r). We next address the higher order

corrections pn(x, r) of the probability density which become

necessary for more corrugated structures.

B. Higher order contributions to the Fick-Jacobs
equation

According to Eq. (14), one needs to iteratively solve

1

r
@r r@rpnðx; rÞ½ � ¼ L pn�1ðx; rÞ; n � 1; (28)

under consideration of the boundary conditions Eqs. (15). In

Eq. (28), we make use of the operator L, reading

L ¼ f@x � @2
x

� �
. Each solution of the second order partial

differential equation Eq. (28) possesses two integration con-

stants dn,1 and dn,2. The first one, dn,1, is determined by the

no-flux bc at the centerline r¼ 0, cf. Eq. (15b), while the sec-

ond provides the zero average condition hpn(x,r)i¼ 0, n� 1.

For the first order correction, the determining equation

reads

1

r
@r r@rp1ðx; rÞ½ � ¼ 2 _xh i0@x

1

h2ðxÞ


 �
; (29)

and after integrating twice over r, we obtain

p1ðx; rÞ ¼ � _xh i0
h0ðxÞ
h3ðxÞ


 �
r2: (30)

Hereby, as requested above, the first integration constant

d1,1(x) is set to 0 in order to fulfill the no-flux bcs, and the

second must provide the normalization condition Eq. (16),

i.e. d1,2¼ 0. One notices that the first correction to the proba-

bility density becomes positive if the confinement is con-

stricting, i.e. for h0(x)< 0 and _xh i0 6¼ 0. In contrast, the

probability density becomes less in unbolting regions of the

confinement, i.e. for h0(x)> 0. Please note that the first order

correction scales linearly with the average particle current

_xh i0. Overall, the break of spatial symmetry observed within

numerical simulations in previous works22,46 is reproduced

by this very first order correction. Particularly, with increas-

ing forcing, the probability for finding a particle close to the

constricting part of the confinement increases, cf. Refs. 22

and 46.

Upon recursively solving, the higher order corrections,

n� 1, are given by
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pn x; rð Þ ¼ Lnp0ðx; rÞ
r2n

2nn!ð Þ2
þ dn;2;

¼ 2 _xh i0
r2n

2nn!ð Þ2
Ln�1@x

1

h2ðxÞ


 �
þ dn;2 (31)

where the operator L applied n-times yields the expression

Ln ¼
Xn

k¼0

n
k


 �
�1ð Þk f n�k @

nþk

@xnþk
: (32)

Note that each single order pn(x, r), cf. Eq. (31), satisfies the

normalization condition, the bc at the centerline but does not

obey the bc at the tube wall, see Eq. (15a). The stationary

probability density p(x, r) is obtained by summing all correc-

tion terms, cf. Eq. (13), yielding

pðx; rÞ ¼ p0ðx; rÞ þ
X1
n¼1

e2n Lnp0ðx; rÞ
r2n

2nn!ð Þ2
þ dn;2

 !
:

(33)

Inserting Eq. (33) into the equation for the no-flux bc at the

tube wall, cf. Eq. (12a), results to

0 �
X1
n¼0

e2nþ2@x

ðhðxÞ

0

dr r e�Uðx;rÞ@x eUðx;rÞpnðx; rÞ
� �

¼ e2@x

ðhðxÞ

0

dr r e�Uðx;rÞ@x eUðx;rÞpðx; rÞ
� �

: (34)

According to Eq. (5), the latter equals zero in the steady

state.

Summing up, the exact solution for the stationary proba-

bility density of finding a biased Brownian particle in tube is

given by Eq. (33). The latter solves the corresponding Smo-

luchowski equation Eq. (11) under satisfaction of the nor-

malization as well as the periodicity requirements. More

importantly the solution, cf. Eq. (33), obeys the no-flux

boundary conditions at the centerline r¼ 0 as well as at the

tube wall r¼ h(x). Further one notices that p(x, r) is fully

determined by the Fick-Jacobs results p0(x, r). Caused by

Lp0ðx; rÞ / _xðf Þh i0, the contribution of the higher order cor-

rections to the 3D probability density scales linearly with the

average particle current in the FJ limit _xh i0, cf. Eq. (31). The

latter is determined by the break of spatial symmetry induced

by the external force. Consequently, in the absence of the

external force f¼ 0 the stationary probability density equals

the zeroth order contribution p(x, r)¼ p0(x, r)¼ const despite

the value of e.
According to Eq. (27), one recognizes that the average

particle current scales with the average particle current

obtained from the Fick-Jacobs formalism _xh i0 for all values

of e. Therefore, in order to validate the obtained results for

p(x, r) as well as to derive correction to the mean particle

current it is required to calculate _xh i0 first.

IV. TRANSPORT QUANTITIES FOR A SINUSOIDALLY
SHAPED TUBE

In the following, we study the key transport quantities

like the particle mobility l( f ) and the effective diffusion

coefficient Deff( f ) of point-like Brownian particles moving

in a sinusoidally-shaped23 tube. The dimensionless boundary

function h(x) reads

h xð Þ ¼ 1

4

1þ d
1� d

þ sin 2pxð Þ

 �

; (35)

and is illustrated in Fig. 1. The function h(x) is solely gov-

erned by the aspect ratio of the minimal and maximum tube

width d¼Dx/DX. Obviously different realizations of tube

geometries can possess the same value of d. The number of

orders have to take into account in the perturbation series

Eq. (13), respectively, the applicability of the Fick-Jacobs
approach to the problem, depends only on the value of the

geometric parameter e¼DX (1� d)/L for a given aspect

ratio d.

First, we obtain the particle mobility l0 within the

zeroth order (Fick-Jacobs approximation). Referring to

Eqs. (25) and (26) the dimensionless mobility is given by

l0ðf Þ ¼
1� e�f

f
Ð 1

0
dx e�fx0=h2ðx0Þ

Ð x
x�1

efxh2ðxÞdx0
: (36)

For the considered sinusoidal boundary function, cf.

Eq. (35), we obtain

1

l0ðf Þ
¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1
p 3

b 2b2 þ 1
� �

� 4b f 2

f 2 þ 2pð Þ2

(

þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1
p 3 � 2b3 þ 3b

� �
f 2

f 2 þ 4pð Þ2

9=
;; (37)

with the substitute b¼ (1þ d)/(1� d). Caused by the reflec-

tion symmetry of the boundary function h(x) the particle mo-

bility obeys l0(�f)¼l0( f ). Thus it is sufficient to discuss

only the behavior for f� 0.

In the limiting case of infinite large force strength, the

mobility goes to

lim
f!1

l0ðf Þ ¼ 1: (38)

With decreasing force magnitude f the mobility decreases as

well till l0( f ) attains the asymptotic value

lim
f!0

l0ðf Þ ¼
2
ffiffiffi
d
p

1þ d
8d

3d2 þ 2dþ 3
: (39)

In the diffusion dominated regime, jf j � 1, the Sutherland-

Einstein relation emerges47,48 and thus the dimensionless

mobility equals the dimensionless effective diffusion

coefficient:

lim
f!0

lðf Þ ¼ lim
f!0

Deffðf Þ: (40)

In the limit of vanishing bottleneck width, i.e., d ! 0, the

mobility, respectively, Deff tends to 0. In contrast, for straight

tubes corresponding to d¼ 1, i.e. e¼ 0, the mobility as well

as the effective diffusion coefficient equal their free values

which are one in the considered scaling.
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In a recent work,1 we studied the biased Brownian

motion in a planar three-dimensional channel geometry with

periodically varying width 2h(x). We found that the asymp-

totic value for the mobility is given by 2
ffiffiffi
d
p

= 1þ dð Þ for f!
0, cf. Eq. (45) in Ref. 1. Comparing this result with the as-

ymptotic value Eq. (39) one notices that the mobility, respec-

tively, the effective diffusion coefficient in a tube are less

compared to case of a planar channel geometry.

In Fig. 2 we depict the dependence of the mobility l( f )

and the effective diffusion coefficient Deff( f ) on the external

force magnitude f. The numerical results are obtained by

solving the stationary Smoluchowski equation Eq. (1a) using

finite element method49 and subsequently calculating the av-

erage particle current according to Eq. (9). In order to deter-

mine the effective diffusion coefficient Deff( f ), one has to

solve numerically the reaction-diffusion equation for the

B-field.39,41

Referring to Fig. 2(a) one notices that the analytic pre-

dictions for the particle mobility Eq. (37) are corroborated

by numerics. Further, one observes that for the case of

smoothly varying tube geometry, i.e. DX=L� 1, the ana-

lytic result is in excellent agreement with the numerics for a

large range of dimensionless force magnitudes f, indicating

the applicability of the Fick-Jacobs approach. As long as the

extension of the bulges of the tube structures is small com-

pared to the periodicity, sufficiently fast transversal equili-

bration, which serves as fundamental ingredient for the

validity of the Fick-Jacobs approximation, is taking place.

The effective diffusion coefficient Deff( f ) exhibits a

non-monotonic dependence versus the dimensionless force f,
see Fig. 2(b). It starts out with a value that is less than the

free diffusion constant in the diffusion dominated regime,

i.e. jf j � 1. According to the Sutherland-Einstein-relation

the value equals the mobility value, cf. Eq. (39). Then it

reaches a maximum with increasing f and finally approaches

the value of the free diffusion from above. Further one noti-

ces that the location of the diffusion peak as well as the peak

height depends on the aspect ratio d. With decreasing width

at the bottleneck, while keeping the maximum width DX fix,

the diffusion peak is shifted towards larger force magnitude

f. Simultaneously the peak height grows. In the limit of a

straight tube, i.e. d ! 1, as expected the effective diffusion

coefficient coincides with its free value which is one in the

considered scaling.

In Fig. 3 we present the impact of the expansion parame-

ter e on the particle mobility. It turns out that for values of

e. 0:1 the Fick-Jacobs approximation is in very good agree-

ment with the simulation. With increasing geometric param-

eter e the difference between the FJ-result (solid line) and the

numerics is growing. The more available space in the tube

leads to a decrease of the particle mobility, respectively, of

the effective diffusion coefficient. Consequently, the higher

order corrections to the stationary probability density p(x, r),

see Eq. (13), respectively, the corrections to the mobility, cf.

Eq. (27), need to be included in order to provide a better

agreement.

V. CORRECTIONS TO THE MOBILITY AND DIFFUSION
COEFFICIENT

A commonly used way to include the corrugation of the

channel structure bases on the concept of the spatially-

dependent diffusion coefficient D(x, f) which was introduced

by Zwanzig20 and subsequently supported by the study of

Reguera and Rubi.43 Zwanzig obtained the FJ equation, cf.

Eq. (24), from the full 3D Smoluchowski equation upon

eliminating the transverse degrees of freedom supposing

infinitely fast relaxation. In a more detailed view, we have to

notice that diffusing particles can flow out from/or towards

the wall in r-direction only at finite time. These finite relaxa-

tion processes are included by scaling the diffusion constant

in longitudinal direction by a position dependent function,

viz. D(x, f). The latter substitutes the constant diffusion

FIG. 2. (Color online) The particle mobility (a) and the effective diffusion

constant (b) for a Brownian particle moving inside a sinusoidal tube are

depicted as function of the external force magnitude f. The maximum tube

width is kept fixed, viz. DX¼ 0.1, while the aspect ratio is varied d¼ 0.01,

0.1, 1, respectively, the corresponding values for e are e¼ 0.099, 0.09, 0.

The symbols correspond to the numerical obtained mobility, respectively,

the effective diffusion coefficient. In panel (a) the lines correspond to the

analytic result, cf. Eq. (37).

FIG. 3. (Color online) The influence of the geometric parameter e on the

particle mobility is presented. The value of e is varied, viz. e¼ 0.05, 0.5, 2.5,

while the aspect ratio is kept fixed, viz. d¼ 0.5. The solid line corresponds

to the analytic result Eq. (37) while the dash-dotted line indicates the asymp-

totic value one.
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coefficient—which is one in the considered scaling—in the

common stationary FJ equation, cf. Eq. (24), yielding

0 ¼ @x D x; fð Þe�A xð Þ@x eA xð Þp xð Þ
� �h i

: (41)

According to Eq. (41) an expression for the particle mobility

that is similar to the Stratonovich formula21,42 for the mobil-

ity in titled periodic energy landscapes, but now including

the spatial diffusion coefficient D(x, f), can be derived.21,22

In the diffusion dominated regime, i.e. jf j � 1, this expres-

sion simplifies to the Lifson-Jackson formula22,50

lim
f!0

lðf Þ ¼ lim
f!0

Deffðf Þ ¼
1

h2ðxÞ
� � 1

Dðx; 0Þh2ðxÞ

� � ; (42)

with the period average �h i ¼
Ð 1

0
�dx. Unfortunately, for

many boundary functions h(x) it is impossible to analytically

evaluate the expressions in Eq. (42).

A. Spatially dependent diffusion coefficient D(x, f )

A first systematical treatment taking the finite diffusion

time into account was presented by Kalinay and Percus

(KP).24,51 Their suggested mapping procedure enables the

derivation of higher order corrections in terms of an expan-

sion parameter e2
KP, which is the ratio of the diffusion con-

stants in the longitudinal and transverse directions. Within

this scaling, KP have shown that the fast transverse modes

(transients) separate from the slow longitudinal ones and

therefore the transients can be projected out by integration

over the transverse directions.

In what follows, we present a derivation for the

spatially-dependent diffusion coefficient D(x, f) which based

on our previously considered perturbation series expansion

for the stationary probability density Sec. III.

According to Eq. (5) the marginal probability current

Jx(x), equivalent to Eq. (41), can be derived in an alternative

way using the stationary two-point probability density

p(x, r), yielding

�JxðxÞ ¼ D x; fð Þe�A xð Þ@x eA xð Þp xð Þ
� �

¼
ðhðxÞ

0

dr r e�U x;rð Þ@x eU x;rð Þp x; rð Þ
� �

: (43)

The second equality determines the sought-after spatial de-

pendent diffusion coefficient D(x, f).
One immediately notices that the relation Eq. (43) sim-

plifies to Dðx; f Þf pðxÞ ¼
Ð hðxÞ

0
dr r f pðx; rÞ in the force domi-

nated regime jf j � 1. Then it follows that the spatially-

dependent diffusion coefficient equals the free one, which is

one in the considered scaling,

lim
f!1

Dðx; f Þ ¼ 1: (44)

In the opposite limit of small force strengths, i.e. for jf j � 1,

diffusion is the dominating process. Then Eq. (43) simplifies

to

D x; fð Þh2ðxÞ@x
p xð Þ
h2ðxÞ


 �
¼
ðhðxÞ

0

dr r @xp x; rð Þ: (45)

Inserting our result for the stationary probability density

p(x, r), cf. Eq. (33), into Eq. (45) we determine an expression

for D(x, f ). In compliance with Ref. 24, we make the ansatz

that all but the first derivative of the boundary function h(x)

are negligible. Then the n -times applied operator L, cf.

Eq. (32), simplifies to Ln ¼ ð�1Þn @2n

@x2n, yielding,

pnðx; rÞ ¼ 2 �1ð Þn _xh i0
2nð Þ!

2nn!ð Þ2
ðh0Þ2n�1

h2nþ1
r2n þ Oðh00ðxÞÞ: (46)

Inserting the latter into Eq. (43) and calculating the complete

sum, one finds

lim
f!0

Dðx; f Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eh0ðxÞð Þ2

q þ O h00ðxÞð Þ (47)

for the spatially-dependent diffusion coefficient D(x, f) in the

diffusion dominated regime, i.e., for jf j � 1. Using our

above presented series expansion for the stationary probabil-

ity density p(x, r) we confirm the expression for the spatially-

dependent diffusion coefficient D(x, f) previously derived by

Reguera and Rubi43 and KP.24,51

B. Corrections based on perturbation series
expansion

Next, we derive an estimate for the mean particle current

_xðf Þh i based on the higher expansion orders pn(x, r). Refer-

ring to Eq. (27), the average particle current is composed of

(i) the Fick-Jacobs result _xh i0, cf. Eq. (25) and (ii) becomes

corrected by the sum of the averaged derivatives of the

higher orders pn(x, r). Immediately one notices that the inte-

gration constant dn,2, resulting from the normalization condi-

tion Eq. (16), does not influence the result for the average

particle velocity, cf. Eq. (27).

We concentrate on the diffusion dominated limit

jf j � 1 and further we make the ansatz that all but the first

derivative of the boundary function h(x) are negligible.1,24

Then the partial derivative of pn(x, r) with respect to x sim-

plifies to

@xpnðx; rÞ ¼ 2 _xh i0ð�1Þnþ1 ðh0Þ2n

h2nþ2

2nþ 1ð Þ!r2n

2nn!ð Þ2
þ Oðh00ðxÞÞ:

(48)

Inserting the latter into Eq. (27) and integrating the results

over one unit-cell, results in

lim
f!0

_xðf Þh i ’ lim
f!0

_xðf Þh i0
X1
n¼0

�1ð Þn 2nþ 1ð Þ!
22nþ1 n!ð Þ nþ 1ð Þ! eh0ðxÞð Þ2n

D E

’ lim
f!0

_xðf Þh i0
2

eh0ðxÞð Þ2

 
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ eh0ðxÞð Þ2
q

!* +
:

(49)
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We obtain that the average transport velocity is obtained as

the product of the zeroth order Fick-Jacobs result and the ex-

pectation value of a complicated function including the slope

of the boundary for j f j � 1. In the previously studied case

of biased Brownian motion in a 3D planar channel geome-

try1 we have found that the average transport velocity is

obtained as the product of the zeroth order Fick-Jacobs result

and the expectation value of the spatially-dependent diffu-

sion coefficient hD(x, 0)i. In contrast to the 3 D planar geom-

etry, for biased transport in extremely corrugated tubes the

corrections term to the particle velocity does not coincide

with the expectation value of D(x, 0), see Eq. (47).

Calculating the expectation value in Eq. (49) for the

considered tube geometry, cf. Eq. (35), yields to the estimate

lim
f!0

_xðf Þh i ’ lim
f!0

_xð f Þh i0 2F1

1

2
;
1

2
; 2;� ep

2

� �2

 �

; (50)

where 2F1(�) is the first hypergeometric function. We derive

that in the diffusion dominated regime the average velocity

is obtained as the product of the zeroth order Fick-Jacobs

result and the correction term 2F1(�) including the corruga-

tion of the tube structure. Referring to the Sutherland-

Einstein relation, cf. Eq. (40), if the average current _xð f Þh i0
(or the effective diffusion coefficient D0

effð f Þ) is known in

the zeroth order, the higher order corrections to both quanti-

ties can be obtained, according to Eq. (50).

We have to emphasize that considering only the first de-

rivative of the boundary function h0(x) results in an addi-

tional term proportional to e2
2F1(3/2,3/2,3,�(ep/2)2). Taking

further the second derivative h00(x) into accounts indicates

that this second term is negligible compared to 2F1(1/2,…)

for arbitrarily value of e.
In Fig. 4, we present the dependence of the l( f ) (trian-

gles) and Deff( f ) (circles) on the slope parameter e for

f¼ 10�3. One observes that the numerical results for the

effective diffusion coefficient Deff( f ) and the mobility l( f )

coincide for all values of e, thus corroborating the

Sutherland-Einstein relation. In addition, the Fick-Jacobs

result, given by Eq. (39), the higher order result (solid lines),

see Eq. (50), and the numerical evaluation of the Lifson-

Jackson formula using D(x, 0) (dash-dotted lines), cf.

Eq. (42), are depicted in Fig. 4.

For the case of smoothly varying tube geometry, i.e.

DX=L� 1, all analytic expressions are in excellent agree-

ment with the numerics, indicating the applicability of the

Fick-Jacobs approach. In virtue of Eq. (7), the geometric pa-

rameter is defined by e¼ (DX�Dx)/L and hence the maxi-

mal value of e equals DX/L. Consequently the influence of

the higher expansion orders e2nh@xpn(x,r)i on the average ve-

locity Eq. (27) and on the mobility, respectively, becomes

negligible if the maximum tube’s width DX/L is small.

With increasing maximum width the difference between

the FJ-result Eq. (39) and the numerics is growing. Specifi-

cally, the FJ-approximation overestimates the mobility l and

the effective diffusion coefficient Deff. Consequently the cor-

rugation of the tube geometry needs to be included. The con-

sideration of D(x,0), cf. Eq. (42) provides a good agreement

for a wide range of e -values as long as the maximum width

DX/L is on the scale to the period length of the tube, i.e.

DX/L	 1. Upon further increasing the maximum width DX/

L diminishes the range of applicability of the presented con-

cept. In detail the expression Eq. (42) drastically underesti-

mates the numerical results due to the neglect of the higher

derivatives of the boundary function h(x). Put differently, the

higher derivatives of h(x) become significant for DX=L>	 1.

In contrast, one notices that the result for the mobility,

respectively, the diffusion coefficient based on the higher

order corrections to the stationary probability density, see

Eq. (50), is in very good agreement with the numerics. For

tube geometries where the maximum width DX/L is on the

scale to the period length, i.e. DX/L	 1, the correction esti-

mate matches perfectly with the numerical results. Further

increase of the tube width results in a small deviation from

the simulation results.

VI. SUMMARY AND CONCLUSION

In summary, we have considered the transport of point-

sized Brownian particles under the action of a constant and

uniform force field through a 3D tube. The cross-section,

respectively, the radius of the tube varies periodically.

We have presented a systematic treatment of particle

transport by using a perturbation series expansion of the sta-

tionary probability density in terms of a smallness parameter

which specifies the corrugation of the tube walls. In particu-

lar, it turns out that the leading order term of the series

expansion is equivalent to the well-established Fick-Jacobs
approach.19,20 The higher order corrections to the probability

density become significant for extreme bending of the tube’s

side-walls. Analytic results for each order of the perturbation

series have been derived. Similar to biased Brownian motion

in a 3D planar channel all higher order corrections to the

FIG. 4. (Color online) Comparison of the analytic theory versus precise

numerics (in dimensionless units): The mobility and the effective diffusion

constant for a Brownian particle moving inside a tube with sinusoidal vary-

ing radius are depicted as function of geometric parameter e in units of the

maximum channel width DX. The latter is varied DX/L¼ 0.1,1,5 (from top

to bottom) while the external bias is kept fixed f¼ 10�3 (corresponding to

the diffusion dominated regime). The symbols correspond to the numerical

obtained mobility (triangles) and the effective diffusion coefficient (circles).

The solid lines correspond to analytic higher order result, cf. Eq. (50). The

zeroth order Fick-Jacobs results given by Eq. (39) collapse to a single curve

hidden by the solid line for DX/L¼ 0.1. In addition the numerical evaluation

of Eq. (42) is represented by the dash-dotted lines.
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stationary probability density scale with the average particle

current obtained from the Fick-Jacobs formalism.

Moreover, for the diffusion dominated regime, i.e., for

small forcing j f j � 1, we calculate the correction to the

mean particle velocity originated by the tube’s corrugation

using the series expansion for the stationary probability den-

sity. According to the Sutherland-Einstein relation, the

obtained relation is also valid for the effective diffusion coef-

ficient. In addition, by using the higher order corrections, we

present an alternative derivation for the spatially-dependent

diffusion coefficient D(x, f) which substitutes the constant

diffusion coefficient present in the common Fick-Jacobs

equation based on similar assumptions as those suggested by

Kalinay and Percus as well as by Rubi and Reguera.

Finally, we have applied our analytic results to a specific

example, namely, the particle transport through a tube with

sinusoidally varying radius R(x). We corroborate our theoret-

ical predictions for the mobility and the effective diffusion

coefficient with precise numerical results of a finite element

calculation of the stationary Smoluchowski-equation.

In conclusion, the consideration of the higher order cor-

rections leads to a substantial improvement of the Fick-

Jacobs-approach, which corresponds to the zeroth order in

our perturbation analysis, towards more winding boundaries

of the tube. Notably, we have shown that the common

approach using the spatially-dependent diffusion coefficient

D(x, f) fails for extremely corrugated tube geometries.
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