On Sums of Independent Random Variables
without Power Moments
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1. Let X, X;, ... be independent identically distrib-
uted random variables. Assume that V(x) =P(X=x)isa
slowly varying function as x — oo; i.e.,

V(cx)
=1

V)
for any ¢ > 0. This condition implies that E{X"; X >0} =
oo for any ¢ > 0; i.e., all the power moments are infinite.

Define S, =X, + X, + ... + X, and X, = maxX,.

k<n

Let X* be the maximum term in absolute value; i.e.,

| X;¥ | = max|X,|.
k<n

ey

It was P. Lévy who noted that, under condition (1),
the absolute value of the difference S, — X is small

compared to X*; i.e., X makes an overwhelming

contribution to S, [1] (see also [2, p. 212]). Assuming
additionally that X > 0, it is seems rather plausible that

P(S,<x)~P(X,<x) = (1-V(x))". 2)

If n and x are related by nV(x) =y, where y is a fixed
positive constant, we obtain the approximate equality

P(S,<x)~e".
Setting x = V! (%), where V! is the inverse of V, we
conclude that

limP(nV(S,)>y) = ¢".
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Thus, we have convergence to a nondegenerate distri-
bution under the functional normalization in terms of
V(x). This approach was realized by Darling [3] with
the constraint X = 0 not being required.

Theorem A (Darling). If X =2 0 or P(X <—x) =
o(V(x)), then

limP(nV(S,)<y;S,20) = 1 —¢. 3)

n— oo
If the left tail is comparable with the right one, i.e.,

V(x)
V(ix)+P(X<-x)

—pe (0,1), “4)

then

HmP(rW(S,)<y) = 1—pe g™, (5)

where g=1—p and W(x) = V(x)I(x = 0) + P(X < x)I(x < 0).

In what follows, we need the following notation:

g'(s) = E{e™] X20}, g (s) = E{"”| Xx<0},
L'(x) = [1 —g+G)}P(XZO),

L(x) = [1 —g_GC)}P(X< 0).

Let R%(x) denote the inverse of L*(x).

In these terms, Theorem A can be restated as fol-
lows.

Theorem 1. Assume that L*(x) is a slowly varying
function such that

lim L) _ 2 ©6)
el (x)  p

for some p € (0, 1), where p* =pandp==1—p.
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Then, for any x > 0,

lim P(i-Sn > Rf(g)) = lim PR L (£S,) < x; %S, > 0)

X —> o0 n— oo

@)
= pi(l — CXP{—%}).
'S

If L*(x) varies slowly and

L7 (x) = o(L*(x)), 8)

then

lim P(J_rSn > Rf(g)) = lim PR L (£S,) < x; %S, > 0)
X —> o0 n— oo (9)

=1-¢".

Note that Theorem 1 is stated in terms of the Laplace
transforms of the positive and negative parts of X rather
than in terms of its distribution function. The fact is
that, according to the Tauberian theorem in [4, p. 503,
formula (5.22)], the function V¥(x) := P(£X > x) is
slowly varying if and only if L*(x) has the same prop-
erty and

+
lim ~ ) _

T 10)
x%ooL*(x)

It follows that conditions (4) and (6) are equivalent. The
use of the normalization of L*(x) is explained by the fact
that Z*(x) is a continuous strictly decreasing function,
which prevents us from difficulties associated with the
inversion of V¥(x).

For any fixed c, the domain {y: nL*(y) > c} can be
viewed as a region of normal deviations. Accordingly,
{y: nl*(y) <¢,}, where €, — 0 as n — 0, can be viewed
as a region of large deviations.

The following assertion concerns the asymptotic
behavior of large-deviation probabilities for S,,.

Theorem 2. Suppose that condition (6) or (8) holds
and n, y — oo so that nL*(y) — 0. Then

. P(£S,>)
hm —_— =

i 1. (11)
e nL(y)

If L(x) = L*(x) + L~ (x) varies slowly and nL(y) — 0, then

P(|S,| > y)
— = -7 =1. 12
nL(y) (12)

n,y —»eo
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Note that (11) can be written as

P(L*(£S,) < L*(y)) Ny

nL*(y)
Furthermore,
pi(l _ e—nLi(y)/pi) o
nL*(y)
if nL*(y) — 0.

Now setting x = nL*(y), we conclude that
P(nL*(%S,) < x) ~ pi[l - exp{—%}j
e

as x — 0. Thus, formula (12) also applies to large-devi-
ation probabilities for S,

The proof of Theorem 1 is based on the following
result, which relates the weak convergence of distribu-
tions to the convergence of the corresponding Laplace
transforms.

Let &, be an arbitrary sequence of nonnegative ran-
dom variables, and let L(x) be a continuous monotone
slowly varying function. The inverse of L(x) is denoted
by R(x). Suppose that a,, is a positive number sequence
and @(x) is a nondecreasing function.

Theorem 3. If L(x) increases and a,, — oo, then

: S | _
}gnwEeXp{—R(anx) = 0(x) (13)
holds on the set continuity of ¢ if and only if
lim P(a,' L(§,) < %) = @(x) (14)

n— oo

holds on the set continuity of .

If L(x) decreases and a,, — 0, then (13) holds if and
only if

lim P(a,' L(E,) <x) = 1-(x) (15)

is true on the set continuity of @.

The direct assertion in Theorem 3 for increasing
L(x) was stated (in a somewhat different form) and
proved in [5].

Theorem 1 is deduced easily from Theorem 3 if
X > 0. The general case is reduced to this special one.
The proof of Theorem 2 makes use of the upper
bounds for P(S, = x) and P(]S,| = x) derived in [6] and
the lower bounds for these probabilities obtained in
[7, 8]. Since P(X = x) and P(]X] = x) are slowly varying
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functions, these bounds approach each other and give 3. D.A.Darling, Trans. Am. Math. Soc. 73, 95-107 (1952).
an asymptotically sharp result. 4. W. Feller, An Introduction to Probability Theory and Its
Applications (Wiley, New York, 1968; Mir, Moscow,
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