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Abstract A Holder regularity index at given points for density states of («, 1, B)-
superprocesses with @ > 1 4+ B is determined. It is shown that this index is strictly
greater than the optimal index of /ocal Holder continuity for those density states.
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1 Introduction and Statement of Results

For 0 <o <2 and 1 + B € (1,2), the so-called («,d, B)-superprocess X =
{X;: t >0} in R? is a finite measure-valued process related to the log-Laplace equa-
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tion

iu:Aau—Fau—buHﬂ, (1.1)
dr
where a € R and b > 0 are any fixed constants. Its underlying motion is described by
the fractional Laplacian A, := —(—A)%/? determining a symmetric a-stable motion
in R? of index « € (0, 2] (Brownian motion if o = 2), whereas its continuous-state
branching mechanism

V> —av—l—bvl"'ﬂ, v >0, (1.2)

belongs to the domain of attraction of a stable law of index 1+ 8 € (1, 2) (the branch-
ing is critical if a = 0).

From now on we assume that d < %. Then X has a.s. absolutely continuous states
X:(dx) at fixed times ¢ > O (cf. Fleischmann [3] with the obvious changes for a # 0).
Moreover, as is shown in Fleischmann, Mytnik, and Wachtel [4, Theorem 1.2(a), (c)],
there is a dichotomy for their density function (also denoted by X;): There is a con-
tinuous version X; of the density function if d =1 and o > 1 + B, but otherwise the
density function X; is locally unbounded on open sets of positive X;(dx)-measure.
(The case o = 2 had been derived earlier in Mytnik and Perkins [12].) In the case of
continuity, Holder regularity properties of X, had been studied in [4], too.

Let us first recall the notion of an optimal Holder index at a point (see, e.g., Jaffard
[6]). We say that a function f is Holder continuous with index n € (0, 1] at the point
x if there is an open neighborhood U (x) of x and a constant C such that

|f(») = f(x)| =Cly —x|" forally e U(x). (1.3)
The optimal Holder index H (x) of f at the point x is defined as
H(x) :=sup{n € (0, 1]: f is Holder continuous at x with index n} ~ (1.4)

and set to 0 if f is not Holder continuous at x.

Going back to the continuous (random) density function X ¢, In what follows,
H (x) will denote the (random) optimal Holder index of X, at x € R. In [4, Theo-
rem 1.2(a), (b)], the so-called optimal index for local Holder continuity of X ¢ had
been determined by

o
Ne - Y 1€(0,1). (1.5)
This means that in any nonempty open set U C R with X;(U) > 0 one can find
(random) points x such that H(x) = n.. This however left unsolved the question
whether there are points x € U such that H(x) > nc.
The purpose of this note is to verify the following theorem conjectured in [4,
Section 1.3]. To formulate it, let M; denote the set of finite measures on R?, and
Be (x) the open ball of radius € > 0 around x € R¢.

Theorem 1.1 (Holder Continuity at a Given Point) Fixt > 0,z € R, and Xo=pu €
Ms. Letd =1 and o > 1 + B.
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(a) (Holder continuity at a given point) For each n > 0 satisfying

n He := min 1 - 1 1
< — s s
¢ 1+ ,3

with probability one, the continuous version X, of the density is Holder continu-
ous of order n at the point z:

1 X, (x) — X,(2)]
sup

oo, €>0.
xeBe(x),x#z  1Xx —z|"

(b) (Optimality of n.) If additionally B > (o« — 1)/2, then with probability one for
any € > 0,

X, (x) — X, (2)]
sup —
xeB.(2), x#z  1Xx — 2zl

=00 whenever X;(z) > 0.

Theorem 1.1(b) states the optimality of 7. in the case f > (¢ — 1)/2. But it is
easy to see that the opposite case B < (v — 1)/2 implies that 7. = 1. Therefore the

optimality of 7. follows here automatically from the definition of H (z). But opposed
X, () =X, (2)]
|x—z|77c

conjecture that X, is even Lipschitz continuous at the given z for 8 < (o — 1)/2.

Since 7. < 1nc, at each given point z € R the density X, allows some Holder expo-
nents 7 larger than 7., the optimal Holder index for local domains. Thus, Theorem 1.1
nicely complements the main result of [4].

The full program however would include proving that for any n € (nc, n¢), with
probability one, there are (random) points x € R such that the optimal Holder index
H(x) of X, at x is exactly n. Moreover, one would like to establish the Hausdorff
dimension, say D(n), of the (random) set {x: H(x) = n}. The function n +— D(n)
then reveals the so-called multifractal spectrum related to the optimal Holder index
at points. As we already mentioned in [4, Conjecture 1.4], we conjecture that

to the local unboundedness of the ratio in the case B > (¢ — 1)/2, we

lim D(n) =0 and lim D(n)=1 a.s. (1.6)
nne UNNRTE

The investigation of such multifractal spectrum is left for future work.

The multifractal spectrum of random functions and measures has attracted atten-
tion for many years and has been studied, for example, in Dembo et al. [1], Durand
[2], Hu and Taylor [5], Klenke and Morters [10], Le Gall and Perkins [11], Morters
and Shieh [13], and Perkins and Taylor [14]. The multifractal spectrum of singular-
ities that describe the Hausdorff dimension of sets of different Holder exponents of
functions was investigated for deterministic and random functions in Jaffard [6-8]
and Jaffard and Meyer [9].

Note also that in the case o = 2, for the optimal exponents 1. and 7., we have

ne 40 and ﬁ&% as g 11, (1.7)



69

whereas for continuous super-Brownian motion (8 = 1), one would have n, = % =
nc. This discontinuity reflects the essential differences between continuous and dis-
continuous super-Brownian motion concerning Holder continuity properties of den-
sity states, as discussed already in [4, Sect. 1.3].

After some preparation in the next section, the proof of Theorem 1.1(a), (b) will
be given in Sects. 3 and 4, respectively.

2 Some Proof Preparation

Let p“ denote the continuous «-stable transition kernel related to the fractional Lapla-
cian A, = —(—A)*? in R4, and S the related semigroup. Fix Xo = u € M¢\{0}.

First, we want to recall the martingale decomposition of the («, d, 8)-superprocess
X (valid for any «,d, B; see, e.g., [4, Lemma 1.6]): For all sufficiently smooth
bounded nonnegative functions ¢ on R? and ¢ >0,

t

(X1, 0) = (1, 0) + /0 ds (X, Ag) + My (@) +aly (@) @1

with discontinuous martingale

t—> M;(p) := / ]V(d(s, X, r))r<p(x) (2.2)
(0,1]xR9 xR,

and increasing process
t
e )= [ s g, 23)

Here N := N — ]\7, where N (d(s, x, r)) is a random measure on (0, 00) x R¢ x (0, 00)
describing all the jumps ré, of X at times s at sites x of size r (which are the only
discontinuities of the process X). Moreover,

N(d(s, x,7)) = ods X, (dx)r>"F dr (2.4)

is the compensator of N, where o :=5b (1 + B)B/I'(1 — B) with I" denoting the
Gamma function.

Recall that we assumed d < %, and fix r > 0. Then the random measure X;(dx) is
a.s. absolutely continuous. From the Green’s function representation related to (2.1)
(see, e.g., [4, (1.9)]) we obtain the following representation of a version of the density
function of X;(dx) (see, e.g., [4, (1.12)]):

X,(6) = s pox) + / M(d(s. 1)) P, (v — )
(0,71x R4

va e o -
(0,7]1xRd

= Z}(x)+ Z?(x) + Z2(x), xeR? (2.5)
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(with notation in the obvious correspondence). Here M (d(s, y)) is the martingale
measure related to (2.2), and I (d(s, y)) the random measure related to (2.3).

Let AXs := X5 — X;—, s € (0, t), denote the jumps of the measure-valued process
X by time ¢. Recall that they are of the form r§,. By an abuse of notation, we also
write r =: AX(x). Put

fsx i=log((t — )™ ez0p Tog (Jx171). (2.6)

As a further preparation, we turn to the following lemma. Recall that > 0 is fixed.

Lemma 2.1 (A Jump Mass Estimate) Fix Xo = u € M¢\{0}. Suppose that d = 1
and o > 1+ B. Let € > 0 and q > 0. There exists a constant c¢z7) = c2.7)(€, q) such
that

P(AX;(x) > cop)((t —s5)|x]) oz (fsx) for some s <t, x € B1je(0)) <&, (2.7)

where

1
z.:mw. 2.8)

Proof For any ¢ > 0 (later to be specialized to some c(2.7)), set
1/(1
Y= N((s, %, 1) (5,%) € (0,8) x Byye(0), r = c(t —9)Ix) /P (1,.09).
Clearly,

P(AX;(x) > c((t — s)|x|)l/(1+ﬁ)(fs,x)£ for some s < and x € By/(0))
—P(Y > 1) <EY, (2.9)

where in the last step we have used the classical Markov inequality. From (2.4) we
have

t o0
EY = oE / ds / X (dx)15,,00) (x) / drr=27F
o Jr c(t=9) DY IR (£ )

A 1 oo—1—a(1+8) 1
= ds (t —s) 'log=" 1 t—s)"
015 | G5t =97 log (="
><fEXS(dx)1BI/e(0)(x)|x|_1log_l_‘I(Hﬁ)(lxrl). (2.10)
R

Now, writing C for a generic constant (which may change from place to place),

/ EX, (d0)15,,0) () x|~ Tog =40+ (1|
R

<elal f 1(dy) f dx p% (x = )15, 0 @) x|~ og ™ =10+ (1x71)
R R
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<Cu(R)s™/® f dx 1,,.0) ()|x| ™ log ™' 710 HA) (1x71)
R
=: 0(2,11)5_1/0(, (211)

where c.11) = c.11)(g) (recall that ¢ is fixed). Consequently,

t
EY < Qc(z_“)c_l_ﬁ/ dss_l/“(t—s)_llog_l_q“"'ﬁ)((t—s)_l)
0

= C(2_12)C_1_’8 (212)

with c.12) = ¢©.12)(¢). Choose now ¢ such that the latter expression equals ¢ and
write ¢ 7y instead of c. Recalling (2.9), the proof is complete. U

Since supg_y; ¥¥ log* % < oo for every y > 0, we get from Lemma 2.1 the fol-
lowing statement.

Corollary 2.2 (A Jump Mass Estimate) Fix Xo = u € M¢\{0}. Suppose that d = 1
and a > 1+ B. Let e >0 and y € (0, (1 + B)~Y). There exists a constant c13) =
cn.13)(&, y) such that

P(AXs(x) > c(2413)((t — s)|x|)}”f0r somes <tandx € BZ(O)) <e, (2.13)

where

1
b= Y (2.14)

Several times we will use the following estimate concerning the «-stable transition
kernel p® taken from [4, Lemma 2.1].

Lemma 2.3 («-Stable Density Increment) For every § € [0, 1],

8
.
P = pE )] < c'ﬁ%(pf%x/z) + (/). 1>0, x, y R (2.15)

In the proof of our main result we need also a further technical result we quote
from [4, Lemma 2.3]. Let L = {L,: t > 0} denote a spectrally positive stable process
of index « € (1, 2). Per definition, L is an R-valued time-homogeneous process with
independent increments and with Laplace transform given by

Ee Mt =™ A t>0. (2.16)

Note that L is the unique (in law) solution to the following martingale problem:
t
t>e M — / dse *sA%  is a martingale for any A > 0. (2.17)
0

Let AL;:=Ls — Ls_ > 0 denote the jumps of L.
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Lemma 2.4 (Big Values of the Process in the Case of Bounded Jumps) We have

Ct x/y
P( sup Lu1{ sup Avay}Zx>§< ) , t>0,x,y>0. (2.18)

O<u<t O<v<u xy<—1

3 Holder Continuity at a Given Point: Proof of Theorem 1.1(a)

We will use some ideas from the proofs in Sect. 3 of [4]. However, to be adopted to
our case, those proofs require significant changes. Let d =1 and fix ¢, z, u, o, B, 1
as in the theorem. Consider an x € B{(z). Without loss of generality we will assume
that # < 1 and, changing u appropriately, that z = 0 and 0 < x < 1. By definition
(2.5) of Z2,

ﬁuwz%nzf M(d(s. 1)1 (5. )
0,7]1xR

—f M(dGs. Y))o- (5. ). 3.1
0,7]xR

where ¢ (s, y) and ¢_(s, y) are the positive and negative parts of pf  (y — x) —
pi_(y) (for the fixed x). It is easy to check that ¢ and ¢_ satisfy the assumptions
in [4, Lemma 2.15]. Thus, there exist spectrally positive stable processes L+ and L~
such that

Z2(x) — Z2(0) = Ly —L7, (3.2)
where Ty 1= [y ds [ X,(dy)(gx(s, y))'*P. Fix any

1 .| Tl Ne
0, - d 0, —, — ). 33
86( 3) an ye( mm!za 30a D) }) 3.3)

Also fix some J = J(y) and

O=po<p1<---<pj=1l/a 3.4)
such that
Pe+1 14
1) — >—= 0<t<J-1. 3.5
pe(a+1) 38> 2 <{=< (3.5)

According to [4, Lemma 2.11], there exists a constant ¢, such that
P(V <c)>1-—g¢, (3.6)
where

V.= sup SZ“(Z—S)XS(Y) (37)
0<s<t, yeB,(0)
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(note that there is no difference in using B> (0) or its closure for taking the supremum).
By Lemma 2.2 we can fix ¢(2.13) sufficiently large such that the probability of the event

A= [AX(y) < coun((t —s)]y])* foralls <7and y € B2(0)}  (3.8)

is larger than 1 — €. Moreover, according to [4, Lemma 2.14], there exists a constant
c* = c*(e, y) such that the probability of the event

AB2 = {AXs(y) <c*(t—s) foralls <tandy € R} (3.9)
is larger than 1 — ¢. Set
A% = AT N ARI NV <), (3.10)
Evidently,
P(AE) >1—3e. (3.11)
Define th ¢ 1= Z21(A®). We first show that th ** has a version which is locally
Holder continuous of all orders n less than 7. It follows from (3.2) that, for any

k>0,
P(|Z7° (x) — Z7F(0)] = 2kx")
<P(Ly >kx", A®) +P(L7_ > kx", A®). (3.12)
Define
Do :={(s,y) €[0,1) x Bo(0): y € (=2(t —s)"/*™"1, x +2(t —5)/*7P1)} (3.13)
and, for1 <¢<J —1,

Dy :={(s,y) €[0,1) x B2(0): y € (=2(t —5)/* 7P+t x 4 2(t — 5) /@ 7Pt41) |

Moreover,
Do:=Dg and Dy:=D;\Dy_;, 1<e<J—1. (3.14)
Note that
[0.6) x B0)= | ] Dv. (3.15)
0<t<J

If the jumps of M (d(s, y)) do not exceed c(2.13)((f — ) |y|)A on Dy, then the jumps of
the process u +— f(o ux Dy M (d(s, y))e+ (s, y) are bounded by

A
ceizy sup (0 —9)yl) ox(s, y). (3.16)
(s, 1)eDy
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For0<¢ < J, put

={(s,y) € Dg: (t —s)!/*7Pr1 < x},
= {Gs.y) € Dez (1 = )/e7P1 > ),

={y € B2(0): (s,y) € D¢1}, s€0,1),
={y € By(0):(s,y) € Dgn}, s€[0,0).

)
N
l\)
i
—_—— —— —— ——

Since obviously Dy = Dy 1 U Dy >, we get that (3.16) is bounded by

c@i3 sup (t—s)* sup |y[*oi(s,y)
O<s<t Y€Dy 1(5)

+ c@.13) sup (r —)* sup  |y[tea(s,y) = coa13( + D).

O<s<t veDy 2(s)

Clearly,

p+(s,y) < |pf‘_s(y —X)— P for all s, y.

First, let us bound /;. Note that for any (s, y) € Dy 1,
V| < x +2(t — ) /¥ 7P < 3y

Therefore, we have

I <3 sup (t—9)* sup |pi (y —x)— pi,(»)].
O<s<t yeDy 1(s)

Using Lemma 2.3 with § = n. — 2ay gives
sup |pf(y —x) — p{_ ()]
y€Dy 1 (s)
< Cxle™2Y (p — g)Ne/a+2y
xsup (pily (v —)/2) + Py (3/2)
yEDy 1(5)

— Cxle™20Y (¢t — gy~ ne/at2y—l/a

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

x sup (Pt =)V (y —x)/2) + p((t — )"y /2)). (3.22)

yEDg 1(s5)
Recall the following standard estimate on pf'’:

Pr(y) < cammly7@D yeR,

(3.23)

for some constant c(323y. Thus, on Dy 1(s), we have |y| > 2(f — s)l/a=re implying

ptlx ((t - S)_I/Oty/2) < p‘lx (([ — S)_PE) < C(3.23)(l‘ _ s)p[(ot+l)’

(3.24)
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where the last inequality follows by (3.23). A similar estimate holds for the second
p{-expression in (3.22). Thus, (3.22) yields

sup |P;¥—s()’ —x) — p?l_s (y)| < Cxlle—2ay (t — S)—nc/06+27/—1/05+p£(a+1). (3.25)
YEDy 1(s)

Now let us check that

sup (f — S))”(Z _ S)—nc/a+2y—1/a+pz(a+l) <1. (3.26)

O<s<t

Recall that . = ﬁ — 1. Then one can easily get that
A—ne/a+2y —1/a+pila+1)=y +pe(a+1) >y, (3.27)

where the last inequality follows by (3.5). Therefore, (3.26) follows immediately.
Combining (3.21), (3.25), and (3.26), we see that

I} < Cx*TMe=207 < Cxfle=Cathy (3.28)
where we used the definitions of . and 7, given in (1.5) and Theorem 1.1(a), re-
spectively.

Now let us bound I>. Note that for any (s, y) € Dy 2,
ly| <x +2(t —s) /2Pl < 3(p — g)l/@—Per1, (3.29)

Therefore, we have

I <3* sup ((r—s)”“/“‘%l” sup | pe(y —x) — pf‘_s(y)D. (3.30)

O<s<t ye€Dy 2 (s)

Using again Lemma 2.3 but this time with 6 =7, — Qa + 1)y gives

sup | pi_ (v —x) — pi_ ()]
Y€Dg 2 (s)

< Cylle=Qa+Dy (t — S)—ﬁc/a+23/+)//a

xsup (pi((v = x)/2) + pig(v/2))
yED2(s)

— Cxﬁc—(ZOH-l))/(t — s)—ﬁc/Ol+2)/+)//Ol—l/0l+,O((OH—[). (3.31)

By definition (2.14) of A,

1 1
k+(——ﬂe+1))»——+2 —|—Z——+,Oz(ot+1)

LY L IR Lt pelat 1)
= 1+ B Ne Y T VPe+1 1+,B

>y/2, (3.32)
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where in the last step we used the definition of 7, given in Theorem 1.1(a), and (3.5).
Thus,

sup (f — S)H—(l/a—P£+1))»—ﬁc/a+2V+)//a—1/O£+Pe(a+1) <1. (3.33)

O<s<t
Combining estimates (3.30), (3.31), and (3.33), we obtain
I < CxMemGatDy, (3.34)

If the jumps of M (d(s, y)) are smaller than ¢*(t — s)* on R \ B>(0) (where c* is
from (3.9)), then the jumps of the process u +— f(o )% (R\ B> (0)) M (s, y)p+(s,y)
are bounded by

Ft—9)" sup  @u(s,y). (3.35)
yeR\B,(0)

Using Lemma 2.3 once again but this time with 6 = 1. — 2ay, we have
|pf‘_s (y—x)— pf‘_s(y)| < CxTle—2ay (t — S)—ﬁc/OH—ZV
< (P (v =2)/2) + s (y/2)).  (3.36)

Since0<x <1,

sup  (p2,((v —x)/2) + p&(y/2))
y€R\ B, (0)

<C@t—s) Y pt(t—s)"2) < C(t —s). (3.37)
Therefore, (3.19), (3.36), and (3.37) imply

c*(t—s) sup  @i(s,y) < Cxlle=20v (4 — gy —ie/a+2y+1
yER\B2(0)

< caagxeTY (3.38)

for some constant c(3 33y = ¢(3.38)(¢). Here we have used that n. < (14+o«)/(14+8)—1
implies A — n¢/a +2y +1> 1.

Combining (3.16), (3.18), (3.28), (3.34), and (3.38), we see that all jumps of the
process u — f(o,u]xR M (d(s, y))e+(s, y) on the set A° are bounded by

c.aox ety (3.39)

for some constant c(3 39y = ¢(3.39)(¢). Therefore, by an abuse of notation writing L for
Lt and L,

P(Ly. > kx", A®)

= P<LTi > kx", sup AL, < C(3.39)xﬁ°_(2a+l)y, A8>
O<u<Ty

§P< sup Lv1{ sup ALugc@”)xﬁc—@““W}zkx",AS). (3.40)

O<v<Ty O<u<v
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Since

t
1
Ty < /O ds f X ()| pes (v = x) = piy | P, (3.41)
R

applying [4, Lemma 2.12] with

a—pP—e¢
0=1+pB and S=1g.@-12+————— 18>0@-1)/2 (3.42)
1+ 8
we may fix €1 € (0, ayB) to get the bound
Ty < c@3a3) (—xl+ﬂ1ﬁ<(a—l)/2 + Xa_ﬁ_811ﬂz(a—l)/2) (3.43)

on {V <.} for some constant ¢(3 43y = ¢(343)(¢). Consequently,

P(Lz, > kx", A%)

<P sup Ly
0<v=cE343) P lp (1) 2 X P 1p> 01 12)
x 1{ SUp ALy < caaox oDy } > kx"). (3.44)
O<u<v

Now use Lemma 2.4 with k = 1 + 8, 1 = cau3 (' Plg @12 + x*F~1 x
1>(@—1),2), kx" instead of x, and y = c(3,39)x”0_(2“+1)3’. This gives

P(Lz, > kx", A®)

I+ o wi—lict+Qa+1)y
- Ceiany (X P1g_(go1y2 + x4 P~ g2 (1) 2) €(3.39)
kxﬂ(c(3l39)xﬁc—(2a+l))’):3

. (3.45)

Now we need additionally the following simple inequalities, which are easy to derive:

—n =Bl — Qa+1Dy)+1+B>Qa+1)yB onp< aT_l (3.46)
and

—n—B(c— Qa+Dy)+a—B—e1>Qa+Dyp —¢

oa—1
>ayB onp> — (3.47)

In fact, 5. = 1 under B < (o — 1)/2, whereas the other case in the definition of 7
applies under 8 > (¢ — 1) /2. Then, using the above inequalities and (3.45), we obtain

—ﬁc+(2ﬂt+1))’)

-1
P(L7. > kx", A®) < (C(3.48)k_1xw'3)(C(3'39)kxn (3.48)

for some constant c(343) = c348)(¢). Applying this bound with y = % to the

summands at the right-hand side in inequality (3.12) and noting that «y 8 is also a
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positive constant here, we have

Jex (1=7ic)/2y

P(| 224 (x) — Z25(0)] > 2kx") < 2(czapk ™" x) G40 (3.49)
for some constant C(3.49)" This inequality yields
0.9
Jim P(|27F(n™1) = Z}F ()] = kn9") =0 (3.50)
—00
n—=
for every positive g.
Recall that our purpose is to show that
Z2(x) — Z2(0
sup 120 = 2, O)l < oo almost surely (3.51)
0<x<l x"
or, in other words,
Z2(x) — Z2(0
lim P( sup 120 = Zi Ol >k) —0. (3.52)
ktoo O<x<l1 x"

It is easy to see that

200N _ 72 0o
lsuP |Z7(x) Z,(0)|>k}CU{

O<x<l1 X7 -

k
sup|ZZ(x) — Z2(0)| > z—qn—q"}, (3.53)

where I, ;== {x: (n + 1)7? < x <n™?}. Moreover, by the triangle inequality,

|22 (x) = Z7O)| < |27 (x) — ZFH(n™ )| + |27 (n™7) — Z}(0)|, x €I, (3.54)
Furthermore, for all R > O,
20\ 72
! sup 1A= ZiODI_ R}
O<x<y<l |x - qun/(q—H)
c{|z}(x) — Z}(n™9)| < Rg?V @t Dp=n x € I,}. (3.55)
Consequently, for all n > 1,
2 2 K —an
sup|Z7 (x) — Z;(0)| > —n
xel, 24
127 (x) = Z7 ()] 2ay o ko o
e, T > ok o170 - 20> g,

where c(g) is some positive constant. If we choose g so small that ng/(q + 1) < n,,
then

lim P

k—o00

wp VO =ZiOL Y s
O<x<I));<1 |x—y|q77/(q+l) q — Y, .
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since, by Theorem 1.2(a) of [4], Z,2 is locally Holder continuous of every index
smaller than 7. Therefore, it suffices to show that

lim P( U“th(n_q) — Z2(0)] > 2qk+ln—q"}> =0. (3.57)

k—o00
n=1

But

> k
(U 20 - 2201 o))

n=1

<P h 724 (n=0) — Z2(0)| > <o P(ASC 3.58

= U | 1 (l’l ) 1 ()|>2q+ln + ( )’ ( )
n=1

where A% ¢ denotes the complement of A®. It follows from (3.50) that

lim P( U{IZ?’E(n‘q) — 722°(0)| > 2;11”_‘1"}) =0. (3.59)

k— o0
n=1

Moreover, P(A%°) < 3¢, see (3.11). As a result, we have

limsupP< U { |22(n=9) — 22(0)| > qu_H L }) <3e. (3.60)

k1 oo n—=1

Since ¢ may be arbitrarily small, this implies (3.52). This yields the desired Holder
continuity of Z? at 0 for all 1 < ijc. Since Z! and Z} are a.s. Lipschitz continuous
at 0 (cf. [4, Remark 2.13]), recalling (2.5), the proof of Theorem 1.1(a) is complete. []

4 Optimality of 5.: Proof of Theorem 1.1(b)

We continue to consider d = 1, to fix ¢, z, u, o, B, n as in the theorem, and to assume
O<t<landz=0.

In analogy to the proof of optimality of n. in [4, Sect. 5], our strategy is to find a
sequence of “big” jumps that occur close to time ¢. But in contrast to the case of the
local Holder continuity, we need to find these “big” jumps in the vicinity of 0, where
these jumps should destroy the Holder continuity of any index greater than or equal
to 7. This needs to overcome some new technical difficulties.

Recall that we need to prove the optimality in the case 8 > (o — 1)/2 only. This
implies that 7. = %—i} —1<1

First let us give two technical lemmas that we need for the proof.

Lemma 4.1 (Some Left-Hand Continuity) For all ¢,0 > 0,

P(X,(O) >0, liminf ST X, (et = 9)"/%) < e) —0. (4.1)
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Proof For brevity, set
A= [limTinfo‘_sXs (c(t —)'/?) < 9}, 4.2)
STt
and for n > 1/¢, define the stopping times

S {inf{s et —1/n1): 8% X(c(t —)'/*) <0 +1/n}, weA, 43)

t, w € A°.
Define also
Xy = c(t — 1)1/, 4.4)
Then, using the strong Markov property, we get
E[X;(xy) | Fo, | = 871 Xo, (xn) = X1 (0)1ac + 87, X, (xn)14. 4.5)

We next note that x, — 0 almost surely as n 1 oco. This implies, in view of
the continuity of X, at zero, that X,;(x,) — X;(0) almost surely. Recalling that
Esup|, <1 X:(x) < 00 in view of Corollary 2.8 of [4], we conclude that

X;(x,) — X,(0) in L. (4.6)
ntoo
This, in turn, implies that
E[X;(xn) | Fs,] — E[X/(0) |ft”]nT_o>oo in L. 4.7)

Furthermore, it follows from the well-known Levy theorem on convergence of con-
ditional expectations that

E[X,(0) | ] nT—O>oE[Xt(O) | Foo] in Ly, (4.8)

where Foo :=0 (U1, 1)
Noting that t,, 1 ¢, we conclude that

Fi—- € Foo € Fr. 4.9)

Since X.(0) is continuous at fixed ¢ a.s., we have X,;(0) = E[X;(0)|F;—] almost
surely. Consequently, E[ X;(0)|Fs] = X;(0) almost surely, and we get, as a result,

E[X;(0) | 7, ] 2 X0 inL;. (4.10)

Combining (4.7) and (4.10), we have

E[X/(xn) | Fz, ] 2 X0 inLy. 4.11)
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From this convergence and from (4.5) we finally get

E(14]X:(0) — S, X, (xs)|) —> 0. (4.12)

t—1y e

Since Sf‘_an r,(xn) <60+ 1/n on A for all n > 1/t, the latter convergence implies
that X,;(0) <6 almost surely on the event A. Thus, the proof is finished. ]

Lemma 4.2 (Some Local Boundedness) Fix any nonempty bounded B C R. Then

Xs(B (/e (x
W= sup sBeopte ™) @)

I
(Cos.0): e=1, Ov(t—c—2)<s<t. xeB  C(t —8)1/®

Proof Every ball of radius ¢( — 5)!/* can be covered with at most [c] + 1 balls of
radius (¢ — s)!/%. Therefore,

XS (Bc([—s)l/a (x))
c(t —s)l/e

sup
(c,s,x): ¢=1, OvV(t—c—V/®)<s<t, xeB

Xs(B p
<5 sup s (B(y—gy1/e (X))

B (s,x): 0<s<t, xeB; (t — S)l/a

, (4.14)

where B; := {x: dist(x, B) < 1} with B denoting the closure of B. (The restriction
s>t —c Vg imposed to have all centers x of the balls B(,_i/(x) in B;.) We
further note that

S?—SXS(X) = / dy p?[—s(x —Xs(y) > / dy pf‘_s(x — X (y).
R B(l‘—‘v)l/a ()C)

(4.15)

Using the monotonicity and the scaling property of p*, we get the bound

SE Xs(x) = (t — )7V pF (DX (Byy_gy1e (). (4.16)
Consequently,
X (B _ a (X 1
sup By Lk /a( 2 _ sup S X, (x). (4.17)
(s,x): O<s<t, xeB (t - S) P (1) (s,x): O<s<t, xeB;

It was proved in Lemma 2.11 of [4] that the random variable at the right-hand side is
finite. Thus, the lemma is proved. (]

Introduce the event

Dy = {X,(0)>9, sup X,(R)<6~", Wg, ) 59—1}. (4.18)

O<s<t
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For the rest of the paper, take an arbitrary ¢ € (0,7 A 1/8). For constants ¢, Q > 0,
define the stopping time

. 1/(1 —
Te.c.0 ::mf{s €(t—e 1) AX;(y) > Q(y(t —s)) /(+P) log!/+8) ((t — 5)7")

3
for some %(r _le <y < Tc(z —s)l/“}. 4.19)

In the next lemma we are going to show the finiteness of 7¢ . ¢, which means that
there is a “big” jump close to time ¢ and to the spatial point z = 0.

Lemma 4.3 (Finiteness of T ¢, 5 .0) For each 6 > 0, there exists a constant
C4.20) = C(4,20)(9) > 1 such that

P(Tecyn0.0 =00|Dg) =0, e€(0.171/8), Q>0 (4.20)

Proof Analogously to the proof of Lemma 4.3 in [4], to demonstrate that the number
of jumps is greater than zero almost surely on some event, it is enough to show the
divergence of a certain integral on that event or even on a bigger one. Specifically
here, it suffices to verify that

3¢

, ds Fu-ste
I, :=f f dyy 'X,()) =c0  (421)
T e =) log((t =)™ Je gy ’

almost surely on the event {X;(0) > 6, supy_,; Xs(R) < 6~

The mapping & +> I is nonincreasing. Therefore, we shall additionally assume,
without loss of generality, that ¢ < ¢~/ and this in turn implies that c(t — s)l/ <1
for all s € (t — ¢, t). So, in what follows, in the proof of the lemma we will assume
without loss of generality that given ¢, we choose ¢ so that

ct—HV* <1, se@—er). (4.22)

Since y < 3TC(I — )/ and pX(x) < p¥(0) for all x € R, we have

e /" ds
ST 3¢ Ji_e (1 —s) 1V log((t —s)~)

3cis_ 1/
X/Z(’ $) dyp?‘_s(C(t—S)l/“—y)
C(1—s)lfa pi—s(0)

Xs(y). (4.23)

Then, using the scaling property of p*, we obtain

s 2 ! ds
"7 3cp%(0) Ji—e (t —s)log((t —s)~ 1)

(Sf‘_sXs (c(t — s)1/®)

— / dy p_, (c(t — ) — y) X, (y)). (4.24)
ly—c(t—s)1/¥|> 5 (t—s)1/*
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Since we are in dimension one, if
o . 1/ 1/a
yeDs =1z ¢ 5_'—] (t—y) <|z—c(t—s) |

1
< c(z +5F j)(t — s)l/“}, (4.25)
then

(et — )M —y) < pii(c(j + 1/2)(t —)'/®)
=@t —s)"p¥(c(j+1/2))
<caome N —s)y7V a2+ HT 4.26)

From this bound we conclude that

f dy p2_, (et =) = y)15y0) (M) X5 ()
ly—c(t—s)l/e|> 5 (1—s)1/@

0
<cane™ =T 1240 [ tmomxo. @21
2 |

DS,]

Now recall again that the spatial dimension equals to one, and hence for any j > 0,
tge set Dy j in (4.25) is the union of two balls of radius c(r — s)1/¢  If furthermore
Dy ; N B2(0) # ¢, then, in view of the assumption c(t — s)1/® < 1, the centers of
those balls lie in B3(0). Therefore, we can apply Lemma 4.2 to bound the integral
I5, ;9 18,00 () X5 () by 2¢(t — s)!/*Wpg, o) and obtain

/ dy pf'_(c(t — s)l/e — Y)18,0) (V) X5 ()
ly—c(t—s)1/|>5 (1—s)1/¢

o0
<2Waycaane ™ Y _(1/2+ )7 < CWay)c ™. (4.28)
j=0

Furthermore, if |y| > 2 and (f —s) <c¢™%, then

P (et =) —y) < p? (1) =t — )" p¥((t —5)71/%)
< c3.23)(t — ). (4.29)

This implies that
/ dy p_, (c(t — ) — y) X5 (y) < 23yt — $)X5(R)
R\ B2 (0)

<camc “Xs(R). (4.30)
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Combining this bound with (4.28), we obtain

/ dy p®_, (c(t — )V — y)X(y)
ly—c(t—s)1/e|>§ (1—s)!/e

§Cc_“<WB3(0)—|— sup XS(R)>. 431)

O<s<t

Thus, we can choose ¢ so large that the right-hand side in the previous inequality
does not exceed 6/2. Since, in view of Lemma 4.1,

liminf S X, (c(t —)'/%) > 6, (4.32)

st

we finally get

st

liminf<Sfl_sXs (ctt =)'

- / dy pig (et =)' = y) X, (y)) > 6/2. (4.33)
|y—C(f—S)l/°‘|>%(t_S)l/a

From this bound and from (4.24) the desired property of I, . follows. ]

Fix any 6 > 0 and, to simplify the notation, write ¢ := cw.20). For all n sufficiently
large, say n > Ny, define

e [, (G K)o
2 T2 -

for some s € (f — 27", 1 — 27"t D) } (4.34)

Based on Lemma 4.3, we will show in the following lemma that, conditionally on
Dy, infinitely many of the A,,’s occur. This then gives us a bit more precise informa-
tion on the “big” jumps we are looking for.

Lemma 4.4 (Existence of Big Jumps) We have
P(A,, infinitely often | Dg) = 1. (4.35)

Proof If y € (5(t —s)1/%, 3£t —5)1/*) and 5 € (t — 27", t — 2790 D) then

1\ 1/(148) nHe 1 AER)
((t —s)ylog((r —s)7")) > (2_“(”"' )52_”_ oznlogZ)

_ C(Z,l36)2_(ﬁc+l)nnl/(l+ﬁ)' (4.36)

This implies that

A, D !AXS((EU _ gl %(r —s)l/“)>
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> cuae)((t —s)ylog((t — S)—l))l/(1+ﬁ)
for some s € (1 —27", 1 — 27"+ V) } 4.37)

In what follows, with some abuse of notation, we denote 7. . := Te,c,c4.36)" Conse-
quently, from (4.37) we get

0}
U Ap 2 {ty-en . <00} forall N > Ny val log,(t A 1/8). (4.38)
n=N
Applying Lemma 4.3 and using the monotonicity of the union in N, we get
0
P( LJ Ax
n=N

This completes the proof. ]

Dg) =1 forall N > Ny. (4.39)

Now it is time to explain our
Detailed strategy of proof of Theorem 1.1(b) Define

1/(1
A% = AX,(p) < can(t —9)Iy) P f 0 forall s <7 and y € Byje(0))
N{AX;(y) <c*(t =)/~ foralls <t and y e R} N{V <.},
(4.40)

where f; , £ and ¢* are defined in (2.6), (2.8), and (3.9), respectively. Note that
Dg 1 {X:(0) > 0} as 6 | 0, and by (3.6), (3.9), and Lemma 2.1 we have that A* 1 2
as ¢ | 0. Hence, for the proof of Theorem 1.1(b), it is sufficient to show that

P( wp K= X1

_ 00 ‘ Dy N A‘9> =1. 4.41)
x€Be(0), x#£0 | |77

Moreover, since Z! and Z} are a.s. Lipschitz continuous at 0, the latter will follow
from the equality

P(Zr2 (Cz_n_z) — Z,Z(O) > 27 eny /A+H =€ infinitely often|Dg N A%)=1. (442

To verify (4.42), we will again exploit our method of representing th using a time-
changed stable process. To be more precise, applying (3.2) with x = ¢27"~2 (for n
sufficiently large) and using n-dependent notation as le—', T, + (and later ¢, +), we
have

Z2(c27"%) = ZXH0) = L (Ty+) — Ly, (Ty ). (4.43)
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Let us define the events

B} = L] (T, 4) = 2! Teny 1 /(A+H) =2}
By :={L; (T,,—) < 277! /0+A e},
and
B,:=B, NB,. (4.44)
Then, obviously,
(Z2(c27"72) = Z2(0) > 27 VTPV S B S BN A, (445)

Thus, (4.42) will follow once we verify that

lim P( U (B, N A,)

Ntoo
! n=N

Dy N A5> — 1. (4.46)

Taking into account Lemma 4.4, we conclude that to get (4.46) we have to show

lim P( fj (By N A,)

N1too
T n=N

Dy N A8> —0. (4.47)

Hence, the proof of Theorem 1.1(b) will be complete once we demonstrate statement
(4.47). (]

Now we will present two lemmas, from which (4.47) will follow immediately. To
this end, split

BSNA, = (B,*NA,)U(B,°NAy). (4.48)

Lemma 4.5 (First Term in (4.48)) We have

(0.¢]
131%50 Z P(B;°N A, N A%)=0. (4.49)
n=N

The proof of this lemma is a word-for-word repetition of the proof of Lemma 5.3 in
[4] (it is even simpler as we do not need additional indexing in k here), and we omit
it. The idea behind the proof is simple: Whenever X has a “big” jump guaranteed
by Ay, this jump corresponds to the jump of L}, and then it is very difficult for a

spectrally positive process LT to come down, which is required by B, °.

Lemma 4.6 (Second Term in (4.48)) We have

08}
lim Y " P(B,°N A, N A" N Dy)=0. (4.50)
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The remaining part of the paper will be devoted to the proof of Lemma 4.6, and
we prepare now for it.

One can easily see that B,, " is a subset of a union of two events (with the obvious
correspondence):

B, °C U, UU}:={AL, > 27Ty l/(+H)=2¢]
U{AL, <27y /AH=2¢ (T, ) > 27 TenpgA+A=E1 - (4.51)
where

AL, = sup AL, (s). (4.52)

n
O<s<T), —

The occurrence of the event U,% means that L, has big jumps. If U,% occurs, it means
that L, gets large without big jumps. It is well known that stable processes without
big jumps cannot achieve large values. Thus, the statement of the next lemma is not
surprising.

Lemma 4.7 (No Big Values of L, in Case of Absence of “Big” Jumps) We have
(o9]
lim Y " P(U7NA%)=0. (4.53)

We omit the proof of this lemma as well, since its crucial part related to bounding
of P(U,% N A?) is a repetition of the proof of Lemma 5.6 in [4] (again with obvious
simplifications).

Lemma 4.8 (Big Jumps of L,  Caused by Several Big Jumps of M) There exist
constants p and & such that, for all sufficiently large values of n,

ASNA,NU CA*NE,(p,8), (4.54)
where
E,(p,§) = lThere exist at least two jumps of M of the form ré, yy such that
r> ((t —s)ymax{( — )"/, [y|}) /TP 10g/ +H=22 (1 —5)71),
V<@t —)Ylog" (t —9)7"), se[t—27n",t —27"n""]}.

(4.55)

Proof By the definition of A,,, there exists a jump of M of the form r§; ) with r, s as
in E,(p, £),and y > ¢27"~!. Furthermore, noting that ¢@n—(y)=0fory > €273,
we see that the jumps rd,,y) of M contribute to L, (T, —) if and only if y < 273,
Thus, to prove the lemma, it is sufficient to show that Ur} yields the existence of at
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least one further jump of M on the half-line {y < ¢27"3} with properties mentioned
in the statement. Denote

D= [(r, S, V). r> ((t — s)max{(t —s)l/e, |y|})l/(l+ﬁ) logl/(l"'ﬂ)_zg((t - S)_l),

ye (=t—9""1ogf ((r—s5)71),c27"73),

selr—27me =27 ]]. (4.56)

Then we need to show that U! implies the existence of a jump rd. ) of M with
(r,s,y) € D.
Note that

D = DN DyN Ds
=050 rz0, 5 €101, y e (= =) logf (1 =9 7"), 277
N {(r, s,9):r>0, ye (—oo, c2_”_3), s € [t — 27yl — 2_“”11_'0]}
N {(r, $,y): Y€ (—oo, 62_"_3), s €[0,t],
r> ((r —s)ymax{( — )"/, [y|})"/ P 10gVIHH=22 ((1 — s)_l)}.
Therefore,
D n{y <27} = (DSn{y <27}y u (D1 N DS) U (D1 N DN DY),
(4.57)
where the complements are defined with respect to the set

{(r;5,y): r =0, s€[0,1],y €R}. (4.58)

We first show that any jumps of M in D{ N {y < ¢27"=3} cannot be the course of
a jump of L, such that U,% holds. Indeed, using Lemma 2.3 with § = n., we get for
y < 0 the inequality

@n,—(y) — p;x_s (y) . p;x_s (y _ cz—n—l) < 21—ﬁcn(t _ s)_ﬁc/ap;x_s (y)
—a—1
—dengy _ =+ /af Y
=e2 ey <(z - s)l/“>
— Cz—ﬁcn(t _ S)l_ﬁC/alyl_a_l, (459)

where in the second step we used the scaling property and (3.23).
Further, by (4.40), on the set A® we have

AX,(y) <C(Iy1t =) VP00 <1/, (4.60)
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and
AXs(y) <C(t —s)VIFD=Y 1y > /e, (4.61)
and recall that f; , =log((t — s)~ 1)1 {x=£0) log(lxl_l). Combining (4.59) and (4.60),

we conclude that the corresponding jump of L, , henceforth denoted by AL, [rds, )],
is bounded by

- = 1 1 1 1
C271e ¢ — ) T Log B (1 — )7y 7T log T (1l ).

(4.62)

1 1+
Since | yl_a_“rm logﬁ (ly|~1) is decreasing, we get, maximizing over y, for y <
—(t —s)"log® ((t — s)~") the bound

_ 2 1
AL [r8(s.)) < C27 M ogTep t2a =8t Immig) (=1, (4.63)
. 24+2¢g(1
Choosing & > (IJ:Z%)%%’ we see that
AL [r8(s.p)l < C270" |y| < 1/e. (4.64)

Moreover, if y < —1/e, then it follows from (4.59) and (4.61) that the jump
AL; [rd(s,y)] is bounded by

C2Ten (¢ — )\ STV |y o=l < cTen, (4.65)

Combining (4.64) and (4.65), we see that all the jumps of M in D] N {y < 273}
do not produce jumps of L, such that Un1 holds.

We next assume that M has a jump rd, ) in D; N D5. If, additionally, s <t —
27%"pP  then, using Lemma 2.3 with 6 = 1, we get

on—(0) = Pl = P (y =27 ) <27 =TV (4.66)
From this bound and (4.60) we obtain
ALy [rd ] < C27 (1 =) 2 7 1og T+ (1 — )71y |77 log 7 |y ™)
<2t — ) EED/ 1og%+2‘1((z —5)™). (4.67)
Using the assumption t — s > 27%*n” we arrive at the inequality

= o(1—7 2+
AL [r8(s.y)) < C27Ten =P U=l ot Tt2g (4.68)

From this we see that if we choose p > “(fl"' f/;")z(‘f(_lg )ﬂ )), then the jumps of L, are

bounded by C27"<", and hence U,' does not occur.
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If M has a jump in Dy N D5 attime s >t —27%"'n"" | then, using (4.60) and the
bound

On—(N=p~ (M —p~(y—c27" ) <p® (0)<C@t—s)"" (4.69)

we get for y € (—(r — )/ logf ((t —5)™1), 27" ) and t — s <27*"n~" the in-
equality

1+o 2+¢
AL;[r8s.] < C(t — ) T8~ D/ 10g T2 (¢ — 5)71)

_ _ 24t
= C2_ncnn—0(nc/0{)+ﬁ+2q. (4.70)

Choosing p > “(g"'(zlﬁgq)gjﬁ ) we conclude that AL, [r8¢s.y)] < C277" and again

U does not occur.
Finally, it remains to consider the jumps of M in Dy N D, N D5. If the value of

e+l 1
the jump does not exceed (¢t — §)«0+A) logI+F 28((1‘ — s)~1), then it follows from
Lemma 2.3 with § = 7, that

- 1
AL [0 < C27 M 10g T 28 ((r — 5)71). 4.71)
Then, on Dy, thatis, fort —s > 27*"n=",

2¢e

- 1
AL [r8(s.y] < C27 1M T~ 4.72)

Furthermore, if y < —(t — s)/ and the value of the jump is less than (|y|(t —
1 1
§))T+R logm_zs((t —s5)~1), then, using (4.59), we get

_ — 1 1
AL;[r8s.5)] < C27e (1 — )1 =T/ og T8 =2 (1 — 5) ™) |y| @7+ 157
- 1
< C27M 1og T (1 —5)7 1), (4.73)
Then, on Dy, thatis, fort —s >27*"n=",

2¢e

- 1
AL [r8(s )] < C27 ey T~ (4.74)

By (4.72) and (4.74), we see that the jumps of M in Dy N D, N D5 do not pro-
duce jumps such that U,% holds. Combining all the above, we conclude that to have

- 1
AL [rde, ] > CZ_UC”nW_Zg, it is necessary to have a jump in Dy N Dy N Dj3.
Thus, the proof is finished. 0

Proof of Lemma 4.6 In view of the Lemmas 4.7 and 4.8, it suffices to show that

o)

li P(E,(p,&) N A* N Dy) = 0. 4.75
NITHOlOn—N (En(p.§) 0) (4.75)
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The intensity of the jumps in D [the set defined in (4.56) and satisfying conditions in
E,(p,§)]1is given by

f—D—an y—p 10g28(1—|—/3)—1((l. _ S)—l)
/ ds / X,(dy) o . (4.76)
f—D—any,p Iy|<(t—s)1/2 logt ((t—s)—1) (t —s) max{(t —s) ’ |y|}

Since in (4.75) we are interested in a limit as N 1 oo, we may assume that n is such
that (t — s)1/@ logs((t —s) ) <1 fors>t—2"9uP We next note that

/ Xs(dy)
ly|<(t—s)1/e max{(z — )1/ |y[}

=t —) X (=t =V ¢t =) <07 4.77)

on Dy. Further, for every j > 1 satisfying j < logg((t —s)~h,

/ Xs(dy)
J=s)\Ve<yl<(i+1)(—s)V/e max{(t — )/ y]}

<j'e—=97X({y: je =9V <yl <G+ D —9V}). @4.78)
Since the set {y: j(t —s)/% <|y| < (j + 1)(t —s)1/®} is the union of two balls with

radius %(t — 5)~ 1/ and centers in B»(0), we can apply Lemma 4.2 with ¢ = 1 to get

X.(d
/ s yl) <2071 (4.79)
J—s)Ve<|y|<(j+D(t—s)1/e max{(z — )1/ |y[}

on Dy. As aresult, on the event Dy we get the inequality

Xs(dy)

flylf(t—s)l/“ logt ((t—5)~") max{(t —s)!/%, |y|}

<o~ og(|log((r —)™h)]). (4.80)

Substituting this into (4.76), we conclude that the intensity of the jumps is bounded
by

co-! /‘2 g 0T ) oglog(t )71
f—D—anpyp (t—ys)
Simple calculations show that the latter expression is less than
Co~Ip2U+h =T ogl+2eU+H) (4.82)
Consequently, since E,(p, £) holds when there are two jumps in D, we have
P(E,(p,&) N A® N Dy) < Co2pteIHA=2 g2 4elIHh) (4.83)

Because ¢ < 1/8 < 1/4(1 + B), the sequence P(E,(p, &) N A° N Dy) is summable,
and the proof of the lemma is complete. (]
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