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1. Introduction and statement of results. Let {Zn, n � 0} be a critical
Galton–Watson process. In what follows we assume (if the opposite is not stated) that
Z0 = 1. Let {pk, k � 0} denote the offspring distribution of a particle and let f(s) be
the generating function of this distribution. Set Qn := P{Zn > 0}, B := f ′′(1) and
denote by An(N) the event that each individual of the first n generations has at
most N direct descendants.

The main goal of the present paper is to study the probabilities of large deviations
of the random variables Zn and Mn := maxk�n Zk.

Papers [4], [5], [6], [7], and [8] investigate large deviations of Zn under the Cramér
conditions (meaning existence of an exponential moment of the distribution {pk}).
More precisely, articles [4], [5], and [7] are devoted to proving limit theorems for
the probabilities of large deviations of the process Zn. The most general results in
this direction are given in [7], where asymptotic representations are deduced for the
probabilities P{Zn = k} and P{Zn � k} as k = o(n2). Probabilistic inequalities
for P{Zn � k} and P{Mn � k} were the subject of investigation in [6] and [8].
Paper [6] assumes the existence of an exponential moment, while in [8] a refinement
of an estimate from [6] is obtained and inequalities are deduced under weaker moment
hypotheses on the process.

In the present paper we prove limit theorems for probabilities of large deviations
of a critical Galton–Watson process given that the power moments are finite and the
tail distribution of the offspring number of a single particle is regularly varying.

Theorem 1. If EZr
1 < ∞ for some r � 3, then

(1) P{Zn � k} =
2

Bn
exp

{
− 2k

Bn

}(
1 + o(1)

)
as n → ∞ and k � B(r/2 − 1)n log n− B(r/2 + ε)n log log n, ε > 0. If this equality
holds true for k � B(r/2 − 1)n log n + B((r + 1)/2 + ε)n log log n, then EZr

1 < ∞.
Recall that if the second moment is finite then, by the Yaglom theorem (see, for

instance, [10, p. 39]), relation (1) is valid if the ratio k/n is bounded. If an exponential

∗Received by the editors April 20, 2006.
http://www.siam.org/journals/tvp/52-4/98324.html

†Technische Universität München, Zentrum Mathematik, Bereich M 5, D-85747, Garching bei
München, Germany (vakhtel@wias-berlin.de).

674

D
ow

nl
oa

de
d 

11
/1

8/
19

 to
 1

37
.2

50
.1

00
.4

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LARGE DEVIATIONS OF A CRITICAL BRANCHING PROCESS 675

moment is finite then, according to [7], convergence to the exponential distribution
takes place for k = o(n2/ log n).

If r0 := sup{r : EZr
1 < ∞} is finite, then the conditions for the convergence

to the exponential distribution given in Theorem 1 are close to the necessary and
sufficient ones. Indeed, if k(n) denotes the upper boundary for the k meeting (1),
then Theorem 1 implies

lim
n→∞

k(n)

n log n
=

B

2
(r0 − 2).

Theorem 2. Let

(2) P{Z1 � x} = x−t L(x)

for some t > 1 and a slowly varying function L(x). If B = ∞, then

(3) P{Mn � k} ∼ P{Zn � k} ∼ P
(
An(k)

)
∼ nP{Z1 � k}

for k and n = nk such that kQn → ∞ as k → ∞.
If B < ∞, then relations (3) are valid for k and n = nk, satisfying the condition

k/(n log n) → ∞.
Remark. It is easy to see that if (2) is valid, then B < ∞ if and only if either

t > 2 or t = 2 and L(x) satisfies the condition
∫∞
1

x−1L(x) dx < ∞.
If (2) is valid and B = ∞, then by (3),

(4) P{Zn � xnQ
−1
n } ∼ nP{Z1 � xnQ

−1
n } as n → ∞

for any sequence xn → ∞. Using a Tauberian theorem (see, for instance, [9, The-
orem XIII.5.5]) and a corollary from Lemma 5 in [2], it is easy to show that for
t ∈ (1, 2), relation (2) is equivalent to

(5) f(s) = s + (1 − s)t L∗((1 − s)−1
)
,

where L∗(x) is slowly varying and

(6)
L∗(x)

L(x)
∼ (t− 1)−1 Γ(2 − t) as x → ∞.

Further, if (2) is valid for t = 2 and L(x) is such that B = ∞, then (5) is valid
with L∗(x) satisfying the relation

(7) L∗(x) ∼
∫ x

1

y−1L(y) dy as x → ∞.

It is shown in [13] and [14] that condition (5) is necessary and sufficient for the
equality

(8) lim
n→∞

Q−1
n P{Zn � xQ−1

n } = 1 − F (t)(x)

to be valid for any fixed x > 0, where F (t)(x) is a nondegenerate distribution function.
Thus, if the variance is infinite and condition (2) is valid, equalities (8) and (4) describe
the asymptotical behavior of the probabilities of all deviations.

If the variance is finite the results described do not cover the whole spectrum
of deviations. For instance, if t > 3, then there is a gap between the zones covered
by Theorems 1 and 2: the asymptotic behavior of the probability P{Zn � k} is not
known for k ∈ (cn log n, ann log n), where c > B(t/2 − 1) and an → ∞ arbitrary
slowly.
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676 V. I. WACHTEL

2. Auxiliary results.

2.1. Properties of censors. Set f̃(s) :=
∑

0�k�N pks
k, denote by x1 = x1(N)

the maximal root of the equation x = f̃(x).
Lemma 1. If f̃ ′′(1) > 0, then

(9) 0 � x1 − 1 � 1 − f̃ ′(1)

f̃ ′′(1)
+

(
(1 − f̃ ′(1))2

(f̃ ′′(1))2
+

2(1 − f̃(1))

f̃ ′′(1)

)1/2

.

Proof. Put

α(x) :=
f̃ ′′(1)

2
(x− 1)2 + f̃ ′(1)(x− 1) + f̃(1).

It is easy to see that

α(1) = f̃(1), α′(1) = f̃ ′(1), and α′′(x) � f̃ ′′(x) for x � 1.

Hence it follows that x1 is less than the maximal root of the equation x = α(x).
Finding the root, we obtain the upper bound in (9). To demonstrate the validity of
the lower bound it is sufficient to observe that f̃(1) � 1 for all N .

Set g(s) := f̃(sx1)/x1, Ag := g′(1), and Bg := g′′(1).
Lemma 2. Assume EZr

1 < ∞ for some r � 3. Then, as N → ∞,

Ag = 1 + O(N−r/2),(10)

Bg = B + O(N−θ),(11)

where θ := min{r/2, r − 2}.
Proof. Note first of all that by the Markov inequality,

(12) 1 − f̃(1) = P{Z1 > N} � EZr
1

Nr

and

(13) 1 − f̃ ′(1) = E{Z1; Z1 > N} � EZr
1

Nr−1
.

Without loss of generality we may assume N to be so large that f̃ ′′(1) � B/2. Ap-
plying this estimate and inequalities (12) and (13) to the right-hand side of (9), we
have

(14) 0 � x1 − 1 � cN−r/2.

(Here and in what follows the symbol c stands for positive constants depending on
only the distribution {pk}.)

By the definition of g(s) and the mean value theorem, we obtain

(15) Ag = f̃ ′(x1) � f̃ ′(1) + f̃ ′′(x1)(x1 − 1) � 1 + BxN
1 (x1 − 1),

where the second inequality in the chain above follows from the estimates

f̃ ′′(x1) � xN
1 f̃ ′′(1) � xN

1 B.
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Substituting (14) in (15), we deduce for all sufficiently large N the estimate

(16) Ag � 1 + cN−r/2.

On the other hand, the definition of x1 leads to f̃ ′(x1) � 1. Hence, Ag > 1 proves the
first part of the lemma.

Clearly,

Bg = x1f̃
′′(x1) > f̃ ′′(1) > B − E{Z2

1 ;Z1 � N}.

Applying the Markov inequality to the expectation in the right-hand side, we have

(17) Bg > B − EZr
1

Nr−2
.

On the other hand, similarly to (16),

(18) Bg < B + cN−r/2.

Combining (17) and (18) gives (11). Lemma 2 is proved.
From now on we consider the quantities y0 and N involved in the subsequent

arguments as functions of the variable n, i.e., y0 = y0(n) and N = N(n). In addition,
we suppose that f ′′′(1) < ∞ in the remaining part of the point.

Lemma 3. Let yj be a sequence specified by the equation

yj+1 = g−1(1 + yj) − 1,

where y0 is selected in such a way as to provide the boundedness of g′′′(1 + y0) for all
n � 1. Then

sup
j�n

∣∣∣∣yj y0

1 + Bjy0/2
− 1

∣∣∣∣ = O(y0 + nN−3/2 + N−1) as n → ∞.

Proof. By definition,

yj = g(1 + yj+1) − 1.

Clearly, g(1 + y) > 1 + Agy > 1 + y for any y > 0. Consequently, the sequence yj is
decreasing. Expanding g(1 + y) in a Taylor series, we obtain

yj = Agyj+1 +
Bg

2
y2
j+1 +

g′′′(θj)

6
y3
j+1, θj ∈ (1, 1 + yj+1).

Since yj is decreasing and g′′′(1 + y0) is bounded, we conclude that

(19) yj = Agyj+1 +
Bg

2
y2
j+1 + O(y3

j+1).

Therefore,

yj+1

yj
=

(
Ag +

Bg

2
yj+1 + O(y2

j+1)

)−1

=
1

Ag
− Bg

2A2
g

yj+1 + O(y2
j+1) =

1

Ag
− Bg

2A3
g

yj + O(y2
j ).(20)
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Dividing both sides of (19) by yjyj+1 and using (20), we have

(21)
1

yj+1
=

Ag

yj
+

Bg

2Ag
+ O(yj) =

Aj+1
g

y0
+

Bg

2Ag

Aj+1
g − 1

Ag − 1
+ O

(
j∑

k=0

ykA
j−k
g

)
.

Using (10) for r = 3, we conclude that

|Ai
g − 1| � c

i

N3/2
, i � 1,

and ∣∣∣∣Aj
g − 1

Ag − 1
− j

∣∣∣∣ � c
j2

N3/2
, j � 1.

Applying these inequalities and (11) to the right-hand side of (21) and taking into
account the relation yk < y0 being valid for all k > 0, we deduce for any j � 0 the
equality

1

yj+1
=

(
1

y0
+

B

2
(j + 1) + O(jy0) + O(N−1)

)(
1 + O(N−1 + jN−3/2)

)
=

(
1

y0
+

B

2
(j + 1)

)(
1 + O(y0 + N−1 + jN−3/2)

)
.(22)

Hence the statement of the lemma follows.
Set r0 = 1 + yn and, for each j = 1, . . . , n, define the probability generating

function

ρj(s) :=
g(gj−1(r0) s)

gj(r0)
.

Introduce the notation

aj := ρ′j(1), a(j) :=

j∏
i=1

ai, bj := ρ′′j (1),

T (n) :=

n−1∑
i=0

bi+1

2ai+1
a(i).

Lemma 4. If g′′′(1 + y0) is bounded, y0 log n → 0, and nN−3/2 → 0, then, as
n → ∞,

a(n) =

(
1 +

Bny0

2

)2(
1 + o(1)

)
,(23)

T (n) =
Bn

2

(
1 +

Bny0

2

)(
1 + o(1)

)
.(24)

Proof. In accordance with the definition of a(j),

a(j) =
r0

gj(r0)

j−1∏
i=0

g′(1 + yn−i) =
r0

gj(r0)
exp

{
j−1∑
i=0

log g′(1 + yn−i)

}
.
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Using the equalities

g′(1 + z) = Ag

(
1 +

Bgz

Ag
+ O(z2)

)
, log(1 + t) = t + O(t2),

we have

(25) a(j) =
r0

gj(r0)
Aj

g exp

{
Bg

Ag

j−1∑
i=0

yn−i + O

(
j−1∑
i=0

y2
n−i

)}
.

Applying Lemma 3 and estimates (23)–(25) of [7], we obtain

j−1∑
i=0

yn−i =
2

B
log

(
1 + Bny0/2

1 + B(n− j) y0/2

)
+ O

(
log n (y0 + nN−3/2 + N−1)

)
,

j−1∑
i=0

y2
i = O(y0).

Substituting these equalities in (25) and applying Lemma 1, we obtain, for any j � n,
the equality

(26) a(j) =

(
1 + Bny0/2

1 + B(n− j) y0/2

)2(
1 + O

(
log n (y0 + nN−3/2 + N−1)

))
.

Setting j = n here gives (23).
Using the boundedness of g′′′(1 + y0), equality (26), and Lemma 1, we see that

T (n) =

n−1∑
i=0

(
1 + Bny0/2

1 + B(n− i) y0/2

)2(
1 + O

(
log n (y0 + nN−3/2 + N−1)

))
.

By virtue of (30) in [7],

n−1∑
i=0

(
1 + Bny0/2

1 + B(n− i) y0/2

)2

=
Bn

2

(
1 +

Bny0

2

)(
1 + O(y0)

)
.

The last two equalities imply (24). Lemma 4 is proved.
Let Z∗ = {Z∗

k ; 0 � k � n} be a time-inhomogeneous branching process whose
transition probabilities are specified by the equalities

(27) E{sZ∗
k | Z∗

k−1 = 1} = ρn−k+1(s), k = 1, . . . , n.

Put

(28) Fn(x) := P
{
Z∗
n < xT (n) | Z∗

n > 0
}
.

Lemma 5. Under the conditions of the previous lemma,

(29) δn := sup
x

∣∣Fn(x) − 1 + e−x
∣∣ � c(y0 + n−1) log2 n

and

(30) P{Z∗
n > 0} =

(
2

Bn
+ y0

)(
1 + o(1)

)
as n → ∞.
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Proof. It is easy to see that ai > 1 for all i � 1. On the other hand,

sup
1�i�n

ai < sup
1�i�n

g′(1 + yn−i+1) < Ag + y0 g
′′(1 + y0).

Using Lemma 1 and observing that the boundedness of g′′′(1+y0) implies the bound-
edness of g′′(1 + y0), we obtain the estimate

sup
1�i�n

ai < 1 + c(N−3/2 + y0).

As a result we have

(31) sup
1�i�n

|ai − 1| → 0.

It is easy to see that

(32) sup
1�i�n

bi � B

2

for all sufficiently large n and N . Using the boundedness of g′′′(1+ y0) once again we
obtain

(33) sup
1�i�n

ρ′′′i (1) � c.

Relations (31)–(33) mean that the process Z∗ meets all the conditions of Theorem 3
in [1], according to which

δn � cmax
i�n

a(i)
log2 T (n)

T (n)
= ca(n)

log2 T (n)

T (n)

and

P{Z∗
n > 0} =

a(n)

T (n)

(
1 + o(1)

)
as n → ∞.

These relations and Lemma 4 yield the desired statements. Lemma 5 is proved.

2.2. Estimates from below for large deviations.
Lemma 6. For any k � 2(B ∨ 1) the following inequalities are valid:

P{Mn � k} > P
(
An(k − 1)

)
> nP{Z1 � k} exp

(
− (2B + 1)n

k − 1

)
.

Proof. Clearly, for any j � 1 we have

f̃j(1) − f̃j+1(1) � f̃ ′(x0)
(
f̃j−1(1) − f̃j(1)

)
�

(
f̃ ′(x0)

)j(
1 − f̃(1)

)
,

where x0 = x0(N) is the minimal positive solution of the equation x = f̃(x). There-
fore,

P
(
An(N)

)
= 1 − f̃n(1) =

n−1∑
j=0

(
f̃j(1) − f̃j+1(1)

)
� 1 − (f̃ ′(x0))

n

1 − f̃ ′(x0)

(
1 − f̃(1)

)
.(34)
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It is easy to see that

(35) f̃ ′(x0) > f̃ ′(1) − f̃ ′′(1)(1 − x0).

Setting r = 2 in (13), we have

(36) f̃ ′(x0) > 1 − (B + 1)N−1 − f̃ ′′(1)(1 − x0).

According to (45) in [8],

(37) 1 − x0 < N−1.

Substituting (37) in (36), we obtain

f̃ ′(x0) > 1 − 2B + 1

N
.

Applying this estimate to the right-hand side of (34), we get the inequality

P
(
An(N)

)
� N

2B + 1

(
1 −

(
1 − 2B + 1

N

)n)
P{Z1 > N}.

It is not difficult to see that

(38) 1 − (1 − x)n � 1 − e−nx � nxe−nx

for any x ∈ [0, 1]. Hence we conclude that

P
(
An(N)

)
� nP{Z1 > N} exp

(
− (2B + 1)n

N

)
for any N � 2B+1. To complete our arguments it remains to observe that An(k−1) ⊂
{Mn � k}. Lemma 6 is proved.

Lemma 7. Assume EZ3
1 < ∞. If n = nk is such that k/n → ∞ as k → ∞, then

lim sup
k→∞

P{Mn � k}
P{Zn � k} � 2.

Proof. According to the von Bahr–Esseen inequality (see, for instance, [12,
Chap. V, Theorem 4]),

P{Zi � k | Z0 = k} � 1

2
− c0k

−1/2 E|Zi − 1|3
(E(Zi − 1)2)3/2

,

where c0 is an absolute constant.
Since E|Zi − 1|3 � ci2 and E(Zi − 1)2 = Bi, it follows that

P{Zi � k | Z0 = k} � 1

2
− c

√
i√
k
,

and, consequently,

(39) min
i<n

P{Zi � k | Z0 = k} � 1

2
− c

√
n√
k
.
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682 V. I. WACHTEL

As is shown in [3],

(40) P{Mn � k} � P{Zn � νk}
mini<n P{Zi � νk | Z0 = k} , ν ∈ [0, 1].

Letting ν = 1 here and applying inequality (39) to the denominator, we deduce the
required relation. Lemma 7 is proved.

3. Proof of the main results.

3.1. Proof of Theorem 1. Clearly,

(41) P{Zn � k} = P
{
Zn � k; An(N)

}
+ P

{
Zn � k; An(N)

}
for any N � 1. According to the definition of g(s),

(42)
∞∑
j=0

P
{
Zn = j; An(N)

}
sj = f̃n(s) = x1gn

(
s

x1

)
.

Further, by virtue of (27),

(43) EsZ
∗
n =

gn(sr0)

gn(r0)
=

gn(sr0)

gn(1 + yn)
=

gn(sr0)

1 + y0
.

Combining (42) and (43), we conclude that

P
{
Zn � k; An(N)

}
= x1(1 + y0)

∞∑
j=k

(x1r0)
−jP{Z∗

n = j}

= x1(1 + y0)E{e−hZ∗
n ; Z∗

n � k},

where h := log(x1r0). Recalling definition (28) of the function Fn(x), we see that

(44) P
{
Zn � k; An(N)

}
= x1(1 + y0)P{Z∗

n > 0}
∫ ∞

k/T (n)

e−hT (n) x dFn(x).

Integration by parts gives∫ ∞

k/T (n)

e−hT (n) x dFn(x) = hT (n)

∫ ∞

k/T (n)

Fn(x) e−hT (n) x dx− Fn

(
k

T (n)

)
e−hk

and

e−hk−k/T (n)

1 + hT (n)
=

∫ ∞

k/T (n)

e−hT (n) x d(1 − e−x)

= hT (n)

∫ ∞

k/T (n)

(1 − e−x) e−hT (n) x dx− (1 − e−k/T (n)) e−hk.

Subtracting the first of these equalities from the second, we obtain∣∣∣∣ ∫ ∞

k/T (n)

e−hT (n) x dFn(x) − e−hk−k/T (n)

1 + hT (n)

∣∣∣∣
� sup

x

∣∣Fn(x) − 1 + e−x
∣∣(e−hk + hT (n)

∫ ∞

k/T (n)

e−hT (n) x dx

)
.
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Calculating the integral in the right-hand side of this inequality leads to the estimate

(45)

∣∣∣∣ ∫ ∞

k/T (n)

e−hT (n) x dFn(x) − e−hk−k/T (n)

1 + hT (n)

∣∣∣∣ � 2δne
−hk.

We set

N =
n

log n
, y0 =

4k

B2n2
− 2

Bn

and prove the boundedness of g′′′(1 + y0) for the shown values of N and y0.
Clearly,

(46) g′′′(1 + y0) = x2
1f̃

′′′(x1(1 + y0)
)

� f̃ ′′′(1)xN+2
1 (1 + y0)

N .

According to (14) for r = 3,

(47) xN+2
1 � exp

{
c1N

−3/2(N + 2)
}

� c2.

On the other hand, we are interested in the not too big values of k, namely, k �
cn log n. This means that y0 � cn−1 log n and, consequently,

(48) (1 + y0)
N � c

for N = n/ log n. Combining (46)–(48), we see that g′′′(1 + y0) is bounded. This
fact allows us to use the earlier results established in Lemmas 3, 4, and 5. Setting
y0 = 4k/(B2n2) − 2/(Bn) in (24), (29), and (30), we see that, as n → ∞,

(49) T (n) = k
(
1 + o(1)

)
,

(50) δn � c
log3 n

n
,

and

(51) P{Z∗
n > 0} =

4k

B2n2

(
1 + o(1)

)
(recall the definition of δn in (29)).

Using Lemma 3, we have

(52) yn =
2

Bn
− 1

k
+ O

(
log3/2 n

n3/2

)
as n → ∞.

On the other hand, (14) implies the estimate

(53) x1 − 1 < c
log3/2 n

n3/2
.

By (52) and (53) we conclude that

h = log
(
x1(1 + yn)

)
= (x1 − 1) + yn + O

(
y2
n + (x1 − 1)2

)
=

2

Bn
− 1

k
+ O

(
log3/2 n

n3/2

)
.(54)
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Combining (45), (49), (50), and (54) gives

(55)

∫ ∞

k/T (n)

e−hT (n) x dFn(x) =
Bn

2k
exp

(
− 2k

Bn

)(
1 + o(1)

)
.

Substituting (51) and (55) in (44), we derive the following equality for k � cn log n:

(56) P
{
Zn � k; An(N)

}
=

2

Bn
exp

(
− 2k

Bn

)(
1 + o(1)

)
.

Consider now the second summand in the right-hand side of (41). Obviously,

P
{
Zn � k; An(N)

}
� P

(
An(N)

)
.

On the other hand, in view of (43) in [8] and the Markov inequality,

P
{
An(N)

}
� nP{Z1 � N} � nEZr

1N
−r.

Letting N = n/ log n, we have

(57) P
{
Zn � k; An(N)

}
� EZr

1

logr n

nr−1
.

Comparing the right-hand sides of (56) and (57), we conclude that

P
{
Zn � k; An(N)

}
= o

(
P
{
Zn � k; An(N)

})
for k � B(r/2−1)n log n−B(r/2+ε)n log log n and ε > 0. Thus, the first statement
of Theorem 1 is proved.

By Lemmas 6 and 7 we deduce that for all sufficiently large n and k,

(58) P{Zn � k} � cnP{Z1 � k}.

Put

(59) k =

[
B

(
r

2
− 1

)
n log n + B

(
r + 1

2
+ ε

)
n log log n

]
.

If (1) is valid for the k shown in (59), it follows that

(60) P{Z1 � k} � cn−r log−r−1−ε n.

In addition, we conclude by (59) that

n =
2

B(r − 2)

k

log k

(
1 + o(1)

)
as k → ∞.

Substituting this estimate in (60), we see that, for all sufficiently large k,

P{Z1 � k} � ck−r log−1−ε k.

Consequently,
∑∞

k=1 k
r−1P{Z1 � k} < ∞, which is equivalent to the boundedness

of EZr
1 .
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3.2. Proof of Theorem 2 for the case of finite variance. Assume first that
the equivalence

(61) P{Mn � k} ∼ nP{Z1 � k}

holds for k/(n log n) → ∞, and show that P{Zn � k} has the same asymptotic
behavior. Since P{Zn � k} < P{Mn � k}, it suffices to justify the estimate from
below,

(62) lim inf
k→∞

P{Zn � k}
P{Mn � k} � 1.

Fix an ε > 0. Setting ν = (1 + ε)−1 in (40), we have

(63) P{Zn � k} � P
{
Mn � (1 + ε) k

}
min
i<n

P
{
Zi � k | Z0 = [(1 + ε) k]

}
.

By the Chebyshev inequality, we obtain

P
{
Zi < k | Z0 =

[
(1 + ε) k

]}
� (1 + ε) kBi

ε2k2
=

B(1 + ε) i

ε2k
.

Therefore,

(64) min
i<n

P
{
Zi � k | Z0 =

[
(1 + ε) k

]}
� 1 − B(1 + ε)n

ε2k
.

Combining (61), (63), and (64) and recalling that P{Z1 � k} is regularly varying, we
conclude that

lim inf
k→∞

P{Zn � k}
P{Mn � k} � (1 + ε)−t.

This estimate and the arbitrariness of ε imply (62).
Let us deduce (61). According to Theorem 3 in [8], for any r � 2, N � 1, and

y0 > 0, the following estimate is valid:

P{Mn � k} �
(
y0 +

1

N

)[(
1 +

1

1/y0 + erBn/2 + nβre
y0N/Nr−2

)k

− 1

]−1

+nP{Z1 � N},(65)

where B = E{Z1(Z1 − 1);Z1 � N}, βr = E{Zr−1
1 (Z1 − 1); Z1 � N}/2. Take r = t.

It is not difficult to see that

(66) βt � t

2

∫ N

0

xt−1P{Z1 � x} dx =: L1(N).

Since P{Z1 � x} is a regularly varying function of order −t, it follows by Theo-
rem VIII.9.1 in [9] that L1(x) is a slowly varying function. Besides, the finiteness
of B implies the boundedness of L1(N) for t = 2. Hence it follows that, for all
sufficiently large N , the quantity

y0 :=
1

N
log

(
N t−1

n

)
− 2

N
log log

(
N t−1

n

)
− 1

N
logL1(N)

is positive. It is not difficult to see that if N/n → ∞, then

(67)
nβte

y0N

N t−2
=

N

log2(N t−1/n)
= o(y−1

0 ).
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Further, if N/(n log n) → ∞, then

(68)
etBn

2
� etBn

2
= o(y−1

0 ).

Selecting N = (1 − ε) k in (65) and using (67) and (68), we conclude that for all k
meeting the inequality k > cn log n, the following estimate is valid:

P{Mn � k} <
(
y0 + (1 − ε)−1k−1

)[(
1 +

y0

1 + ε/2

)k

− 1

]−1

+ nP
{
Z1 � (1 − ε) k

}
.

Substituting the selected value of y0 gives the inequality

P{Mn � k} < c(ε)
log k

k

(
n logL1(k) log2 k

kt−1

)1/((1−ε)(1+ε/2))

+nP
{
Z1 � (1 − ε) k

}
.

Observing that the first summand in the right-hand side of this inequality is o(nk−t−δ)
for some δ = δ(ε) > 0, and recalling that P{Z1 � x} is regularly varying, we conclude
that

lim sup
k→∞

P{Mn � k}
nP{Z1 � k} � lim sup

k→∞

nP{Z1 � (1 − ε) k}
nP{Z1 � k} � (1 − ε)−t.

Since ε is arbitrary, it follows that, as k/(n log n) → ∞,

(69) lim sup
k→∞

P{Mn � k}
nP{Z1 � k} � 1.

On the other hand, by Lemma 6,

(70) lim inf
k→∞

P{Mn � k}
nP{Z1 � k} � lim inf

k→∞

P(An(k))

nP{Z1 � k} � 1 as
k

n
→ ∞.

Combining (69) and (70), we obtain (61) and, in addition, the equivalence

P{Mn � k} ∼ P(An(k)) as
k

n log n
→ ∞.

This completes the proof of the theorem for t > 2.

3.3. Proof of Theorem 2 for the case of infinite variance. Consider first
the case t < 2. Under this condition we have the asymptotic relations

(71)

1 − f̃ ′(1) = E{Z1;Z1 � N} = NP{Z1 � N} +

∫ ∞

N

P{Z1 � x} dx ∼ t

t− 1
N1−tL(N)

and

(72) f̃ ′′(1) = B � 2

∫ N

0

xP{Z1 � x} dx ∼ 2

2 − t
N2−tL(N)

as N → ∞.
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Combining (35), (37), (71), and (72), we see that f̃ ′(x0) > 1 − c0N
1−tL(N).

Applying this inequality to the right-hand side of (34) and using (38), we obtain the
estimate

P{Mn � k} > P
{
An(k − 1)

}
� nP{Z1 � k} exp

(
−c0nk

1−tL(k)
)

for the k such that c0k
1−tL(k) � 1. Hence (70) follows for nk1−tL(k) → 0.

Now we deduce an upper estimate for P{Mn � k}. Letting r = 2 in (65) and
using (72) gives

(73)

P{Mn � k} <

(
y0 +

1

N

)[(
1 +

1

1/y0 + cney0NN2−tL(N)

)k

− 1

]−1

+ nP{Z1 � N},

where c = c(t) is a positive constant. Putting

N = (1 − ε) k, y0 =
1

N
log

(
N t−1

nL(N)

)
− 2

N
log log

(
N t−1

nL(N)

)
in this estimate and proceeding similarly to the case t > 2, we conclude that (69) is
valid as nk1−tL(k) → 0. Thus,

(74) P{Mn � k} ∼ P
(
An(k)

)
∼ nP{Z1 � k} as nk1−tL(k) → 0.

If t = 2, estimates (72) are replaced by

f̃ ′′(1) = B � 2

∫ N

0

xP{Z1 � x} dx ∼ L̃(N) as N → ∞,

where L̃(N) :=
∫ N

1
x−1L(x) dx. It is easy to check that the arguments we have used

to derive (74) remain valid for t = 2 as well by substituting L̃(x) for L(x). Therefore,

(75) P{Mn � k} ∼ P
(
An(k)

)
∼ nP{Z1 � k} as nk−1L̃(k) → 0.

It is shown in [15] that for any critical Galton–Watson process,

(76)

∫ 1−Qn

0

ds

f(s) − s
∼ n as n → ∞.

Since condition (2) implies (5) we let s = 1 − y−1 in the integral in (76) and obtain∫ 1−Qn

0

ds

f(s) − s
=

∫ Q−1
n

0

yt−2

L∗(y)
dy =

(1 + o(1))

t− 1

Q1−t
n

L∗(Q−1
n )

as n → ∞.

Combining this representation with (76) and recalling (6) and (7) we obtain, as
n → ∞,

Q1−t
n

L(Q−1
n )

∼ Γ(2 − t)n for t < 2,
Q−1

n

L̃(Q−1
n )

∼ n for t = 2.

Using these relations it is easy to check that if kQn → ∞, then nk1−tL(k) → 0 for

t < 2 and nk−1L̃(k) → 0 for t = 2. Thus, we may combine (74) and (75) as follows:

(77) P{Mn � k} ∼ P
(
An(k)

)
∼ nP{Z1 � k} as kQn → ∞.
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We now find the asymptotics of the probability P{Zn � k}. According to the
inequality established in Theorem 2 of [11],

E

∣∣∣∣∣
n∑
1

Xi

∣∣∣∣∣
r

� 2

n∑
1

E|Xi|r, 1 � r � 2,

where {
∑n

1 Xi; n � 1} is a martingale. Applying this inequality to the process Zn

starting by k particles in the zero generation, we have for i � n the estimate

E
{
|Zi − k|r |Z0 = k

}
� 2kE|Zi − 1|r < 2k(1 + EZr

i ) � 4kEZr
i .

Therefore, by the Markov inequality,

(78) min
i<n

P
{
Zi > (1 − δ) k | Z0 = k

}
� 1 − 4kmaxi<n EZr

i

δrkr
.

Evaluating the expectation in the right-hand side of (78) by means of the estimate

(79) EZr
i < cQ1−r

i for all r ∈ (1, t) and i � 1,

established in [16], we obtain

min
i<n

P
{
Zi > (1 − δ) k | Z0 = k

}
� 1 − c(kQn)1−r.

Applying this estimate and (77) to the right-hand side of (63) shows that (62) is valid
as kQn → ∞. This completes the proof of the theorem.
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