ON SUMS OF INDEPENDENT RANDOM VARIABLES
WITHOUT POWER MOMENTS
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Abstract: In 1952 Darling proved the limit theorem for the sums of independent identically distributed
random variables without power moments under the functional normalization. This paper contains
an alternative proof of Darling’s theorem, using the Laplace transform. Moreover, the asymptotic
behavior of probabilities of large deviations is studied in the pattern under consideration.
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§ 1. Introduction. Statement and Discussion of Results
Let X, Xq,... be independent identically distributed random variables. Suppose that the function
V(z) = P(X > z) is slowly varying as z — o0; i.c.,

. Viex) B
a:lggo V(LE) =1 (1)

for every ¢ > 0. It follows from this condition that E{X% X > 0} = oo for every ¢t > 0, i.e., all power
moments are infinite.

Put S, = X1+ +X,, X, = maxy<y X, and let X be the summand maximal in modulus; i.e.,
| X7 | = maxp<p, [ Xl

It was Lévy ([1]; also see [2, p. 212]) who called attention to the fact that under condition (1) the
absolute value of the difference S, — X is small as compared to X, i.e. X, makes the overwhelming
contribution to S,. On assuming additionally that X > 0, it seems very likely that

P(S,<z)~P(X,<z)=(1-V(z)"™ (2)
Supposing that nV (z) = y, where y is a fixed positive number, we arrive at the approximate equality
P(S, <z)~ev.
Letting x = V~1(y/n), where V! is the inverse function to V, we conclude that
; — oY
nh_)n(r)lo P(nV(S,) >y) =¢".

Thus, the convergence to a nondegenerate distribution takes place under the functional normalization in
terms of V' (x). This approach was realized in [3] without the restriction X > 0.

Theorem A (Darling). If X > 0 or P(X < —z) = o(V (2)), then
lim P(nV(S,) <y; S, >0)=1—¢e". (3)

n—oo
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If the left tail is comparable to the right, i.e.
V(z)
V(z)+P(X < —x)

—pe(0,1), (4)

then
lim P(nW(S,) <y) =1—pe %P — ge /9, (5)
n—oo

where ¢ =1 —p and W(z) = V(z)I(z > 0) + P(X < z)I(xz < 0).

In contrast to Darling, we will give a direct proof of (3) and (5), bypassing relations of type (2). Notice
that the latter follows from our results as a consequence. The range of the values of z such that nV (z)
remains bounded as n — 0o may be considered as the zone of normal deviations of S,,. Accordingly, the
values of z hitting the supplementary domain may be considered as large deviations. The behavior of

probabilities of large deviations will be the subject of special consideration (see Theorem 2 below).
We pass to the exact statement of results. We need the next notation:

g () =E{e™¥ | X 20}, ¢ (s) = E{e¥ | X <0},
LH() = [1 - gH(1/0)[P(X > 0), L () = [1— g~(1/2)]P(X < 0).
Denote the inverse function to L*(z) by R*(z).
Theorem 1. Assume that L™ (x) is slowly varying and

L(x) p

e TP (6)
for some p € (0,1]. Then
lim P(S, > R*(z/n)) = lim P(nL*(S,) < 2;:8, > 0) = p(1 — e~%/P) (7)
n—oo n—oo

for every x > 0. Assume further that L™ (z) is slowly varying and (6) holds for some q € (0,1]. Then (7)
remains valid with S,, Lt (z), and p replaced by —S,,, L™ (z), and q respectively.

We call the reader’s attention to the fact that Theorem 1 is formulated not in terms of the distribution
of the random variable X but in terms of the Laplace transforms of the positive and negative parts
of this variable. The point is that according to the Tauberian theorem (e.g., see [4, Chapter XIII,
formula (5.17)]), V(z) is slowly varying iff so is L™ (x) and

Vi)
xl;ngo @) & (8)

Hence, it is immediate that (4) and (6) are equivalent. We use the normalization L™ (z) since Lt (z) is
a continuous strictly decreasing function. This allows us to avoid some difficulties that are associated
with the inversion of V (z).

It is easy to see that if p =1 in (6) then (7) is equivalent to (3) since L™ (z) ~ V(x). Moreover, (7)
and the corresponding analog for the left tail of S,, imply (5).

Show now that Theorem 1 yields (2).

Indeed, if X > 0 then for y = R (z/n)

P(Xy<y)=(1-V(y)" =1 V(R (/)"
By (8) we conclude that, for all positive z, the approximate equalities hold:
PX,<y)~Q—=L"(RT(z/n))" ~ (1 —x/n)" ~e "

Comparing this with (7), we get the relation

P(S, > R (z/n)) ~ P(X,, > R (z/n)).
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Theorem 2. Suppose that Lt (z) is slowly varying, (6) holds for p > 0, and n,y — oo so that
nL*(y) — 0. Then

. P(S,>v)

iy R )

Under the conditions of the second part of Theorem 1 for the left tail of the distribution of S,, we have

P(S -

N,y —>00 nL—(y) =L (10)

If the function L(z) = L (x) + L™ (z) is slowly varying, then
P(|S,

lim —\onl > Y) y)
ny—oo  nL(y)

=1 asnL(y) — 0. (11)

If the functions L™ (z) and L~ (z) are simultaneously slowly varying, with p and ¢ positive, then (11)
is an obvious consequence of (9) and (10). From a formal standpoint, slow variation of L(x) is a weaker
condition as compared with slow variation of summands. However, under some additional restrictions
these conditions become equivalent. Suppose for instance that

+(z)
L~ (x)

Since L () is monotonic, the negation of slow variation of the function consists in assuming the existence
of a constant ¢ > 1 and a sequence x,, such that for some o < 1

LT (cxy) < aL™(xy). (13)

0<c <

< co < 00. (12)

Since L(x) is slowly varying and L™ (x) does not decrease, for all € > 0 and all sufficiently large n, we
have
(1 —e)L(wp) < L(czn) < LT (cxy) + L™ (20).

Using (13), we obtain
(1 =&)Lt (xp) + (1 — &)L~ (zn) < oL (z,) + L™ (22),

and, consequently,
(1—a—¢e)Lt(x,) < el ().
Since € > 0 is arbitrary,
LT
im —(wn) =0
n—oo L~ (xy,)

contradicting (12). Therefore, LT (z) is slowly varying. In the same way we can prove that L~ () is
slowly varying as well.

Show now that we can combine the assertions on normal and large deviations. If n and y tend to
infinity simultancously and nL*(y) — = € (0,00), then y = R™((z + e,(y))/n) where g,(y) — 0 as
n,y — 00. In view of continuity of the right-hand side in (7) we have

P(S, > y) =p(1 — e~ TPy (1 4 0(1)).
Noticing that = + £, (y) = nL™ (y) and applying (8), we arrive, as nV (y) — z, at the equality
P(Sy > y) =p(l — e " W/P) (L +o1)). (14)

If nL*(y) — 0 then nL™(y) ~ p(1 — e‘”’L+(y)/p). Applying (8) once again, we conclude that (9) im-
plies (14). Thus, for all y such that nL™(y) has finite limit, the tail of the distribution of S, is approxi-
mated by the same function given on the right-hand side of (14).
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Darling demounstrated (see the proof of Theorem 4.2 in [3]) that
P(X; > y) =p(l—e " OP)(1+o(1)). (15)
Comparing (14) and (15), we arrive at the approximate equality
P(Sn > y) ~ P(X;, > y).

Deducing this relation was the main point of Darling’s arguments, whereas in our case it is the consequence
of Theorem 1.

The proofs of Theorems 1 and 2 are given below in Sections 3 and 4. The proof of Theorem 1 is
based on the Laplace transform. Section 2 contains the result about convergence of distributions and the
corresponding Laplace transforms which is required in proving Theorem 1. Proving Theorem 2, we apply
the upper bounds for P(S,, > z) and P(|S,| > x) from [5] and the lower bounds for these probabilities
from [6,7]. Since P(X > z) and P(|X| > z) are slowly varying, these bounds approach one another,
providing an asymptotically sharp result.

§ 2. The Criterion for Weak Convergence of Functional Transforms

Let &, be an arbitrary sequence of nonnegative random variables, and let L(z) be a continuous mono-
tonic slowly varying function. Further, let R(z) be the inverse function to L(z), while a,, is an arbitrary
sequence and o(z) is a nonnegative function.

Theorem 3. If L(x) increases and a,, — oo then

, &n -~
nh_)n(}OEexp{—m = p(z) (16)
at every continuity point of ¢ iff
Tim P(a; L&) < ) = () (1)
at every continuity point of .
If L(x) decreases and a, — 0 then (16) holds iff
lim P(a, L(&) < z) =1 - ¢(2) (18)
n—oQ

at every continuity point of .

The direct assertion of Theorem 3 in the case of L(x) increasing was formulated (factually, in a some-
what different form) and proved by Hudson and Seneta [8].

We give two different proofs of Theorem 3.

THE FIRST PROOF. Start with the case of L(z) increasing. Suppose that (6) is valid.

The changing of variables y = R(a,z) implies

B -} - / (s} e <

= O<?ex _Blan2) n an?)).
—O/ p{ }dP@ < R(an2))

R(apz)
Since R(z) is increasing for all € > 0, we have

Eexp{— S } < P(&n < R(an(z +€))) —I—exp{—

R(an(z +¢)) }’ (19)

R(anpx) R(anx)
& ox _R(an(w —€)) a(z —¢
Boxp { - | > e { - D P(e, < Rian(e - 2). (20)
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Lemma 1. If L(x) increases then for all ¢ > 1

R(z)
= 21
z—o0 R(cx) (21)
If L(z) decreases then for all ¢ < 1
) _ (22)

The proof of (21) is contained in Theorem 1.11 of [9], while to deduce (22) we need to make some
minor changes in the proof of (21).
It follows from (21), (19), (20), and (16) that for all € > 0 and sufficiently large n we have

P(&, < Rlap(z —¢))) —e < p(z) < P(&, < R(an(z+¢))) +¢€
or, which is the same,
P(a,'L(&) <z — g) —e < p(z) < P(a,'L(&) <z +¢) +e.

This means obviously that P (a,'L(&,) < x) tends to ¢(x) pointwise on the continuity set of ¢(z).

For proving the converse it suffices to reverse all arguments.

Suppose now that L(z) decreases. The only distinction from the already considered case is that
under the transformation x + L(z) the inequality under the P-symbol in (24) and (25) is reversed.

We may consider the expectation on the left-hand side of (16) as a generalized Laplace transform.

Call the reader’s attention to the fact that the same function stands on the right-hand sides of
(16) and (17). It means that (17) at once gives an explicit form of the limit distribution of the sequence
a,'L(&,), whereas we need another intermediate step to use the ordinary Laplace transform: the inversion
of the limit transform which often is a difficult task.

The above proof bases on the same idea as that of Lemma 1 in [8] but is much simpler.

The method of the second proof is more classical as compared with the first: we start with finding the
limit of the Laplace transform of the variables &,(z) := &,/R(anx); then apply the continuity theorem.
Some limit theorems for branching processes with migration were proved in this manner in [10, 11].

THE SECOND PROOF. Fix some ¢ > 0. It follows from (21) that for all s > 1 and all sufficiently
large n we have

1 < s < 1
R(apz) ~ R(anz) ~ R(ap(x —e))

Hence, applying (16), for s > 1 we obtain

o sén . s&n
_ < — < e < .
plr—e) < llggngeXp { R{an) } < higsogp E exp { Rlanz) } < p(z)
Since ¢ is arbitrary,
. s&n
lim E . _ 9
nglolo eXp { R(anx) } QD(.Z‘) ( 5)

at every continuity point of ¢(z) for s > 1. The validity of (23) for s < 1 follows by analogy.

Thus, we showed that Laplace transforms of the variables &, (z) = &,/ R(a,x) converge to the function
which is identically equal to ¢(z). The latter is the Laplace transform of the random variable £(x) taking
the values zero and infinity with probability ¢(z) and 1 — ¢(x). According to the continuity theorem for
the Laplace transform (e.g., see [4, Chapter XIII, §1, Theorem 2])

lim P(€(x) < u) = ()

n—oo
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for all u > 0. Letting v = 1 in this inequality, we have
lim P(&, < R(ayx)) = ¢(z). (24)
n—oo

Since L(z) decreases, we arrive at (17).
Prove now that (17) implies (16).
Because of the slow variation of L(x) for every fixed u
P&, < uR(apz)) =P(L(&,) < L(uR(ayz)))
= P(L(&) < anz + en(u)),  en(u) — 0. (25)

Hence, in view of (17) and the continuity of ¢ at « we conclude that
lim P(&, < uR(apz)) = p(z)
n—o0
for all w > 0. In other words, the sequence &, (x) weakly converges to £(x). It means, in particular, that

lim Ee %) — B¢ = o(z)

n—oo

for all s > 0. Letting s = 1, we come to (16).

Notice that the above-mentioned papers [8,10,11] are devoted to the study of distinct modifications
of branching processes. A more complicated structure of branching processes as compared with the sums
of independent random variables makes the deduction of (2) more difficult. It gave rise to the methods
of proving the weak convergence which are in the current section.

§ 3. Proof of Theorem 1

Suppose first that the random variable X under study takes only nonnegative values. In this case
g T (s) is the Laplace transform of X. It is easy to see that L™ (z) is continuous and vanishes as z tends

to infinity. Note now that
Sn X "
E ——F = |(E _—
eXp{ R+<x/n>} ( eXp{ R+<x/n>})

B <g+ (ﬁ)) = (L= LT (R (/n))"

Since R (z) is inverse to L™ (z), it follows from the last equality that
S
Eexp {_W;/")} = (1 — %)n — e % asn— oo.
Applying Theorem 2 to the case of L(x) decreasing, we see
lim P(nL™(S,) <z)=1—¢e". (26)

n—oo

Let us abandon the condition that the random variables X; are nonnegative.

Clearly, the distribution of X coincides with the distribution of the variable a Xt — (1 — a)X ™,
where the random variables or, X ~, X T are independent, o has the Bernoulli distribution with parameter
r=P(X>0),P(XT>2)=P(X>z|X >0),and P(X~ >2) =P(X < —z | X <0). Hence,

Sp=8F-8_—, (27)

where 5} = Sk X;“, S, = Sk x ; »and v = v(n) is the random variable having the binomial distribution
with parameters n and r.
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Lemma 2. The next relations are valid:

; + + — 1 _ 2

nlglolc P(S) > R"(z/n)) =1-¢€ 7, (28)
: - + — »—qz/p

nh_}IEOP(SV <R (:c/n)) =e . (29)

PROOF. By definition Ee X" = g*(s). Put L (z) = 1 — ¢*(1/2). Since (7) is already proved for
nonnegative variables,
lim P(ij(S]j) < a*) =1-—¢e".
k—ro0

By (6) we have L (z) ~ L*(z)/r as x — oo. Consequently,
lim P(kLT(Sf) <z) =1—e/".
Jim P (kLT (S)) <) €

It means in particular that for all € > 0

lim P(S} > RY((L+e)zr/k)) =1 — e 2015,

k—o0

Assume that 1 — ¢ < % < 1+e. Since RT(z) decreases,
P(S > RY((1—e)ar/k)) <P(S) > R"(z/n)) <P (S} > RT((1+¢e)ar/k))
for all € > 0. It follows from the last two relations that for n sufficiently large
1—e ™78 e < P(5F >R (z/n)||v/nr —1] <e) <1-— e m(14e) 4 ¢, (30)
On the other hand, by the law of large numbers

lim [P(S}) > RY(z/n)) =P (S} > R*(z/n) | [v/nr — 1] <e)] =0. (31)

n—oo

Combining (30) and (31), we obtain (28).
Turn now to (29). In view of (28)

lim P(S, < R (z/n)) =¢e *.
n—oo

In other words,
lim P(nL™ (S, (x/n)) >x) =€ "
n—oo

Notice that by (6)
L7(S, (x/n)) _q

im =
n—oo LT(S, (x/n)) p
with probability 1. It follows from the last two relations that

lim P(nL* (S, (z/n)) > z) = e~9/P ]
Lemma 3. Forall z,y >0
limp 00 P(S7 > RY(z/n) + RT(y/n)) =1—¢" min{z,y},
PROOF. Let z < y. Then by (22) for n sufficiently large
R(z/n) + R(y/n) < 2R(z/n) < R((1 +¢€)x/n)
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for arbitrarily small e > 0. Hence, by (28)
liminf P(S)f > R (z/n) + R"(y/n)) > 1 —e =

n— 00

On the other hand, by (28)
limsup P(S;} > R (z/n) + R (y/n)) < hm P(S} >Rt (z/n)) =1—e".
n—o0
Thus, for z <y
11_>m P(S) > R"(z/n)+ RM(y/n)) =1—¢ "
n—00

Quite similarly, for x >y
lim P(S;” > RT(z/n) + R (y/n)) =1—¢ Y.
n—oo

The proof of the lemma is complete.
Let us turn now to the final stage of the proof. It is easy to see that

Pe) = P(S) = 87, > a) =B [ B )T e+ ),
0

where FkjE (z) = P(S;f < x). Making the change of variables = R¥(u/n), y = R*(v/n), we have

Py(R"(u/n)) = —E/FJ(R_(v/n))dF{_y(R+(U/n) + R (v/n)).
0
Put ky =nr — n2/3, ky = nr + n?/3. Notice that
lim P(k; <v <kg)=1

n—oo

Consequently, as n — 00,

P,(R*(u/n)) ( /F (RY(u/n))dE (RT (u/n) + Rt (v/n)); k1 <v < k’2> +o(1).
0

It is easy that
lim F,_ (R (v/n)) = lim F,_ (R*(v/n)) = "™/,

where the convergence is uniform in v. Further, F_ +1(m) < Fy (x). Therefore, for ky < v < ky
F. . (R (v/n)) < F,_ (R (v/n)) < F,_, (R"(v/n)).
It follows from (32)—(35) that

P(R*(u/n)) = — / ¢ IPABF (R (ufn) + R (v/n)) + of1).
0

Applying now Lemma 3, we see that

n—oo

o0 u
li P(R*(u/n)) == [ demed) = [emvlp gy —p1 o)
0 0

Hence, returning to (27), we obtain (7).
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§4. Proof of Theorem 2
According to Theorem 1 from [5] for all ¢ € (0,1] and y > 0 we have
oyt
nE{X%0< X <y}

—z/y
P(S, > z) < ™Y (1+ ) +nP(X > y).

Letting t = 1, y = = in this inequality, we arrive at the bound

nE{X;0 < X <z}

P(S,>xz)<nP(X >z)+e . (36)
Obviously,
T
E{X;0< X <z} =—2P(X > x) +/P(X > 2)dz.
0
Since P(X > z) is slowly varying, by Theorem 2.1 from [9]
T
/P(X > z)dz =zP(X > z)(1+o(1))
0
and, consequently, E{X;0 < X <z} = o(2P(X > z)). Hence, we conclude that
E{X;0< X <
nE{X;0< X <o} o(nP(X > x)). (37)
T
Using (37) to estimate the right-hand side in (36), we get for nV (z) — 0 the inequality
P(S,
ﬁnlsup.__ﬁgﬁiijﬁl < (38)

nosoo NP(X >xz)

To obtain a corresponding lower bound we apply the inequality from [6] (Theorem 6.1) which can be
written as

P(S, >z) >nP(X > az)[l -P(S,—1 < —(a—1)z) — ((n—1)/2)P(X > ax)],

where « is an arbitrary positive number.
Letting @ = 2 in this inequality, we obtain

P(S, > 1) > P(X; > 22)[1 — P(Sy_1 < —z) — ((n — 1)/2)P(X > 2z)]. (39)

Notice that by (6) and nL™(z) — 0 we have lim, . nP(X < —z) = 0. Applying now (38) to —S,, we
see that
lim P(S,—1 < —7) =0 asnLt(z)— 0. (40)
n—oo

Combining (39) and (40), we get

... PS> n

- = > . .
hnn—1>1010]fnP(X>2£E)_1 asnL™(z) = 0
Since P(X > z) is slowly varying, we have

hmmfw
n—oo nP(X >z) —

From (38) and (41) we have (9). Applying (9) to —S,, yields (10).

1099



It remains to prove (11). To estimate P(|S,| > ) we apply Theorem 5 of [5]. According to this

theorem
t—1

—z/y
P(|S,| > z) < /¥ (1 a P(|X
U501 >2) < (14 cprertregy)  ROXI> )

for 0 <t <1,y > 0. Taking into account that P(|X| > x) ~ L(z) as  — oo and word for word repeating
the deduction of (38), we infer

. P(|Sn| > y)
limsup ————= < 1. 42
n—>oop nL(y) - ( )

To get a lower bound for P(|S,| > x), we use (1) from [7], which, as applied to our case, becomes as
follows:

P(|S,| > z) > nP(|X| > az)min{P(Sp—1 > —(a — 1)z),P(S,—1 < (a — 1)z)} — nP(|X| > az)],
with « an arbitrary positive number. Putting here a = 2 and noticing that
min{P(S,—1 > —x), P(Sp—1 <2)} > P(|Sh-1| < 2),
we arrive at the inequality
P(|Sy| > z) > nP(|X| > 22)[1 — P(|Sp—1]| > z) — nP(|X| > 22)].
Estimating P(|S,_1| > x) with the aid of (42), we conclude that

. P([S]>y)
> ;
hlfgloléf L2y 1 asnL(y) — 0. (43)

Since L(z) is slowly varying, (42) and (43) imply (11).
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