Local probabilities for random walks conditioned
to stay positive

Vladimir A. Vatutin - Vitali Wachtel

Abstract Let So = 0, {S,, n> 1} be a random walk generated by a sequence of
i.i.d. random variables X1, X»,... and let T~ = min{n>1: S, < O} and t7 =
min{n > 1: §, > 0}. Assuming that the distribution of X; belongs to the domain
of attraction of an «-stable law we study the asymptotic behavior, as n — oo, of the
local probabilities P(t* = n) and prove the Gnedenko and Stone type conditional
local limit theorems for the probabilities P(S,, € [x, x + A)|t™ > n) with fixed A
and x = x(n) € (0, 00).
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1 Introduction and main result

Let So :=0, S, = X1+ ---+ X,,, n > 1, be a random walk, where the X; are
independent copies of a random variable X and

tT=min{n>1: S,<0} and " =min{n >1: S, > 0}
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be the first weak descending and first strict ascending ladder epochs of {S,, n > 0}.
The aim of this paper is to study, as n — o0, the asymptotic behavior of the local
probabilities P (ri = n) and conditional local probabilities P(S,, € [x, x + A)|t™ >
n) for fixed A > 0 and x = x(n) € (0, 00).

To formulate our results we let

A=0<a<1; Bl <1}U{l <a<2;|B]| <1}JU{a=1,8=0}U{a=2,8 =0}

be a subset in R?. For («, 8) € A and a random variable X write X € D («, ) if the
distribution of X belongs to the domain of attraction of a stable law with characteristic
function

+00
¢ .
G, (1) :=exp |—c|t|°‘ (1 — iﬁmtan %)] = / €' gy puwydu, c¢>0, (1)

and, in addition, EX = 0 if this moment exists.
Denote Z := {0, =1, +2, ...}, Z, := {1, 2, ...} and let {c,,, n > 1} be a sequence
of positive integers specified by the relation

cp = inf {u >0:uu) < n_l} , (2)

where
u

u(u) = iz /sz(X € dx).
u

—Uu

Itis known (see, for instance [15, Chap. X VII, Sect. 5]) that for every X € D(«, B) the
function p(u) is regularly varying with index (—«). This implies that {c,,n > 1} isa
regularly varying sequence with index o ™!, i.e. there exists a function /;(n), slowly
varying at infinity, such that

ey = n' (n). 3)

In addition, the scaled sequence {S,,/c,, n > 1} converges in distribution,asn — o0,
to the stable law given by (1).
The following conditional limit theorem will be crucial for the rest of this article.

Theorem 1 If X € D(«, B), then there exists a non-negative random variable M g
with density py g(u) such that, for all up > uy > 0,

uz

lim P(ﬁ e lu1, uz) ‘ > n) = P(Myp € [uy, 12)) =/pa,,3(v)dv. )

n—00 Cn
ui

Remark 2 The validity of the first equality in (4) was established by Durrett [13]. We
failed to find any reference for the absolutely continuity of M, g. As was pointed out by
the referee, the needed statement can be justified using the following arguments. First,
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Eqgs. (4.12) and (5.5) in Alili and Chaumont [1] imply that the distribution of M, g is
a multiple of the entrance law of the measure of excursions away from 0 of the stable
process reflected by its minimum. Second, Monrad and Silverstein [18] established the
absolutely continuity of this entrance law. In fact, the absolutely continuity of M, g
will be a by-product of our proofs and we include it in (4) to simplify the statements
of the main theorems of the present paper.

It is necessary to mention that functional limit theorems for random walks conditioned
to stay positive were established by Doney [11] and by Caravenna and Chaumont [7].

Our first result is an analog of the classical Stone local limit theorem.

Theorem 3 Suppose X € D(«a, B) and the distribution of X is non-lattice. Then, for
every A > 0,

cnP(Sy elx,x+ At >n) — Apggx/cp) —> 0 asn — o0 5)

uniformly in x € (0, 00).

For the case when the distribution of X belongs to the domain of attraction of the
normal law, that is, when X € D(2, 0) relation (5) has been proved by Caravenna [6].
If the ratio x/c, varies with n in such a way that x/c,, € (b1, by) for some 0 <
by < by < 00, we can rewrite (5) as
cnP(Sy € [x, x + A)[t™ >n) ~ Apg pg(x/cp) asn — o0.
However, if x /¢, — 0, then, in view of
lim =0
210 Pa,p (2)
(see (80) below), relation (5) gives only

cnP(S, €elx, x4+ A)|t” >n)=o0(l) asn — oc. (6)

Our next theorem refines (6) in the mentioned domain of small deviations, i.e. when
x/c, — 0. To formulate the desired statement we need some additional notation.

Set x T := S+ and introduce the renewal function
(0@}
H):=Hu> 01+ > Px{ + -+ xf <w. (7)
k=1

Clearly, H is a left-continuous function.

Theorem 4 Suppose X € D(«, B) and the distribution of X is non-lattice. Then

fx+A Hu)du

cnP(Sp € [x,x + A)|t™ > n) ~ g4,5(0) ;P = n)

asn — 0o (8)

uniformly in x € (0, 6,¢,], where 6, — 0 asn — oo.
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We continue by considering the lattice case and say that a random variable X is
(h, a)-lattice if the distribution of X is lattice with span 2 > 0 and shifta € [0, h), i.e.
the & is the maximal number such that the support of the distribution of X is contained
inthe set {a + kh, k =0, £1, +£2,...}.

Theorem S Suppose X € D(«, B) and is (h, a)-lattice. Then
cnP(Sy =an+x|t™ >n) —hpyg((an+x)/cy,) > 0 asn — o 9

uniformly in x € (—an, c0) N hZ.

For X € D(2,0) and being (&, 0)-lattice relation (9) has been obtained by Bryn-
Jones and Doney [5].

Theorem 6 Suppose X € D(w, B) and is (h, a)-lattice. Then

H
i P(S, =an+ x|t~ >n) ~ hga,ﬁ(O)M asn — oo (10)
nP (‘L'_ > n)

uniformly in x € (—an, —an + 8,c¢, | N\ h’Z, where 6, — 0 as n — o0.

Note that Alili and Doney [2] established (10) under the assumptions X is (4, 0)-
lattice and EX? < oo. Bryn-Jones and Doney [5] generalized their results to the
(h, 0)-lattice X € D(2,0).

The next theorem describes the asymptotic behavior of the density function py g
at zero. The explicit form of p g is known only for a =2, B=0: ps o(x) :xe‘xz/zl
(x>0). For this reason we deduce an integral equation for p, g (see (79) below) and
using Theorems 3-6 find the asymptotic behavior of py g(z) at zero.

Theorem 7 For every («, B) € A there exists a constant C > 0 such that
Pa,p(z) ~Cz* asz ] 0,

where p 1= foo_i 8o p(w)du.

One of our main motivations to be interested in the local probabilities of conditioned
random walks is the question of the asymptotic behavior of the local probabilities of
the ladder epochs T~ and 7. Before formulating the relevant results we recall some
known facts concerning the properties of these random variables, given

1 1
Z; ;P(Sn > 0) = Z; ;P(Sn <0) = co.
n= n—=

The last means that {S,,, n > 0} is an oscillating random walk, and, in particular, the
stopping moments 7~ and t™ are well-defined proper random variables. Moreover,
it follows from the Wiener—Hopf factorization (see, for example, [4, Theorem 8.9.1,
p. 376]) that for all z € [0, 1),
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S )
1—Ezf':epr—ZZ—P(5 50)} (11)
n
n=1
and
+ - 7"
1 —EZ° :exp{—Z{;P(Sn >0)]. (12)
n—

Rogozin [20] investigated properties of T and demonstrated that the Spitzer condition
n
nTI Y PS>0 > pe©.1) asn— oo (13)
k=1
holds if and only if 7T belongs to the domain of attraction of a positive stable law with

parameter p. In particular, if X € D(«, B) then (see, for instance [24]) condition (13)
holds with

p = /gcx,ﬁ(u)d” = {

0+

L,

arctan (Btan %), otherwise.

, o

_|_

(14)

D= B —

1
T
Since (11) and (12) imply

(1— Ez’+)(1 —Ez" )=1—z forallz € (0, 1),

one can deduce by Rogozin’s result that (13) holds if and only if there exists a function
[(n) slowly varying at infinity such that, as n — oo,

1
C(p)T (1 = p)nPl(n)

P (‘L'_ > n) ~ Hn) , P(7:Jr > n) (15)

We also would like to mention that, according to Doney [12], the Spitzer condition is
equivalent to
P(S, >0 — pe(0,1) asn — oo. (16)

Therefore, both relations in (15) are valid under condition (16).

The asymptotic representations (15) include a slowly varying function /(x) which
is of interest as well. Unfortunately, to get a more detailed information about the
asymptotic properties of /(x) it is necessary to impose additional hypotheses on the
distribution of X. Thus, Rogozin [20] has shown that /(x) is asymptotically a constant
if and only if

o0

Z%(P(Sn > 0) — p) < oo. (17)

n=1

It follows from the Spitzer—R6sen theorem (see [4, Theorem 8.9.23, p. 382]) that if
EX? < oo, then (17) holds with p = 1/2, and, consequently,
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C:I:

Pzt >n) ~ asn — 0o, (18)

/2

where C* are positive constants. Much less is known about the form of /(x) if
EX? = co. For instance, if the distribution of X is symmetric, then, clearly,

1 1
PS,>0)—=|==P(S5,=0). (19)
2 2
Furthermore, according to [19, Theorem III.9, p. 49], there exists C > 0 such that for
alln > 1,

C
P(S,=0) < ﬁ

By this estimate and (19) we conclude that (17) holds with p = 1/2 and, therefore,
(18) is valid for all symmetric random walks.

One more situation was analyzed by Doney [9]. Assuming that P(X > x) =
(x%ly (x))_l , x>0, with | <a <2 andl/y(x) slowly varying at infinity, he established
some relationships between the asymptotic behavior of /o (x) and /(x) at infinity for a
number of cases.

Thus, up to now there is a group of results describing the behavior of the probabilities
P(t* > n) as n — oo and the functions involved in their asymptotic representations.
We complement the mentioned statements by the following two theorems describing
the behavior of the local probabilities P(z* =n)asn — oo.

Theorem 8 If X € D(«a, B) then there exists a sequence {Q, , n > 1} such that

P(r” =n) = Q;’ig—’z)p(l +o0(1)) asn — oo. (20)

The sequence {Q,,, n > 1} is bounded from above, and there exists a positive constant
Q. such that Q,; 1(Q, > 0) > Q forall n > 1. Moreover, we may choose Q,” =
1 — p if and only if one of the following conditions holds:

(@) E(=S;-) =00,
(b) E(—S;-) < oo and the distribution of X is (h, 0)-lattice,
(c) E(—S,-) < oo and the distribution of X is non-lattice.

Remark 9 The statement of the theorem includes the quantity E(—S,-), which
depends on 7, arandom variable being the objective of the theorem. This is done
only to simplify the form of the theorem. In fact, Chow [8] has shown that E(—S,-)
is finite if and only if

x2

0/ fooo ymin{x, y}JP(Xt+ € dy)

P(X™ edx) < o0,

where X := max{0, X} and X~ := — min{0, X}.
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Remark 10 The simple random walk in which P(X = +1) = 1/2 is the most natural
example with Q;" # 1 — p. Here P(tr~ = 2k +1) = 0 and, consequently, Q,, , ; =0
forall k > 1. On the other hand, limy_, »o Q2_k exists and is strictly positive. This result
is in complete agreement with Theorem 8: the step-distribution of the simple random
walk is (2, 1)-lattice.

For the stopping time T we have a similar statement:

Theorem 11 If X € D(«a, B) then there exists a sequence {le', n > 1} such that

1)
n o 1+p

Pt =n)=0 (1+0(1)) asn — oo. (21)

The sequence {Q;7, n > 1} is bounded from above, and there exists a positive constant
Qi such that QF1(Q;F > 0) > QF for all n > 1. Moreover, we may choose Q;F =
p/((p)L'(1 — p)) if and only if one of the following conditions holds:

(a) ES;+ = o0,
(b) ES,+ < oo and the distribution of X is (h, 0)-lattice,
(c) ES;+ < oo and the distribution of X is non-lattice.

In some special cases the asymptotic behavior of P (tjE = n) is already known from

the literature. Eppel [14] proved that if EX = 0, EX? is finite, and the distribution of
X is non-lattice, then
C:I:

P(Ti:n)’\’m

asn — oo. (22)
Clearly, X € D(2, 0) inthis case. For aperiodic random walks on integers with EX = 0
and EX? < oo estimate (22) was obtained by Alili and Doney [2].

Asymptotic relation (22) is valid for all continuous symmetric (implying p = 1/21in
(16)) random walks (see [ 15, Chap. XII, Sect. 7]). Note that the restriction X € D(«, B)
is superfluous in this situation.

Recently Borovkov [3] has shown that if (13) is valid and

n'=r P(S, > 0) — p) — const € (—o0,00) asn — 00, (23)

then (20) holds with /(n) = const € (0, c0). Proving the mentioned result Borovkov
does not assume that the distribution of X is taken from the domain of attraction of a
stable law. However, he gives no explanations how one can check the validity of (23)
in the general situation.

Further, Alili and Doney [2, Remark 1, p. 98] have demonstrated that if X is (&, 0)-
lattice and ES,+ < oo then (21) holds with O ~ p/(T'(p)T'(1 — p)).

Finally, Mogulskii and Rogozin [17] established (20) for X satisfying the conditions
EX = 0and E|X|? < 0o. Moreover, they proved that Q:F ~ const if and only if the
distribution of X is either non-lattice or (%, 0)-lattice. Observe that E(—S,-) < oo
under their conditions.
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2 Auxiliary results
2.1 Notation

In what follows we denote by C, C1, C3, ... finite positive constants which may be
different from formula to formula and by [(x), lo(x), [1(x), [>(x), . .. functions slowly
varying at infinity which are, as a rule, fixed once and forever.

It is known thatif X € D («, B) with @ € (0, 2), and F(x) := P (X < x), then

1 — F(x) + F(—x) ~ as x — 00, (24)

x%o(x)
where [o(x) is a function slowly varying at infinity. Besides, for @ € (0, 2),

F(—x) N 1 —F(x)
1 —F(x)+ F(—x) " 1= F(x)+ F(—x)

— p asx — 00, (25)
with p+¢g =1and B = p — g in (1). It is easy to see that (24) implies
o
u(u) ~ 2—P(|X| >u) asu — oo. (26)
-«
By this relation and the definition of ¢, we deduce
2—al

— asn — oo. 27)
n

P(X| > cp) ~

2.2 Some results from fluctuation theory
Now we formulate a number of statements concerning the distributions of the random

variables 7, " and x ™. Recall that a random variable ¢ is called relatively stable
if there exists a non-random sequence d,, — 0o as n — oo such that

1 n
EZ{;{—% 1 asn — oo,
k=1
where ¢i 4 ¢, k=1,2,..., and are independent.
Lemma 12 (see [20, Theorem 9]) Assume X € D(«, B). Then, as x — o0,
P(X+>x)~; ifap < 1 (28)
X%y (x) ’

and x " is relatively stable if ap = 1.
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Lemma 13 Suppose X € D(«, B). Then, as x — oo,

Hx) ~ 1 h() (29)
' —oap)l’'(1 + ap)
ifap < 1, and
H(x) ~ xl3(x) (30)
ifap = 1, where
X -1
[3(x) := /P(X+>y)dy , x>0.

0

In addition, there exists a constant C > 0 such that, in both cases
H(c,) ~ CnP(t™ >n) asn — oQ. (31)
Proof 1f ap < 1, then by [15, Chap. XIV, formula (3.4)]

1 1
H(x) ~ as x — 00.
Il —ap)l'(1 +ap) P(x* > x)

Hence, recalling (28), we obtain (29).

If p = 1, then (30) follows from Theorem 2 in [20].

Let us demonstrate the validity of (31). We know from [20] (see also [16]) that
™ € D(p, 1) under the conditions of the lemma and, in addition, x * € D(ap, 1)
if p < 1. This means, in particular, that for sequences {a,,n > 1} and {b,,,n > 1}
specified by

n 1 n 1
P(t" >a,) ~— and P(x" > b,) ~— asn — o0, (32)
n n
and vectors (T/j_ , X/j_ ), k=1,2,..., being independent copies of (t™, x ), we have
1 < d 1 < d
a—Zrk"'—>Yp and b_lej__)Yap as n — oo. (33)
" k=1 " k=1

Moreover, it was established by Doney (see Lemma in [11, p. 358]) that
b, ~ Cclq,] asn — 00, (34)
where [x] stands for the integer part of x. Therefore, ¢, ~ C b[a—l(n)], where, with

a slight abuse of notation, a~!(n) is the inverse function to a,. Hence, on account
of (32),
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Cq
+ + _
P(x™ > cp) ~ CiP(X™" > big-13my) ~ a—1(n)

~ CP(T > ap-14) ~ GPGET > n). (35)

If ¢p = 1, then, instead of the second equivalence in (32), one should define b,, by

b
1 i 1
— | P(x" >y)dy ~— asn— o0
b, n
0

(see [20, p. 595]). In this case the second convergence in (33) transforms to

1

n
- ZX,;"—p)l as n — 0o,

" k=1
while (35) should be changed to

b

) Cn c la=lm)
1 1
—/P(X+ > y)dy ~ P(x" > y)dy ~ ——
Cn b[a_1(n)] a'(n)
0 0
~ CPt > a1 ~ CPGET > n). (36)

Combining (35) and (36) with (29) and (30) gives
H(cy) ~CP(tt >n) asn — oo

for all X € D(«, B). Using (15) finishes the proof of the lemma. O

Lemma 14 IfE(—S,-) < oo, then there exists a positive constant Cy such that

n 37
Cn 0 1(n) . (37)
Proof Let T~ := min{fk > 1 : —S; > 0} and x— = —S7- be the first strict ladder

height for the random walk {—S§,,, n > 0}. Applying (36) to {—S,,, n > 0}, we have
Cn
1
— /P(X_ > y)dy ~ CP(T~ > n). (38)
Cn
0

Obviously, E(—S,-) < oo yields Ex~ < oc. Therefore [;" P(x~ > y)dy — Ex~
as n — 0o. Combining this with (38), and recalling that P(T~ > n) ~ CP(t~ > n)
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in view of the equality

k

ZP(T_ > n)7" = ZP(t_ > n)z" exp iz Z;P(Sk = O)} ,
n=1 n=1 k=1

asymptotic representation (15), and the estimate

— 1
> P8 =0) < o0,
k=1
we obtain
lim ¢,P(t™ > n) =: Cy € (0, 00).
n— oo
On account of (15) this proves (37). O

2.3 Upper estimates for local probabilities
Forx >0andn =0,1,2, ..., let

B,(x) =P (Sn e 0,x):;t > n),
bu(x) :=By(x +1) — B,(x) =P (Sp € [x,x + 1); T~ > n).

Note that by the duality principle for random walks
(0] 0.9
1+ Bjx) =14 > P(S;€(0.x):7 > j)
j=1 j=1
.9
=14+ > P(S;€0.x):5>50.5>S1.....5; > Sj1)
j=1

=H(x), x>0. (39)

Lemma 15 The sequence of functions { B, (x), n > 1} satisfies the recurrence equa-

tions
n—1 %
1B,(6) = P(S, € 0.0) + 3 [ P(Sk € O.x = y))dBkly) @0
k=179
and
n—1 %
1B () =P (S, € 0.0+ 3 [ B =P (Scedn. (1)
k=1 0

Remark 16 The proof of (41) is contained in Eppel [14] (see formula (5) there).
Representation (40) is not given by Eppel. However, it can be easily obtained by the
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same method. Here we demonstrate the mentioned relations only for the completeness
of the presentation.

Proof Let
(0, )
Bu(t) :=E [e”S”; T > n] = / P (Sy €dx;t™ >n), te(—00,00),
0

be the Fourier transform of the measure B,,. It is known (see, for instance [22, Chap.
4, Sect. 17]) that

00 00 -k
1+ ZZan(t) = exp {Z ;Sk(t)} , lz] < 1,
n=1 k=1

where Sk (1) := E [e'"*; §; > 0]. Differentiation with respect to z gives
[0.@) [0.@) 0
S B () = (1 s z”Bn(t)) S 0
n=1 k=1

n=1

Comparing the coefficients of z~! in the both sides of this equality, we get

n—1
1By (1) = Su(1) + D Buk (DS (D). (42)
k=1
Going back to the distributions, we obtain the desired representations. O

From now on we assume without loss of generality that h = 1 in the lattice case
and, to study the asymptotic behavior of the probabilities of small deviations when
X is (1, a)-lattice, introduce a shifted sequence S, = S, —an and probabilities
by(x) := P(S, = x) = b,(an + x). Further, for fixedx € Zand 1 <k <n — 1 set

Ii(k,n):=(—an —k),ak +x)N7Z.

Lemma 17 The sequence of functions {bp(x), n > 1} satisfies the recurrence equa-
tion

n—1
nby(x) =P(S, =)+ D> D> belx = PGk = y). (43)
k=1 yeZ, (k,n)

Remark 18 Alili and Doney [2] obtained this representation in the case when X is
(h, 0)-lattice.
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Proof 1t follows from (42) that
nby(x) =P(S, =)+ D> D bi(x — YP(S,—k = y).
k=1

where the second sum is taken over all y € Z satisfying the conditions ak+x —y > 0,
a(n — k) + y > 0. This proves the lemma. O

Lemma 19 Assume X € D(«, B). Then there exists C > 0 such that, for all y > 0
andalln > 1,

C 1
) = = (44)
and Cly+1)1
By(y) < SO D I (45)

c, nl=P

Proof Forn = 1 the statement of the lemma is obvious. Let {Sjl‘, n > O} be a random
walk distributed as {S,,, » > 0} and independent of it. One can easily check that for
eachn > 2,

ba(y) =P(y< Sy <y+ Lt >n)

o0

= /P (y — Stn21 <S80 =Sy <y + 1 =80 Sz €dzs v > n)

< /P (y — 2SS <Y+ 1=z Supedzit > [n/2])
0
P(z™ > [n/2]) supP (z < Sy <2 1) . (46)
Z

Since the density of any «-stable law is bounded, it follows from the Gnedenko and
Stone local limit theorems that there exists a constant C > 0 such that for all n > 1
and all z > O,
CA
P(S,elz,z+A)) <

Cn

“47)
Hence it follows, in particular, that, for any z > 0,

Ciz+ 1)

Cn

P (S, €10,2) < (48)

Substituting (47) into (46), and recalling (3) and properties of regularly varying func-
tions, we get (44). Estimate (45) follows from (44) by summation. O

Lemma 20 If X € D(«, B) then there exists a constant C € (0, 00) such that

H(x)

Cn

by(x) =C

(49)
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and

By (x) < ¢ ™)

(50)

ncy

foralln > 1and all x € (0, cy].

Remark 21 Comparing (49) and (10) (to be proved later), we see that, in the domain
of small deviations, the estimates given by the lemma are optimal up to a constant
factor.

Proof By (41) we get

n—1 %

by () =P (S, € rox £ 1)+ 3 [ bost = WP (S € dy)
k=11

n—1 *+1
+3 [ Bt 1-PGcan. (s51)

Using (44), (48) and properties of slowly varying functions, we deduce

n/21 % [n/2]
n—tk(x = WP (S edy) <C P (S; €10, x))
;o/ ST ch K(n—k )lp ¢ *
[n/2]
_Cl l() (52)
Ch N

On the other hand, in view of (47) and monotonicity of Bi(x) in x we conclude
(assuming that x is integer without loss of generality and letting Bx(—1) = 0 and
H(—1) = 0) that

Z / _k(x — Y)P(Sk € dy)

k=[n/21+1}

< Z D Bug(x—j+1) = Byg(x—j—1)P(S €lj,j+1)

k—[n/2]+l j—O

< Z Z(Bn K —j+ 1) - nk<x—1—1>>—

k= [n/2]+l j=0

<—ZZ(Bk(x—JH)—Bk(x—J—l))

jOkO

Z—Z(H(X—]‘i‘l)—H(X—]—l))

j=0
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C 2C
=—HX)+Hx+1)<—HKx+1,

Cn Cn

where for the intermediate equality we have used (39). This gives
n X C
> [l -nPsican = SHE .
k=[n/21+17 Cn
Since x — B, (x) increases for every n,

n—1 X+1

Z/ 1= PP, dy) = S By (DP(SC € [+ 1),

k=1 k=1

Further, in view of (45) and (47) we have

[n/2] [n/2]
> Buk(DP(S € [x,x + 1)) < —1—) = D P(Sielx,x + 1)
k=1 Cn k=1
Applying (47) once again yields
n—1 C n—1
Y Bk MPGSrelxx+1)<— > Byy(D) < —H(l)
k=[n/2]+1 N k=ln/21+1
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(53)

(54)

(55)

(56)

Combining (51)—(56) and using the monotonicity of H (x), we obtain the estimate

c ( ) n/2]
nb,(x) < — | H(x + D+~ ZP(Sk € [0, x + 1))
C

n

Therefore, to complete the proof of (49) it remains to show that

L) A
— ZP(Ske[Ox+1))<CH(x—|—1)
k=1

This will be done separately for the cases o € (1, 2], € (0, 1), and o = 1.

Consider first the case o € (1, 2]. It follows from (48) that

[n/2]

ZP(O<Sk<x+1)<C(x+1)Z—<C(x—|—1)—
Ck

k=1 k=1

(57)

(58)
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where at the last step we have used the relation

1
@ asn — 00. (59)
Ck oa—1c¢y,

By Lemma 13 and properties of regularly varying functions we conclude that there
exists a non-decreasing function ¢ (u) such that u/H (u) ~ ¢(u) as u — oo. There-
fore, for any ¢ € (0, 1/2) there exists a ug = ug(e) such that, for all u > ug,

(1 —e)pu) < ﬁ < (1 +e)pw).

From this estimate it is not difficult to conclude that there exists a constant C such
that, for all » > 1 and all x € (0, ¢, ],

X <C Cn
H(x) = H(cn)

Hence we see that the right-hand side of (58) is bounded from above by

nH(x+1)
H{(cy)

Recalling that H (x) is regularly varying as x — oo, and applying (31) and (15), we
finally arrive at the inequality

[n/2] -
ZP(OgSk<x+1)§CH(x+1) .
k=1 l(n)

This justifies (57) for a € (1, 2].
Now we turn to the case o € (0, 1). Letting N, := max{k > 1 : ¢ < x + 1} and
applying (47), we get

[n/2] n 1
SPO<S<x+D)<Ne+Cx+1) > — (60)
k=1 k:Nx+1 Ck

Ny
SNe+Clx+1) )
CN,+1

Here we have used the asymptotic representation
— 1

(07 n
E —’\’1 as n — 0.
C — O C
k=n-+1 k n+1
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If « = 1, then, in view of (3),

Z”: 1 Nl Z h(Nx+ 1)1

Ck CN,+1 Lik) k

k=N,+1 k=N,+1

From the Karamata representation for slowly varying functions (see [21, Theorem
1.2]) we conclude that for every slowly varying function /*(x) and every y > 0 there
exists a constant C = C (y) such that

* 14 v
PO _ o (_) (f) forall x, y > 0. (61)
I*(y) y y

Applying this inequality to /{ (x), we obtain

n

1 N 1 4
>, —=c T ( . )log( . )
Ck cNy+1 \Nx +1 Ny +1

k=N,+1

Combining this bound with (60), and using the inequality cy_+1 > x -+ 1, we conclude
that

[n/2] n 2y
> PO < S <x+1) < C1N; (F) (62)
k=1 .

for all @ € (0, 1]. Consequently,

[n/2] 2y
1(n) n [(n) Ny

E PO < § ) <CiH D{— :
Tp - O=S<x+1D=CHx+ )(Nx) n'=PH(x + 1)

The definition of N, (31), and (15) imply

H(x +1) > H(cn,) > CI(Nx)NY.

Therefore,
/2] 1—p—2
1()” (N)pM(n)
PO<Si<x+1)<CHx+1) )
nl ; ! n I(N,)

Applying (61) to [(x) and choosing y = (1 — p)/4, we finally arrive at the inequality

l( ) [n/2] (1—p)/4
ZP(0<Sk<x+1)<CH(x—|—1)( ) <CHKXx+1) (63)
n =1 n

establishing (57) for o € (0, 1]. Thus, (57) is justified for all X € D(«, B), and, con-
sequently, (49) is proved.
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The second statement of the lemma follows by summation. O
Later on we need the following refined version of Lemma 20:
Corollary 22 Suppose X € D(«, B). Then there exists a constant C € (0, 00) such

that, for alln > 1,
H (min(cy, x))

bn(x) = C (64)
ne,
and ) )
B, (x) < len(cn, x)H (min(cy, x)) . 65)
Proof The desired estimates follow from (44), (45) and Lemma 20. O

Lemma 23 There exists a constant C € (0, 00) such that, for all z € [0, 00),

limsupe™'P (Mg € [z, 2z +¢€)) < Cmin{l, z*}.
el0

In particular,
limlimsupe™'P (My 5 € [z, 2 +¢)) = 0.
210 €l0

Proof For all z > 0 and all € > 0 we have

P (Myp €lz,z2+¢)) <lim sup P (S, € [cpz, ca(z + )T~ > n).

n—oo
Applying (64) gives

H (min (¢, (z + €)cy))
nc,P(t= > n)

P (Sn € lenz, cn(z+e))|t™ > n) <C

Recalling that H (x) is regularly varying with index op by Lemma 13 and taking into
account (31), we get

H(cp)
nP(t= >n)
< Cemin{l, (z + &)*"}.

P (Sy € [eaz, cn(z +€))IT™ > n) < Cemin{l, (z + &)™}

Consequently,
P(Myp €lz,z+¢)) < Cemin{l, (z + &)*}. (66)

This inequality shows that there exists a constant C € (0, co) such that

limsups_lP (Ma,,g €lz,z+ 8)) < Cmin{l, z*} forall z >0
£l0

as desired. O
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3 Probabilities of normal deviations: proofs of Theorems 3 and 5

The first part of the proof to follow is one and the same for non-lattice (Theorem 3)
and lattice (Theorem 5) cases.
It follows from (40) that

n—1 =

nby(x) = P(S, € [x,x + ) + > / P(Si € [x =y, x =y + D)d By ()
k=1 0
n—1 X1

Y / P(S € (0.x — y + 1)dBy_i ()
k=1

= RP(x) + RPx) + RP(x) + RO (), (67)
where, for any fix ¢ € (0, 1/2) and with a slight abuse of notation

[en] %

RO =3 / P(Sc € [x — v, — y + D)dBu i (7).

[A=e)n] -
RO = > [Pk elx—y.x—y+1))dBii(y),
k=[en]+1

n—1 X

RO (x) :=P(Sy € lx,x+ 1)+ > / P(Sk € [x—y, x—y+1)dBy (),
k=[(1—¢&)n]+1 0

and
n—l x+1
RO(x):=" / P(S; € (0,x — y + 1)dByy ().
k=1 "
First observe that |
.
RO (x) < D> P(Sk € (0, )by (x).
k=1

Applying Corollary 22 we may simplify the estimate above to

n—1

Hy i (cn—k)
RO(x) < C Y P(S € (0, 1) —— "=
kg} (n —k)cp—k
[n/2] [n/2]
H C H
< S pg e+ S AL g
e n kcy

where at the last step we have used the properties of ¢, and inequality (47).
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Since H(x) < Cx, we have

—_

n/2]

< Clogn.

| =

M

[n/2]
H (cy)
<C
ke, ;

k=

—_

Further, by (58) and (62) with x = 0 we know that

[n/2]
> P(Sie©.1)<C (Cil(a e (1.2]) +nI(a € (0. 1])) <C (cﬁ ¥ n’/) .
k=1 n n

Substituting these estimates into (68) leads to the inequality

R(O)(x) < E (H(Cn) i H(cp) +10gn).

Cn Cn nl=v

By this relation, recalling that P(t~ >n) is regularly varying with index
p— 1> —1(see (15)) and using (31), we obtain

limsup —— " RO(x) = 0. (69)
n—oo I’ZP(‘L'_ > I’l)

Now we evaluate the remaining terms in (67).
In view of (47)

C [en] C [en]
RY(x) < c_(l + ZBk(x)) <— %P(r— > k)

C
n k=1 n

for all x > 0. Further, by (15)

[en]
ZP(r_ > k)~ p lePnP(x™ > n) asn — oo.
k=0

As a result we obtain

lim sup ———— sup RS (x) < Ce”. (70)
n—soo NP(T™ >n) o0

Using the inequalities

j+1
/ P(Sp € [x—y, x—y+1)dB,—;(y) <P(Sk € [x—j—1, x—j+D)by—(j) (71)
J
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and

/P(Sk €lx—y,x —y+ 1D)dB—(y) = P(Sk €[0,2)bp—r([x]), (72)
[x]

and applying Corollary 22, we get

[en]

H
R (x) < ¢ HLen) S PO < S <x) <eC €n)
k=1
From this estimate and (31) we deduce
€n )
lim sup —R (x) < Ce. (73)

n—soo NPT~ >n)

Evaluating Réz) (x) we have to distinguish the non-lattice (Theorem 3) and lattice
(Theorem 5) cases. Detailed estimates are given for the non-lattice case only. To deduce
the respective estimates for the lattice case one should use the Gnedenko local limit
theorem instead of the Stone local limit theorem.

Thus, in the non-lattice case we combine the Stone local limit theorem with the
first equality in (4) and obtain, uniformly in x > 0, as n — oo,

[(1—&)n] 1 X X—y T
R (x) = / dB — > B
Pay= o [ sap\ ) 4B Fo c,,g; k(x)
" =

k=[en]+1
[(1—e)n] o _ x/ex
P(t™ > k) X — cru
— Z — - / ga,ﬁ( )P(Ma,ﬁedu)
k=len]+1 Cn—k Cn—k
P(‘L’ > k)
ro 2 mw s 31 20)
I’ZS k=1
According to (15)

ZBk(x) < ZP(‘L’_ > k) < CnP(z™ > n).
k=1 k=1
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Hence it follows that

Xx/ck
5 [ =)n] P(z™ > k) X — cru
RP) = > ——— [ gup P(Mo,p € du)
¢ Cn—k ’ Cn—k ’
k=[en]+1 0
P(c-
L (n (7 > n)) .
Cne

Since ¢x and P(t~ > k) are regularly varying and g, g(x) is uniformly continuous
in (—o0, 00), we let, for brevity, v = x/c, and continue the previous estimates for
(2 :
o (x) with

_ v/ (k/m'/e
P > n) U (k! v — (k/nm) 'y
= a2 Gk e g ) P €40
Cn k=[en]+1 " n
P(r—
‘o (n (7 > n))
Cne
P(t™ P(t™
= Mf(g, 1 —¢ v)-l—o(M),
Cn Cne
where, for 0 < w; < wp <1,
l/a
Cay e o lar " v— /oy PM p 24
fwy, wyiv) = m a,p m (My,p € du). (74)
wi 0

Observe that by boundness of g4 g (y)

&

f@0,¢e:v) < C/tp_ldt < Ce”.
0

Further, it follows from (66) that f du)PMyp € du) < C f ¢ (u)du for every
non-negative integrable function ¢. Therefore,

f—e 1;0v)
1 v/tl/t)l
<C / P~ 1dt / v— /oy J v— /oy
_— _— u = = —

0
v/(1=t)t

l1—e¢
1

=C / rp=1=Ve gy /ga,ﬁ (z)dz < Ce.
1—¢
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As a result we have

lim sup sup [ ————R@ (x) — £(0, 1; x/cp)| < Ce”. (75)
n—oo0 x>0 I’lP(‘L'_ > n)
Combining (69)—(75) with representation (67) leads to
lim sup sup C—nbn(x) — (0, 1; x/cy)| < Ce”. (76)
n—oo x>0 |P(T™ >n)
Since ¢ > 0 is arbitrary, it follows that, asn — oo
b (x) — £(0, Lix/cy) = O (77)
P(t= > n)

uniformly in x > 0. Recalling (4), we deduce by integration of (77) and evident trans-
formations that

/ £(0, 1: 2)dz = P(Me g € [u1, 102]) (78)
uy

forall 0 < u; < up < oo. This means, in particular, that the distribution of M, g
is absolutely continuous. Furthermore, it is not difficult to see that z +— f (0, 1; z)
is a continuous mapping. Hence, in view of (78), we may consider f (0, 1;z) as
a continuous version of the density of the distribution of My g and let py g(z) =
f(0, 1; z). This and (77) imply the statement of Theorem 3 for A = 1. To establish
the desired result for arbitrary A > 0 it suffices to consider the random walk §,,/A
and to observe that

u
A._ A (X _
¢, =inf uzO.; x°P Kde =cn/A.
—u

Note that (74) gives an interesting representation for py g(v) :

z/tl/e

1

1P~V dt z—tl/ey

Pa,p(2) = m / 8a,p (m) Pa,p()du. (79)
0 0

For the case o = 2 this equation coincides (up to a change of variables) with Eq. (B.1)
in [6]. In the general case it may be considered as a version of Eq. (4.9) in [1]. Observe
that in view of Lemma 23

Pap(2) < Cmin{1, 2%}

and
lim py,4(2) = 0, (80)
z40

which is not surprising. In Sect. 4.3 we refine these statements.
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4 Probabilities of small deviations
4.1 Lattice case: proof of Theorem 6

Recall that the span 4 = 1 according to our agreement. Fix any ¢ € (0, 1/2) and,
using Lemma 17, write

ngn(x) = Ren(x) + Rsn(x)» (81)
where
[en]
Ren(x) =P8 =)+ > > bi(x = y)PSuk = y)
k=1 yeZ, (k,n)
and

n—1
Rea(x):= D D bilx = PGSk =y).

k=[enl+1 yeZ, (k,n)

In view of Lemma 20,

n—1
- H(ak+x—y)_ -
Ruy<C > > = Y PSu = )
k=[enl+1 yeZy (k.n) k

H n—[en]
< C(s)% > PO < S < an+x).
n k=1

Introduce the set
G, := (—an, —an + 8,c, | N Z.

Taking into account estimate (58) (with [n/2] replaced by n — [ne]), we see that for
a e (1,2]

7
lim sup sup CnRen(x) < C(¢&) lim sup sup antx
n—oo xeG, H(an + x) n—oo xeG, ©Cn
= C(¢)limsup s, = 0. (82)
n—oo

Similarly, writing ¢~ (n) for the inverse function of ¢, we conclude by (62) (with
[n/2] replaced by n — [ne]) that fora € (0, 1) and every y < 1/2.

lim sup sup Cns—n(x) < C(¢e)lim sup (ﬂ)
n—oo xeg, H(an + x) n—00 n

| (c—lwncn))l‘zy
=C(e)limsup | ——— =0. (83)

n—oo c(ep)
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According to the Gnedenko local limit theorem

sup sup |cn_kP(§n_k =y)— ga,ﬁ(0)| — 0 asn — oo.
kell,n(1—e)] yeZ, (k,n)

Therefore,

D blx = PGSk =)

yvely(k,n)

00+ Ay (x,n—k -
:g,ﬁ()+ 1 (x,n ) Z be(x — y),

Cy—
n—k veZy (k.n)

where Ay (x,n —k) — 0 asn — oo uniformly in x € G, and k € [1,n(1 — &)].
Hence, by the identity

D bilx —y) = Bila(n — k) +x),

veZy(k,n)

we see that

[en]

1
Ren(x) = (8a,p(0) + Az(x, n))(c_ + Z
k=1

1
— Cn—k

By(a(n — k) + x)), (84)

where Ay (x,n) — 0asn — oo uniformly in x € G,. Since the sequence {c,,, n > 1}
is non-decreasing and varies regularly with index 1/«o as n — oo, we have

[en] n—1
Z Br(a(n —k) +x) < ¢y Z an-k(ak +x)
k=1 k=n—[en] ¥
[en]
< ((1 — o)V As(a, n)) > Bilatn —k) +x),  (85)
k=1

where A3(x,n) — 0 as n — oo uniformly in x € G,. On the other hand, for all
X > —an,

0 len]
H(an + x) — Z Bi(a(n—k)+x) < l—I—ZBk(a(n —k)+x) < H(an +x).
k=len]+1 k=1

(86)
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Applying (50) gives for some constant C; = Cj(g)

0 o0
C
Z Bir(a(n —k)+x) < (an+ x)H (an + x) Z o
k=[en]+1 k=lenl+1 <k
<c (an + x)H (an + x)
Cn

< Cié,H(an +x) (87)

for all x € G,,. From (86) and (87) we conclude that

[en]
1
m(l+ZBk(a(n—k)+x))—l—>0 (88)

k=1
uniformly in x € G,,. Combining (84), (85), and (88) leads to

cnRen(x)

lim sup sup m

n—oo xegn

= ga,ﬁ(O)‘ <r(e),

where r(¢) — 0 as ¢ — 0. This estimate, (82) and (83) show that

cpn

lim sup sup bu(x) — ga,p(0)| < r(e).

n—>o00 xeG, |H(an + x)

Letting ¢ — 0 and recalling that
by (x) = P(S, = an +x|t” >n)P(t” >n)

we finish the proof of Theorem 6.

4.2 Non-lattice case: proof of Theorem 4

As in the proof of Theorem 3 we restrict our attention to the case A = 1. Some of
our subsequent arguments are similar to those used in the proof of Theorem 6, and we
skip the respective details.

Using (71), (72) and Lemma 20 gives (in the notation introduced after formula (67))

[(1—e)n] 7%
RV +RP ) = Y / P(Sk € [x —y,x =y + 1)dBy4(y)
k=1
[(1—e)n]

Z PO<Sy <x+1).
k=1

H(x)

necy,

< C(e)
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By the arguments mimicking those used in the lattice case one can easily show that

Cn

lim  sup (RS)(x) +R® (x)) ~0. (89)

=0 0 <x<§,cn H(x)

Further, by the Stone local limit theorem

X

/P(Sk €lx—y,x—y+1)dB,(y) =
0

8a.p(0) + Ay (k, x)
Ck

B (x),

where A (k, x) — O uniformly in x € (0, 8,,¢,) and k € [(1 — €)n, n]. Therefore,

n—1 X
ROx) =P, elx.x+ 1)+ D / P(Sk € [x =y, x — y + 1)dBy4(y)
k=[(1—¢&)n]+1 0

[en]

1 1
= (80.4(0) + A2 (n, x)) (C— +> Bk<x>),
k=1

Cn—k

where Ay (n, x) — 0 uniformly in x € (0, §,¢;,). Therefore, as in the lattice case,

C
— RO (x) — ga.5(0)

limsup sup o)
X

n—o00 (O<x<é,cy,

<r(e), (90)

where r(e) — 0 as ¢ — 0. Combining (89) and (90), we get

Cn

limsup sup Hoo
X

n—o00 O0<x<§,c,

(RO @) + RO+ RO ) = ga,ﬂ(0)| =0. 0D

Now using definition (67) we write RO (x) = R§4) (x) + Rés)(x), where

[(1—e)n] ¥ 11

RO = 3. [ PO —y+ 1)dBu)

k=1
and
n—1 x+l
ROx) = > / P(Sk € (0,x —y + 1))dByi(y).
k=[(1—&)n]+1 %
Evidently,

[((1—&)n]

RP@) < D P(Sk € (0, 1)byi(x).
k=1
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Applying (47) and (49), we see that

[((1—¢&)n]

n

1 1 C 1
RO < H Y — <O 1L
ck (n—k)epn—x — ney Ck
k=1 k=1
Observing that ZZ: 1 ck_l < C( + n/cy), we conclude that
lim sup —" RW(x) = 0. (92)

=0 (0 <x<§,c, H(x)
Further, by the Stone local limit theorem,

x+1
/ P(Sk € [0,x —y + 1))dBp—i(y)

X

_ (80,(0) + Az(k, x))
= -

x+1
/ Gt — v + DdBai(y),

where A3 (k, x) — O uniformly in x € (0, §,,¢,] and k € [(1 — €)n, n]. Integration by
parts gives

x+1 x+1
/ (x —y+ DdBy—(y) = —By—i(x) + / By—i(y)dy.

X
Consequently,

x+1

/ Biy)dy — B |, (93)

X

[en]

R () = (8,6 (0) + Aa(n,)) D - -
k=1 """

where A4(n, x) — 0 uniformly in x € (0, §,¢c,].

Setting
x+1

I(x) = / Hy)dy — H()

we see, similarly to the proof in the lattice case, that

c [Sn] 1 x+1
limsup  sup |- / Bidy — Bux) | — gap O] < r(e),
n—>00 0<x<dycy |1 (X) = Cn—k

X

(94)
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where r(e) — 0 as e — 0. By (92)-(94) we deduce

lim  sup  [——RO(x) — g, 4(0)| = 0. 95)

=00 0<x<,cn I(x)

Substituting (91) and (95) into (67) finishes the proof.

4.3 Proof of Theorem 7

It is sufficient to show that there exists a constant C > 0 such that
Pa,pem) ~ CepP asm — oo (96)

for every sequence ¢,, — 0. Since H(x) is regularly varying with index ap, there
exists a sequence ny(m) — oo as m — oo such that

em H(cn) ‘
sup |——— — 1| >0 asm — oo.
n=ni(m) | H(Emcn)

From this fact and Theorem 4 we deduce:

_ H (epcp) 1)
cnP(Sn € [emen, emen + DT > n) = ga,5(0) — (1+ Dn.m
nP (1' > n)
ap
em H(cy) 2
= 0)—2 """ 1+ ¢P), (97
8a, )nP = n)( Cum)s 97

where, fori = 1, 2,

sup |(pr(1i2n| — 0 asm — oo.
n>nj(m) ’

Further, according to Theorem 3,
cnP(Sy € [emen, emen + 1|17 > n) = pa,ﬂ(gm) + On,ms (98)

where ¢, m = @n.m(em) — 0 as n — oo uniformly for all possible choices of ¢,
that is,
sup |gp.m| < ®, and lim o, =0. (99)

{Em} n—oo

Comparing (97) and (98) gives

&m H(Cn(m))
n(m)P (‘L'_ > n(m))

2
(I + @) = Pamyms (100)

Pa,p(Em) = &a,p 0)
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where n(m) is any sequence satisfying n(m) > ni(m) for all m > 1. Let ny(m) be
defined by the relation

Olp-i-l}.

ny(m) :=minf{n > 1 :sup Py < ¢,/

k>n

Now, if n(m) > max{ni(m), np(m)}, then from the definition of n,(m) and (100) we
have

H (Cngm) (1+¢2 )4+ 0@Eth.

_ ap
pa,ﬂ(gm) = ga,ﬁ(o)em n(mP(t— > n(m)) n(m),m

Taking into account (31), we obtain (96). The theorem is proved.

5 Proof of Theorem 8

We start with the following technical lemma which may be known from the literature.

Lemma 24 Let w(n) be a monotone increasing function. If, for some y > 0, there
exist slowly varying functions [*(n) and I** (n) such that, as n — oo,

(0.¢]

kytlxk)  nvl**(n)’

k=n
then, as n — 00,
- [*(n)
w(n) ~ .
Y I*¥*(n)
Proof Let, for this lemma only, r;(n),n = 1,2,...;i = 1,2, 3, 4 be sequences of

real numbers vanishing as n — oo. For § € (0, 1) we have by monotonicity of w(n)
and properties of slowly varying functions

n

1 14+rn) , _
w([dn]) Z ) = w(B”])m (577 —1)

k=[6n]

< Z w(k) B 14+ri(n) (8_” B 1)

+1 -
k=1on] kY Ti*(k) nYl**(n)

n
1
=wm > S
R
1 +r(n)

_ -v _
=w(n) T (8 1) .

Hence it follows that

L+ i)yl o) _

wildn) = S S

w(n)
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and, therefore,

Lty o 1 rs([nsT ]y (ns' )
1+ ra(n) I**(n) — L+ ra([ns=)) 1([ns 1]

Since [* and [™* are slowly varying functions, we get

. wmI™(n)
lim —— =1,
n—oo  yl*(n)

as desired. O

Remark 25 By the same arguments one can show that if w(x) is a monotone increasing
function and, for some y > 0, there exist slowly varying functions /*(x) and **(x)

such that, as x — o0,
0
/ w(y)dy 1
yYHUE(y) XV (x)]

X

then, as x — oo,
I*(x)

l**(x)'

w(x) ~y

Note also that this statement for the case [*(x) = const can be found in [15, Chap.
VIII, Sect. 9].

5.1 Proof of Theorem 8 for {0 <« < 2, B < 1}

For a fixed ¢ € (0, 1) write
P (‘L’_ = n) =P (Sn <0t >n-— 1) =: Ji(ecy) + Ja(ecy)

where
o0

Ji(ecy) = /P(X < —ycp,)P (Sn_l €cpdy;T7 >n— 1).

&

and

&cy
J(ecy) = /P(X < —y)P(Sn_l edy,t” >n— 1).
0

First we study properties of Jy(ec,).
We know from (24) and (25) thatif X € D («, B) with0 < @ < 2 and 8 < 1, then,
forag € (0, 1],

P(X <—y)~ as y — 0o, (101)

y*lo(y)
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and, according to (27),

2 _
P(X < —c,) ~ u asn — oo.
an
Moreover, for any ¢ > 0,
P(X <-—
(X = —yen) — y7 % asn — oo, (102)
P(X < —cn)

uniformly in y € (e, 00).
It easily follows from (102) and (4) that, as n — oo,

Y =

&

Sn—
XP( n—l edylt_>n—1)
Cn

0

2—a)l P(X <-— S,—

42 =a)im) (X =< ycn)P nledylt_>n—1
an=r P(X < —c,) Cn

&

g2 —o)l(n) [P(Map <dy)

an?—, yo
)

(103)

From Theorem 7 it follows that p, g(y) < Cy®" for some positive constant C and
all y € (0, 1]. Consequently,

00 1

P(Mypecd
/ cxﬂ y SC/y_a+a'0dy+P(Ma,,B>1)-
0 0

Noting that the condition 8 < 1 implies the bound —« + ap > —1, we conclude that

oo

P ed
Jrics)
0
Therefore,
o0
2=p P(M,ged
lim Lim le(ecn):/ (Map € dy) (104)
e—>0n—o00 g(2 —a)l(n) yo
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Now to complete the proof of Theorem 8 in the case {0 < « < 2, 8 < 1} it remains

to demonstrate that 5
—p

lim lim sup
e—=>0 pn—oo n)

Ja(ecy) = 0. (105)

To this aim we observe that

[ecn]+1

h(ecy) < D P(X < —j)by1(j) =: R(ecy)
j=0

and evaluate R(ec;) separately for the following two cases:

() e (11
(i) B=-

(i). In view of (49), equivalences (29) and (24), we have

[ecn 141 . .
1 ) 1 [
Ry =€ Y =L 20D o) L (e,yimatiop 21E)
il lo(j) ncp ney lo(ecn)
<C3— 1 1 —a(l—p)—y ;i a(l— p)lz(cn) < Cue l1—a(l—p)— yH(Cn)P(|X| > Cp)

ncn lo(cn) — n

for any fixed y € (0, 1 — «a(1 — p)) and all sufficiently large n. At the third step we
have applied (61) to the function /> (x)/lyp(x). Using (27) and (31), we get

R(ecy) < Cgl_a(l_p)_ym.
n
Hence on account of (15) we conclude that
( ) l—a(=p)—y
R(ecy) < C . 06

(ii). It follows from (14) that if 8 = —1, then ap = 1. By Lemma 13, H(x) <
Cxl3(x). Combining this estimate with (49) yields

J 3(])

ncy

bp(j) =C
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Recalling (101) and using (61), we obtain for any fixed y € (0,2 — o) and all
n=n(y),

[ecn]+1

Da(i
Ree) =C > Px < —j) L2
—o | 13(ecy)
< C 2—a
< Cq (ecp) ey lo(eCy)
< ngz—a—ylm < ngz—a—y lg_n)’ (107)
n c%lo(cy) n<—>r

where at the last step we have applied the inequalities H (¢;) < Ccpl3z(cy) < CnPl(n),
following from (30), (31), and (15), and the relation

1 o 1

—e v

no 2—acly(cy)’

being a corollary of (26).
Estimates (106) and (107) imply (105). Combining (104) with (105) leads to

_qQ—wln) [P(Mepedy) g2l

an?=p yo an?=p
0

P(‘L'_ :n)

E (Ma,lg)_a .

(108)
Summation over n gives

P(t7”>n)= Z P(t”=k)~ 92— a) [n) E(Ma,ﬁ)_a.

k=n+1 o(l=pyni=r
Comparing this with (15), we get an interesting identity

E(Myp)™" = a(l —p)/q2—a), (109)

which, in view of (108), completes the proof of Theorem 8 for0 < o < 2, B < 1.

5.2 Proof of Theorem 8 for {l <a <2, =1}U{a =2,8 =0}

We consider only the lattice random walks with a € (0,1) and 4 = 1. The non-
lattice case requires only minor changes. The main reason for the choice of the lattice
situation is the fact that only in this case we can get oscillating sequences Q,, .

By the total probability formula,

Pe =n+1)= Z PSS, =an+k;t~ >nPX < —an —k).  (110)

k>—an
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One can easily verify that under the conditions imposed on the distribution of X there
exists a sequence §, — 0 such that §,,c, — oo and

P(X < —8,¢p) =o(n™ ) asn — oo. (111)

Using, as earlier, the notation G, = (—an, —an + §,c,) N Z, and combining (110)
with (111), we obtain

[
Pt~ =n+1)= ZP(Sn =an-+k;t” >n)P(X§—an—k)+0( 33))
n
keG,

Let {an} be the fractional part of an. By Theorem 6

Pt =n+1) = 8a.p(0) + o) Z H(an +k)P(X < —an—k)+o (lg—’z))
ncy, et n=—~r
dnc

o 1 nCn ‘ )
_ 8 £O) +o(D) ZH({an}—l—])P(X < —f{an}—j)+o l(’i) .
ney, = n2=r
(112)
For z > 0O set
Sncn
wzn) =Y Hz+ HPX <—z—j), oh):=w0;n),
j=0
and using the equality
E(—-S;-) :/H(x)P(X < —x)dx (113)
0

(see Doney [10]) consider the “if” part of Theorem 8 under the hypotheses of points
(a), (b), and (c) separately.
(a) Condition E(—S,-) = oo implies

wmn) — oo asn — o0. (114)
Since H (u) is a renewal function, there exists a constant C such that

Hu+v)—Hu) <C(w+1) forallu,v>0. (115)
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By (115) and monotonicity of H(u) and P(X < —u) we conclude that

Sncn dncn
w(fany:in) < Y H(+DP(X < —j) <o) +C D P(X < —))
j=0 j=0
and
Sncn dncn
w({an};n) = > HHPX < —j— 1) = w(l;n) —C Y P(X < —j)
j=0 j=0
SnCn
> w(n) —C Y P(X < —j).
j=0

From (114) and the fact that H(x) — oo as x — oo we deduce that

ZP(X <—j)=o0(wn) asn— oo.
j=0

This yields w({an}; n) ~ w(n) as n — oo which, combined with (112), gives

Pt =n+1)=

gmﬂ(O)4_0(1)awn)-FC)(l(i)

ney n2=p

), n — 00. (116)

Summing over n > k, we get, as k — 00,

0
]jfljl ~ Pt > k) = (ga,50) + o(1)) ’; a:l(cr’i) +o0 (lif—lj)) .
We know from (14)thatp = 1 —1/aif{l <a < 2,8 = 1}or{a =2, B = 0}. Since
w(n) is non-decreasing and, by (3), ¢, is regularly varying with index 1/«, Lemma 24
implies
wn)  1—p Lo
ncn  8a,p(0) n*,

asn — Q.

Consequently,

Pr7=n)=(1- p)’ig—’i)p(l +o0(1)), n— oc.

This finishes the proof of (20) given E(—S,-) = oc.
(b) The assumption E(—S,-) < oo and relations (29), (30), and (113) imply

> H(lan}+ j)P(X < —{an} — j) > 0 asn — oo

Jj>bncn
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and, consequently,
w({an};n) = Q{an}) +o(1) asn — oo,

where ~
Q({an}) := D" H({an} + j)P(X < —{an} — j).
j=0

Combining this representation with (112), observing that Q({an}) < C < oo if
E(—S;-) < 00, and recalling Lemma 14 we see that

P(t_:n—l—l):ga%c(o)ﬂ({an})—FO(’ig—?O), n— 0o. (117)

Denote
Q{an)) := P(X < —{an)HI({an} > 0) + P(X < —DI({an} = 0).

Since X is (1, a)-lattice, the quantity Q({an}) is either O or not less than some pos-
itive number 2. Furthermore, one can easily verify that Q({an}) > Q({an)) and
Q({an}) = 0if and only if QW{an)) = 0. Consequently, Q2 ({an}) is either zero or not
less than €. Finally, in view of (110) Q({an}) = 0 implies P(t— = n + 1) = 0.
Therefore, we can rewrite (117) in the form

Pt =n+1)= &)[’;L(O)Q({an})(l—i—o(l)). (118)

Cn
Now (118) and (37) give (20) with
Q, = Co8a,p(0)2({a(n — D}). (119)
If a = 0, then, evidently,
Q, = C08a,p(0)€2(0) = Coga,p(ME(=S:-) := 0O,
and, consequently,

[(n)

n2=p

Pz =n)=0Q

Comparing this asymptotic equality with the known tail behavior of the distribution
of 77, we infer that Q should be equal to 1 — p.

This finishes the proof of (20) under the conditions of point (b).

To demonstrate the validity of (20) under the conditions of point (¢) one should
made only evident minor changes of the just used arguments and we omit the respective
details.

To justify the “only if” part of Theorem 8 we need to show that the sequence
{Q;, n> 1} defined in (119) does not converge if E(—S,-) < oo and X is (1, a)-
lattice with some a € (0, 1).

(1 + o(1)).
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Assume first that a is rational, i.e. a = i/j forsome 1 < i < j < oo with
g.c.d.(i, j) = 1. Let b = b(a) be the smallest natural number satisfying {ab} = 1 —a.
Then {a (kj + b)} = 1 — a for all k > 1. Consequently,

Q{a(kj +D)}) = Z H(( —a)+mPX < —( —a) —m)

m=0
and -
Q({akj}) = Z Hm)P(X < —m).

m=0

Observing that P(X < —m) = P(X < —(1 — a) — m), we obtain

Q{a (kj +b)}) —Q({akj}) = Z (H((1=a)+m)—Hm)) P(X <—(1 —a) —m)

m=0
>(HA —a)—HO)PX < —(1 —a))
=H(l—-a)P(X <0)
> P(X < 0).

From this inequality it follows that the sequence {2 ({an}), n > 1}, does not converge.

Assume now that g is irrational. Define NV; := {n : {an} < (1 — a)/3} and
Ny == {n: {an} € 2(1 — a)/3, (1 — a))}. The cardinality of each of the sets is
infinite. In addition, one can easily verify that

Q{anz}) — Q{anz}) = (H2(1 —a)/3) — H((1 —a)/3)) P(X < 0)
>P(X <OP(xte((1-0a)/3.20—a)/3)) >0
for all n; € N} and ny € N,. Therefore, in the case of irrational shift the sequence

Q{an}), n > 1, is oscillating as well.
Theorem 8 is proved.

Remark 26 Analyzing the proof of Theorem 8 one can see that the sequence
{0, . n = 1} in (20) may be written in the form

Q, = D({an - 1)}),

where D(x), 0 < x < 1, is a non-negative function and where we agree to takea = 0
for non-lattice distributions.

6 Discussion and concluding remarks

We see by (11) that the distribution of t~ is completely specified by the sequence
{P(S, >0),n > 1}. As we have mentioned in the introduction, the validity of con-
dition (16) is sufficient to reveal the asymptotic behavior of P(t~ > n) asn — oo.
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Thus, in view of (15), informal arguments based on the plausible smoothness of /(n)
immediately give the desired answer

Pt  =n)=P(t  >n—-1)—P(t" >n)
_ I(n—1) B [(n) "\Yl(n)( 1 B 1 )
(n—1'="  nl=r (n—D'=P  nl=r
LU=pln) 1—p
n2=p n

P(t™ > n)

under the Doney condition only. In the present paper we failed to achieve such a
generality. However, it is worth mentioning that the Doney condition, being formally
weaker than the conditions of Theorem 8, requires in the general case the knowledge
of the behavior of the whole sequence {P ( S,, > 0),n > 1}, while the assumptions of
Theorem 8 concern a single summand only. Of course, imposing a stronger condition
makes our life easier and allows us to give, in a sense, a constructive proof showing
what happens in reality at the distant moment 7~ of the first jump of the random
walk in question below zero. Indeed, our arguments for the case {0 < @ < 2, 8 < 1}
demonstrate (compare (101), (102), and (103)) that for any x; > x; > 0,

lim P(S,—1 € (cpx1, cpx2l|t™ =n)
n—oo
x2
. Pz >n-1) B
= lim P(X < —yc,)P(S,—1 € cpdylt™ >n—1)
n—oo  P(t—™ =n)

X1

Ptm>n—-1)q2 —w) 72P(X < —ycp)
P(X < —cy)

= lim P(S,—1 € cpdy|t™ >n—1)

n— 00 P(z— =n)an
x2
_ 4@ —) [P(Mypedy)
a(l—p) e '

X1

In view of (109) this means that the contribution of the trajectories of the random
walk satisfying S,—1c, ! — 0 or Sy—ic;! — oo asn — oo to the event {r~ = n}
is negligibly small in probability. A “typical” trajectory looks in this case as follows:
it is located over the level zero up to moment n — 1 with S,_1 € (ecy ,8_1Cn) for
sufficiently small ¢ > 0 and at moment t~ = n the trajectory makes a big negative
jump X, < —S,_1 of order O(cy).

On the other hand, if {1 <« <2, B =1} and E(—S,-) < oo, then, in the (1, a)-
lattice case, for all i > O,

P(Su—1 =fa(n — D} +ilt™ =n)
_ H{amn =D} +DPX = —{a(n — D} —1)
a Q{a(n — 1D}

(14 o(1))
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provided that Q({a(n — 1)}) > 0. Since

ZH({a(n — D} +DPX = —{a(n — D} —i) = Q{a(r — D}),

i=0

the main contribution to P (‘L'_ = n) is given in this case by the trajectories located
over the level zero up to moment n — 1 with S,,_; € [0, N] for sufficiently big N and
with not “too big” jump X, < —S,—1 of order O(1).

Unfortunately, our approach to investigate the behavior of P(z~ = n) in the case
when E(—S,-) = occand {l <o < 2, B =1} U {x = 2, B = 0} is pure analytical
and does not allow us to extract typical trajectories without further restrictions on
the distribution of X. However, we can still deduce from our proof some properties
of the random walk conditioned on {t~ = n} . Observe that, for any fixed ¢ > 0,
the trajectories with S,,—1 > &c, give no essential contribution to P(z~ = n). More
precisely, there exists a sequence 8, — 0 such that

P(S,—1 > 6,cn|lt™ =n) = o(1).

Furthermore, one can easily verify that if Z?CZI H(j)P(X < —j) = oo, then for
every N > 1,

N
)

E P(S,—1=Jj;1" >n—1)P(X§—j):0((3—n/;) asn — 00,
n

j=1

i.e. the contribution of the trajectories with S,—1 = O(1) to P(t™ = n) is negligible
small. As aresult we see that S;,_; — oo but S,,—1 = o(c,) forall “typical” trajectories
meeting the condition {t~ = n}. Thus,inthecase {l <« < 2,8 = 1}N{E(-S5,-) =
oo} we have a kind of “continuous transition” between the different strategies for
{B<ltand{l <a <2,B =1}N{E(-S,-) < 00}.
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