®
OPEN a ACCESS Universitit Augsburg
OPUS AUGSBURG w k Universititsbibliothek

Formal verification of a lock-free stack with hazard
pointers

Bogdan Tofan, Gerhard Schellhorn, Wolfgang Reif

Angaben zur Veroéffentlichung / Publication details:

Tofan, Bogdan, Gerhard Schellhorn, and Wolfgang Reif. 2011. “Formal verification of a
lock-free stack with hazard pointers.” In Theoretical Aspects of Computing - ICTAC 2011: 8th
International Colloquium, Johannesburg, South Africa, August 31 - September 2, 2011,
proceedings, edited by Antonio Cerone and Pekka Pihlajasaari, 239-55. Berlin: Springer.
https://doi.org/10.1007/978-3-642-23283-1_16.

Nutzungsbedingungen / Terms of use: licgercopyright
Dieses Dokument wird unter folgenden Bedingungen zur Verfiigung gestellt: / This document is made available under these conditions: 4\ >ﬁ
Deutsches Urheberrecht I %‘ | =
Weitere Informationen finden Sie unter: / For more information see:) 5
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/ & ,,{ &

https://doi.org/10.1007/978-3-642-23283-1_16
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

Formal Verification of a Lock-Free Stack
with Hazard Pointers

Bogdan Tofan, Gerhard Schellhorn, and Wolfgang Reif

Institute for Software and Systems Engineering
University of Augsburg
{tofan, schellhorn,reif}@informatik.uni-augsburg.de

Abstract. A significant problem of lock-free concurrent data structures
in an environment without garbage collection is to ensure safe memory
reclamation of objects that are removed from the data structure. An
elegant solution to this problem is Michael’s hazard pointers method.
The formal verification of concurrent algorithms with hazard pointers
is yet challenging. This work presents a mechanized proof of the major
correctness and progress aspects of a lock-free stack with hazard pointers.

1 Introduction

Non-blocking implementations of concurrent data structures avoid major prob-
lems associated with blocking, such as convoying, deadlocks or priority inversion.
In particular, lock-free [1] algorithms guarantee termination of some operation
in a finite number of steps, even when individual operations are arbitrarily de-
layed or fail. Their main correctness property linearizability [2], ensures that each
operation appears to take effect instantly at one step (the linearization point)
between its invocation and response. Thus, from an external point of view, a
linearizable operation executes atomically and can be used in a modular way.
In addition, performance results show that lock-free implementations can out-
perform their lock-based counterparts significantly in the presence of contention
or multiprogramming. These properties are even more important as multi-core
architectures have become mainstream.

The advantages of lock-free implementations come at the price of an increased
complexity to develop and verify them. These data structures are often used in
programming environments without support for garbage collection (GC). There,
the problem of safe memory reclamation of objects that have been removed
from the data structure imposes significant additional challenges on design and
verification. Memory occupied by a removed object can not be simply deallocated
(e.g., using a free library call in C / C++) as other processes typically still
access this object in their operations. The possible concurrent reuse of locations
introduces a further fundamental problem of lock-free algorithms, the ABA-
problem [3]. It becomes manifest in subtle errors such as wrong return values or
data structure corruption, as we explain in Section 3.1 for a lock-free stack.

Several memory reclamation schemes that compensate the absence of GC ex-
ist. Hazard pointers [4] enable safe memory reclamation by extending concurrent

240

algorithms with their own local, non-blocking garbage collection. The reclama-
tion technique is applicable to a class of important concurrent algorithms. This
work analyzes the central properties of the hazard pointers method and then ap-
plies the results to verify a well-known lock-free stack that uses hazard pointers.
Proving safe memory reclamation and ABA-avoidance for such a stack has been
declared a challenge for program verification [5].

Our main contribution is an intuitive verification that exploits the central
properties of Michael’s reclamation scheme. The proof is mechanized in the in-
teractive theorem prover KIV [6] and addresses all major aspects: memory-safety,
ABA-prevention as well as preservation of linearizability and lock-freedom of the
stack with hazard pointers. We apply temporal logic and local rely-guarantee
reasoning, but use neither complex history variables nor reasoning about the
temporal past, as in other approaches (cf. Section 7). The proofs reveal that the
correctness of the reclamation scheme can be expressed in terms of two contend-
ing processes. A further novel insight is that its relation to GC can be exploited
to reuse central correctness arguments under GC.

To keep the presentation readable, we do not detail every formal aspect. In
particular, the verification and an in-depth description of the applied decompo-
sition theory is omitted. Further details can be found in [7]; a complete presen-
tation that includes all KIV-proofs is available online [8].

The remainder of this paper is organized as follows: Section 2 gives an intro-
duction to hazard pointers. Section 3 specifies the main case study of this paper,
the extended stack algorithm. Section 4 briefly introduces the verification frame-
work that forms the logical base for the applied decomposition theory, which is
described in Section 5. Section 6 shows four central properties of the hazard
pointers method and their specialization to formal verification conditions in the
case study. Section 7 presents related work and a comparison. Finally, Section 8
concludes with a summary and discussion of the main results.

2 The Hazard Pointers Method

Figure 1 illustrates hazard pointers: (1) processes p,(, ... can concurrently al-
locate and insert new objects NEW to a lock-free data structure LDS. Every
process p collects the memory of objects r that it removes from LDS in a local
pool of retired locations RLp. These locations are candidates for deallocation.
However, the contending use of these retired locations must be considered first.

(2) shows that each process is associated with a fixed (small) number of multi-
reader single-writer shared pointers, so called hazard pointers. All hazard point-
ers of all processes are contained in a hazard pointer record HPR. By setting
one of its hazard pointers to a location r, process p signals other contending
processes not to deallocate this location. Crucially, to ensure that this signal is
indeed considered, p subsequently checks whether r is still part of LDS. Only
if this check — called hazard pointer validation — succeeds, p enters a hazardous
code region where it accesses r.

To deallocate memory, a process p executes a scan operation in two phases
(3) and (4). In (3), it consecutively collects all hazard pointers of all processes in

241

Environment without GC

(O]

allocy, 4 (2)

3 “)

—_ dealloc,
1§

Scan

Fig. 1. Michael’s hazard pointers method

a local pointer list PLy by traversing HPR. In (4), all retired memory locations
r that were not found during this traversal (r RL, S PLp), are freed to the
environment’s memory management system for arbitrary reuse.

A properly extended lock-free algorithm with hazard pointers has the follow-
ing central correctness property:

A validated hazard pointer is not concurrently freed. (1)

This is because at the time of its successful validation, a hazard pointer is in
LDS and hence in no retired list. Consequently, no currently running scan will
deallocate it. After its successful validation, a hazard pointer might be concur-
rently retired, while still being used. Yet it is not freed, since the retiring process
collects the pointer during its traversal of HPR. (We intuitively formalize this
central argument in Section 6.)

3 A Lock-Free Stack with Hazard Pointers

3.1 The Lock-Free Stack

Instead of using locks, lock-free algorithms typically utilize atomic synchroniza-
tion primitives such as the widely supported single-word CAS (Compare-And-
Swap) instruction. A CA S compares a shared value SV with an older local copy
of it Old, called snapshot. If these values are equal, then SV is updated to a new
value New and true is returned; otherwise false is returned.

CAS(Old, New; SV, Suce) {
if* SV = Old then {SV := New, Succ := true} else Succ := false}

242

Throughout this work, we use formal KIV-specifications to describe programs
and thereby explain the introduced syntax. In the specification of CAS, the semi-
colon separates input from in-output parameters; the comma indicates parallel
assignments and in if* evaluating the if-condition requires no extra step.

Figure 2 illustrates the lock-free stack which provides concurrent push and pop
operations. The shaded code in pop, the scan and reset operations can be ignored
for now. The algorithm is a prime example of a lock-free data structure, taken
from Michael [4] and attributed to Treiber [3]. The shared stack is a singly linked
list of cells — pairs of values and locations with .val and .nxt selector functions — in
the application’s memory heap H. The heap is a partial function from locations
r: ref (with null ref) to cells with standard operations, e.g., H[r, ?] is allocation
with arbitrary content “?”, r H tests if r is allocated, H[r] is lookup and H Sr
deallocation. A shared variable Top points to the top cell of the stack.

Whenever a process executes a push, it first allocates a new cell UNew (lines
U3 / U4 execute in one step) and initializes it with input value In. Then it
repeatedly tries to CAS the shared top to point to this new cell (lines U6 —
9). A pop reads the shared top (if this snapshot is null, the special value empty
is returned) and locally stores the snapshot’s next reference which becomes the
target of the subsequent CAS. If it succeeds, the top cell is removed from the
stack and its value is returned. Variables UNew, USucc, OTop and OSucc are
local variables of “pUsh” resp. “pOp”. They are defined as in-output parameters
instead of using let, to allow us to reason about them.

Simply deallocating a removed cell at the end of pop can cause contending
pop-processes to dereference an illegal snapshot pointer. If the reference is con-
currently reused, an ABA-problem can occur: suppose that a pop-process p takes
a snapshot of the top pointer when the stack consists of exactly one cell at lo-
cation A. Process p is delayed after setting ONzt to null in line O12 for another
process q, which executes a successful pop, freeing A. Subsequently, q executes
two successful push operations, thereby allocating reference B and then again A.
Then p is rescheduled and its CAS operation in line O13 erroneously succeeds,
violating the semantics of pop.

3.2 The Extended Stack

Applying the hazard pointers technique requires no modification of the push
operation. The pop operation requires one hazard pointer to cover the hazardous
usage of the snapshot pointer OTop in lines O12 and O13. This hazard pointer is
atomically set in line 09, using the shared hazard pointer record HPR : N ref
and the identifier Id : N of the current process. In line O10, before any hazardous
usage, the hazard pointer is validated. Crucially, only after this test succeeds, it
can be guaranteed that the snapshot cell is not concurrently freed and possibly
reused. An additional boolean flag Hazardy,c marks the hazardous code region
in which the validated hazard pointer equals (covers) the snapshot OTop. This
simple auxiliary variable is required in the verification only, since our logic does
not use program counters. In line 016, a location that has been removed from
the stack is added to a local list of retired locations RL.

243

Ul Push(In; UNew, USucc, Top,H) {
U2 letUTop = 7in{
U3 chooser with (r =null r / H) in{

U4 UNew :=r,H :=H]r, 7], USucc := falseg;
U5 H [UNew].val := In;

U6 while - USucc do {

u7 UTop := Top;

U8 H [UNew].nxt := UTop;

U9 CAS(UTop, UNew; Top, USucc)}}}}

O1 Pop(; Id,Hazard,:, OTop, OSucc, RL, Top, H,HPR, Out) {
02 let ONxt = 7,Lo = empty in {

03 OSucc := falseg;

04 while = OSucc do {

05 OTop := Top, Hazardy. := false,

06 if OTop = null then {

o7 OSucc := true

08 } else {

09 HPR(Id) := OTop;

010 if* OTop = Top then {

011 Hazardp := true;

012 ONxt := H [OTop].nxt;

013 CAS(OTop, ONxt; Top, OSucc)}}}

014 if OTop =null then {

015 Lo := H[OTop].val ;

016 RL := OTop + RL, Hazard,. := false}
o17 Out := Lo}}

S1 Scan(; Scan,Beflncye, Lid, Lhp, PL,RL, H,HPR) {
S2 PL :=[], Scan := true,

S3 whileLid MAXID do {

S4 Lhp := HPR(Lid), Beflncye := true;
S5 if Lhp =null then {

S6 PL :=Lhp +PL}

S7 Lid := Lid 4 1, Beflncy := false};
S8 while Scan do {

S9 choose r with (r RL S PL) in{
S10 RL:=RLSr,H:=HSr}

S11 ifnone Scan := false, Lid := 0}}

R1 Reset(; Id,HPR) {HPR(Id) := null}

Fig. 2. A lock-free data-stack with hazard pointers

Operation Scan, characterized by boolean flag Scan, frees retired locations
that are not concurrently used. In its first loop, a scan sequentially traverses the
hazard pointer record, reading each hazard pointer and collecting it in a further
local pointer list PL, where constant MAXID denotes the greatest occuring pro-
cess identifier. This includes atomically taking a snapshot Lhp of the HPR entry

244

at process index Lid (Beflncpe is a further simple program counter substitute
used in the proofs). In the second loop, retired memory locations that are not
in PL are consecutively deallocated.

To simplify verification while maintaining the core ideas of Michael’s algo-
rithm, our version of the extended stack uses several algebraic data structures.
In particular, we use a function to model the hazard pointer record, while Michael
proposes a singly linked heap list. In the second loop of the scan operation, the
choose summarizes some merely local steps that are required to determine the
deallocable references RLS PL. This avoids some standard sequential reasoning.
Furthermore, we slightly generalize Michael’s version, by allowing a scan to be
performed arbitrarily between stack operations, while Michael calls a scan at the
end of pop, depending on the current number of retired locations. As a further
minor extension, we consider the possible reset of a hazard pointer Reset between
executions of push, pop or scan, while the original code does not explicitly reset.

4 The Verification Framework

4.1 Interval Temporal Logic

Interval temporal logic (ITL) [9] in KIV is based on algebras and intervals.
Algebras define a semantic for the signature and intervals (executions) are finite
or infinite sequences of states which evolve from program execution. A state maps
variables to values in the algebra. In contrast to standard ITL, the logic explicitly
includes the behavior of the program’s environment in each step. Similar to
“reactive sequences” [10], in an interval | = [l (0),1 (0),1(1),1 (1),...] the first
transition from state | (0) to the primed state | (0) is a program transition,
whereas the next transition from state | (0) to | (1) is a transition of a program’s
environment. In this manner program and environment transitions alternate.
A variable V is evaluated over | (0), whereas its primed resp. double primed
version V' resp. V is evaluated over | (0) and | (1) respectively. E.g., formula
V =V denotes that variable V is changed in the first program transition,
whereasV =V states that V is not changed in the first environment transition.
The last state of an interval is characterized by the atomic formula last.

The logic uses standard temporal operators to express future properties of
an interval (, ,€,until). In rely-guarantee proofs, formulas R(V ,V) S}
G(V,V) are of particular interest, where G resp. R are guarantee resp. rely con-
ditions and the “sustains” operator S ensures that the guarantee is sustained
by a program, as long as its environment has not previously violated the rely
(cf. Section 5).

RV,V)E GV,V): = (R(V,V)until= G(V,V))

The programming language provides the common sequential constructs, a
construct for weak-fair and one for non-fair interleaving. Note that arbitrary
programs and formulas can be mixed, since they both evaluate to true or false
over an algebra and an interval | . In particular, evaluates to true in | iff | is
an execution of interleaved with arbitrary environment steps.

245

4.2 Symbolic Execution and Induction

The verification framework is based on the sequent calculus. A sequent is an

assertion of the form , where , are lists of formulas. It states that
the conjunction of all formulas in antecedent implies the disjunction of all
formulas in succedent . Sequents are implicitly universally closed. A typical

sequent (proof obligation) about concurrent programs has the form ,E,F
where a program executes the program steps in an environment constrained
by temporal formula E. Predicate logic formula F describes the current state of
an -execution and denotes the temporal property of interest. A sequent of
the aforementioned form is:

M:=M+1; ,M=1 M =M § M >M (2)

The executed program is the sequential composition M := M +1; , environment
behavior is unrestricted (E = ¢rue omitted), the current state maps M to 1 and
the succedent claims that the program increments M as long as its environment
leaves M unchanged (M =M S M > M).

Symbolic Execution. Proving sequents that contain temporal assertions is
done by symbolically stepping forward to the next states of an interval, calculat-
ing strongest post conditions for each program step, possibly weakened accord-
ing to environment assumptions. Thus the calculus is rather similar to classic
symbolic execution of sequential programs [11], once environment behavior is
suitably restricted.

A step computes by applying unwinding rules to both programs and formu-
las. A program is unwound by calculating the effect of its first statement and
discarding it; the sustains operator is unwound using the rule R §° G
G (R €(R S G)). Applying it on the succedent of (2) yields M >
M (M =M €M =M S M > M)). That is, we must prove
that the counter is incremented by the (first) program transition as a first sub-
goal (M > M). If the following environment transition leaves M unchanged
(M = M), then the sustains formula must further hold in the rest of the
interval (€). Thus, we get a second subgoal when proving (2):

,M=2 M =M § M >M

Induction. Well-founded induction is used to deal with loops. For infinite in-
tervals a term for well-founded induction can often be derived from a known
liveness property as the number of steps N until holds.

N.(N=N +1)until

This equivalence states that is eventually true iff there is a natural number N
which can be decremented until becomes true. Note that N is a fresh variable
and N =N +1isequivalenttoN =NS1 N > 0.

An induction term can be also extracted from a sustains formula.

RS G B.(B) (R =-B)S G)

246

Thus, the proof of a sustains formula on an infinite interval | can be carried
out by induction over the length of an arbitrary finite | -prefix, which ends when
the fresh boolean variable B is true for the first time. Further details on the
underlying calculus can be found, e.g., in [12,13].

5 The System Model and the Decomposition Theory

This section briefly describes the decomposition theory which we have applied
to verify the case study. It contains several improvements over the theory used
in [14,15], which are independent from verifying the stack. Their description is
not in the scope of this paper (cf. [7] for more details).

The Concurrent System M odel. The system model Spawn(n;...) recur-
sively spawns n + 1 processes (n : N) to execute in parallel. Each process exe-
cutes finitely or infinitely often operations COP (In; LS, S, Out) on shared data
structures. Variables In resp. Out are thereby used to insert resp. return values.
Parameter LS : Istate is the exclusive local state of the invoking process (with
process identifier LS.id), whereas S : sstate is the shared state.

In the stack case study, COP is instantiated with the non-deterministic choice
between one of the operations that each legal process, having an identifier
MAXID, can concurrently execute. Illegal processes just skip.

COP(In;LS,S,0ut) {
ifLS.id MAXID then {
Push(In;LS,S) Pop(; LS,S,0ut) Scan(; LS,S) Reset(;LS,S)}}

The shared state S consists of the shared variables Top, H, HPR, whereas the
local state LS is the tuple of all local variables UNew, USucc, OTop, OSucc, Id,
Hazardye, Scan, Beflncpe, Lid, Lhp, PL, and RL.

Local Rely-Guarantee Reasoning. To avoid reasoning about interleaved ex-
ecutions of Spawn, we use a local version of rely-guarantee reasoning [16] that is
embedded in the temporal logic framework. Different from the original approach
[16], it does not enforce reasoning over the whole system state with n 4+ 1 local
states. Specifications instead consider two processes p resp. with local states
LS resp. LSQ. Such a reduction to a few representative processes is often useful
for the verification of concurrent data types.

The rely-guarantee embedding abstracts from interference from other pro-
cesses using rely conditions Rexi. In return, each process guarantees a certain
behavior towards its environment according to guarantee conditions Gex;. Both
Gext and Rext are structured into three categories: step invariant guarantee and
rely conditions G and R, state invariant conditions Inv and Disj (to symmet-
rically encode disjointness between the two local states), plus, local idle state
conditions Idle which hold between COP-executions only. (The use of these
structural predicates in the case study is shown in Section 6.) Thus, the central
proof obligation for rely-guarantee reasoning is:

COP(In;LS,S,0ut), Idle(LS),Inv(LS,S), 3)
LS.id =LSQ.id,Inv(LSQ,S),Disj (LS,LSQ) Rext & Gex

247

According to Gext, COP-steps maintain the guarantee conditions and the state
invariants, plus, establish the idle state conditions.

Gext (LS,LSQ,S,LS,LSQ ,S) :
G(LS,LSQ,S,LS,S)
(Inv(LS,S) Inv(LSQ,S) Disj(LS,LSQ)
Inv(LS,S) Inv(LSQ ,S) Dis(LS,LSQ)) (last Idle(LS))

According to Rext, transitions of COP’s environment do not modify LS and
they maintain R and the state invariants.

Rext (LS ,LSQ ,S,LS ,LSQ ,S):
LS =LS R(LS,S,S)
(Inv(LS,S) Inv(LSQ,S) Dis(LS,LSQ)
Inv(LS ,S) Inv(LSQ ,S) Dis(LS ,LSQ))

Theorem 1 (Local Rely-Guarantee Reasoning). If (3) can be proved for
some transitive rely predicate R, reflexive predicate G with G(LS, LSQ, S, LS , S)
R(LSQ, S, S), symmetric predicate Disj and predicates Idle and Inv, then
each system step of Spawn(n;...) is a guarantee step G which does not modify
the local state of other processes, the invariant conditions Inv and Disj hold for
all processes at all times, and each process is Idle, just before it invokes COP.

The Decomposition of Linearizability and Lock-Freedom. Linearizability
[2] and lock-freedom [1] are major, global correctness resp. progress properties
of concurrent systems. We define local proof obligations for COP which imply
linearizability and lock-freedom of Spawn. They are based on a local invari-
ant property ISR that each process may always assume during its execution of
COP (In; LS, S, Out), according to Theorem 1.

ISR: Inv(LS,S) Inv(LS,S) LS =LS R(LS.,S,S)

Linearizability. We prove linearizability by locating the linearization point
(i.e., the step where a call appears to take effect) of each operation during its
execution. Conceptually, the linearization point of an execution of COP is deter-
mined in a refinement proof using an abstraction function Abs sstatex astate
(a partial function defined on shared states that satisfy Inv, which returns a
corresponding abstract state). In the stack example, Abs maps a linked list rep-
resentation of the stack to a finite algebraic list St of its data values.

Abs(Top,H,[]): Top =null
Abs(Top,H,v + St) : Top =null Top H HTop].val=v
Abs(H [Top].nxt, H, St)

To prove linearizability, one has to show that each concrete operation from COP,
non-atomically refines a corresponding abstract operation, which is defined in a
further generic procedure AOP on an abstract state AS. In the case study, AOP
is the non-deterministic choice between an abstract push or pop on St, or a se-
quence of mere skip steps for the scan and reset operations, which leave the stack
unchanged. Hence, a sufficient process-local proof obligation for linearizability is:

248

COP(In;LS,S,0ut), (ISR Abs(S,AS) Abs(S,AS)),Idle(LS))
AOP(In;AS,Out)

Theorem 2 (Decomposition of Linearizability). In a setting in which the
preconditions of Theorem 1 and proof obligation (4) hold for a suitable abstrac-
tion function Abs, the concurrent system Spawn is linearizable.

Lock-Freedom. Lock-free data structures ensure that even when single pro-
cesses crash, neither deadlocks nor livelocks occur. In the stack example, single
push and pop operations can be forced to always retry their loop if another
process modifies the shared top pointer. If such an interference occurs, it is the
interfering process which terminates its current execution and without interfer-
ence, the current process terminates.

We capture this intuitive argument using an additional reflexive and transitive
relation U sstatex sstate to describe interference freedom (“unchanged”). To
prove lock-freedom, one has to do two process-local termination proofs for each
data structure operation. First, termination without U-interference and second,
termination after violating U in a step. Thus, a sufficient process-local proof
obligation for lock-freedom is (cf. [8,15] for more details):

COP(In;LS,S,0ut), ISR, Idle(LS) 5
((U(S,S)) -U(S,S) last) (5)

Theorem 3 (Decomposition of Lock-Freedom). In a setting in which the
preconditions of Theorem 1 and proof obligation (5) hold for a reflexive and
transitive relation U, the concurrent system Spawn is lock-free.

6 Verifying the Stack with Hazard Pointers

This section shows central properties of hazard pointers and their specializa-
tion to formal verification conditions for the stack from Figure 2. To keep the
presentation readable, we only give some major conditions explicitly (all formal
conditions are described in [7]). All conditions are expressed in terms of at most
two processes. This is possible, since a retired location r can only be freed by the
process, which has removed r from the stack and then retired it. Thus, when a
process is in its hazardous code region, there is at most one other process which
could free its critical pointer.

6.1 Central Properties of Hazard Pointers

The following central invariant property of hazard pointers ensures that heap
access errors do not occur in hazardous code regions.

HPRyaia H (6)

According to (6), each validated hazard pointer is in the application’s heap at
all times, i.e., it is never freed (cf. (1)). This property correlates with GC where

249

one may assume that a heap location r is not concurrently freed if it is just
referenced in some operation. With hazard pointers, one can make the same
assumption if 7 is covered by a wvalidated hazard pointer.

Before a process p validates a location r, however, it can be concurrently
freed by another process q and arbitrarily reused even if p has already set its
hazard pointer to . This happens when HPR, := is executed after the location
has been retired by g, and q has passed p’s hazard pointer entry in its current
traversal of HPR. Therefore, we omit any assertions about hazard pointers which
are not validated yet. This differs from Parkinson et al. [5], who include such
locations in their main correctness argument (cf. Section 7).

A difference between hazard pointers and GC is that while locations that are
reachable from a root location can be concurrently freed if they are no longer
covered by a validated hazard pointer, they would typically not be freed under
GC, as long as their root is used.

The next central property of hazard pointers ensures that retired locations
are in the application’s heap, but not in the lock-free data structure.

RL (H SLDS) (7)

This has two major consequences. First, deallocation steps are safe, as they do
not affect locations which are not in the application’s heap. Second, succeeding
validations (a location is in LDS at that time) imply that the validated location
is currently not retired, hence not a deallocation candidate of any current scan.

Two further central properties of hazard pointers ensure that no ABA-problem
occurs.

ifr HPRyalig thenr / NEW (8)

ifunder GC: H (r) =H (r) thenifr HPRyaia: H (r)=H (r) (9)

(8) states that if a location r is covered by a validated hazard pointer, then it is
not reused, i.e., it is not reinserted in the data structure which averts the ABA-
problem. This property is also related to GC, where a heap location is not reused
as long as it is referenced in some operation. Hence, the environment assumption
(9) holds: if the content of a heap location r is not concurrently changed in an
environment with GC, then it is also unchanged when r is covered by a validated
hazard pointer.

6.2 Veribcation Conditions for the Stack

Properties (6) - (9) are specialized to formal verification conditions which ensure
memory-safety and ABA-avoidance for the stack. Properties in bold script are the
corresponding verification conditions under GC, which we have simply reused.

A bsence of Access Errors. The stack-specific counterpart of generic property
(6) ensures that the snapshot pointer is allocated and covered by a validated
hazard pointer in the hazardous code region of pop.

250

Hazard,e OTop =null OTop H HPR(lId) =O0Top (10)

The stack-specific version of (7) implies that retired locations are allocated and
disjoint from the stack, where a standard reachability predicate checks whether
a location r is in the stack.

r RL.r =null r H = reach(Top,r,H) (11)

(10) and (11) ensure that heap access errors do not occur in pop and scan.

To sustain (10) at all times in every possible execution, the validated hazard
pointer OTop = HPR(Id) used in a pop operation of process p (Hazardp: holds,
Id is the process identifier of p) must not be freed by any process . The worst
case is that q has retired OTop, just traverses HPR, but has not yet collected it
(OTop RLqS PLq). Then gmust not have passed the entry of pyet (Lidg Id)
and if it has reached p’s entry, it must store O7op in the local variable Lhpq to
ensure that it is collected. Invariant ishazard encodes this criterion precisely:

ishazard(LS,LSQ) :
Hazard,e OTop (RLgS PLg) Scang
if Beflncgpe then Lidg< Id (Lidg=1d Lhpg = OTop) else Lidgq Id

Note that ishazard is independent from the underlying data structure, except
for mentioning the concrete hazardous reference OTop. It can be easily adapted
to ensure memory-safety for other lock-free data structures as well.

To sustain invariant (11) at all times, we must establish that retired lists
are always duplicate free and pairwise disjoint. Otherwise, a retired list might
contain a freed location after a deallocation step. Furthermore, three basic heap-
disjointness properties are necessary: removed locations, which are subsequently
retired, must be disjoint from the stack and they must not be concurrently
retired, plus, concurrently removed locations must be disjoint.

To ensure that heap access faults do not occur in push either, we claim that
new cells that have not been inserted yet, are always allocated and never con-
currently retired, hence never freed.

ABA-prevention. The stack-specific version of (8) ensures that the validated
snapshot in pop is not reused, thus it is disjoint from other new cells.

Hazard,: - USuccq OTop =UNewq (12)

The specialization of (9) yields the following rely condition which ensures that
the snapshot’s content is immutable in the hazardous code region of pop, to
avoid an ABA-problem between the execution of lines 012 and O13.

Hazard,e OTop =null H [OTop]=H [OTop] (13)

An ABA-problem does not happen in push as well, since the content of a new
cell remains unchanged.

- USucc H [UNew] =H [UNew] (14)

251

To maintain rely (14) for the other process, when the current push process
updates the new cell’s next reference in line U8, new cells must be disjoint.

- USucc - USuccg UNew =UNewq (15)

Verification conditions (10) and (11) are a main part of the structural predicate
Inv from Section 5. Conditions ishazard, (12) and (15) are part of the symmetric
predicate Disj, which is defined as:

Disj (LS,LSQ) : ishazard(LS,LSQ) ishazard(LSQ,LS) (12)

Rely conditions (13) and (14) are the major part of R; guarantee G is defined to
maintain R for the other process and a simple step-invariant which ensures that
COP-steps do not create memory leaks. Finally, the Idle predicate encodes the
following local restrictions:

USucc OSucc - Hazardye - Scan - Beflnc,e Lid =0

6.3 The Main Proofs

Sustainment of the Veribcation Conditions. The main effort of the case
study is to prove the rely-guarantee proof obligation (3) — sustainment of the ver-
ification conditions during steps of each operation. We proceed by case analysis
over Op {Scan, Pop, Push, Reset}. The proof resembles a Hoare-style proof

of a sequential program. We use S induction for loops and consecutively, sym-
bolically execute each program statement in Op according to Section 4. Only
some major arguments are outlined.

Op Scan: It is rather subtle to establish ishazard (LSQ, LS) when the cur-
rent process switches to the next hazard pointer entry in line S7. This step must
not miss a validated hazard pointer OTopq of the other process q if the current
process p has retired, but not yet collected it (OTopg RL S PL). If the snap-
shot Lhp of the current HPR entry is not null, we know from previous symbolic
execution that it is in PL. If the current iteration examines (, ishazard before
this step implies Lhp = OTopgq, i.e., the validated hazard pointer has just been
collected in the current iteration (OTopg PL), implying ishazard(LSQ, LS).

In the deallocation step (line S10), ishazard ensures that the validated snap-
shot location of the other process is not freed (10). The proof is by contradiction:
if the other process is in its hazardous code region and its snapshot pointer is in
RLS PL, then ishazard before this step implies that the current process must not
have finished its traversal. However, the current process is in its second scan loop
already (technically, the contradiction is MAXID + 1 = Lid Id¢g MAXID).

Op Pop: In the succeeding hazard pointer validation step (lines 010 /
O11), ishazard and (10) can be established, since the hazard pointer is in the
data structure, hence allocated and not concurrently retired. Immediately after
removal of the snapshot OTop from the stack in line 013, we know from (11)
that it can not be in the current process’ retired list RL. Hence, we can establish
(11) again in the retiring step (line O16), since both OTop and RL are local.

252

Op Push: The allocation step (lines U3 / U4) resets the content of a new
cell. However, it does not affect allocated locations and thus neither rely con-
dition (13) nor (14) of the other process are violated. We additionally establish
UNew | RL in this step which allows to prove disjointness of retired locations
from the data structure (11), when the new cell is added to the stack in line U9.

Op Reset: The reset of a hazard pointer entry is safe, since it happens
outside of the hazardous code region in pop.

Preservation of Linearizability. The proof of linearizability (4) distinguishes
between the four possible concrete operations. In case of the hazard pointer
operations scan and reset, each concrete step refines an abstract skip step. In
particular, the deallocation step (lines S9 / S10) does not affect the stack, as
retired locations are disjoint from the stack, according to (11).

The extended pop operation still has one linearization point in line O5 if the
stack is empty, or else in line O13 if the CAS succeeds. Rely (13) ensures that
the next reference of the snapshot cell and its value are immutable. Thus, the
successful CAS corresponds to an abstract pop and returns the correct value.
In case of a push operation, the linearization point is the successful CAS. Rely
(14) ensures that the initial value of the new cell and its next reference are
immutable. Hence, the successful CA'S corresponds to an abstract push of the
invoked value.

Preservation of Lock-Freedom. According to (5), the proof of lock-freedom
requires termination proofs for each data structure operation if environment
behavior is restricted according to U and if a step violates U. We determine the
unchanged relation as identity of the top-of-stack pointer. It is then relatively
simple to show that push and pop terminate. Since the scan operation is wait-
free, we can prove its termination without U. Termination of the first scan loop
uses well-founded induction over the term MAXID S Lid which decreases in
every iteration. Similarly, termination of the second loop follows by induction
over the number of retired locations.

7 Related Work and Comparison

Current automatic techniques do not prove linearizability or lock-freedom with-
out implicitly assuming GC, which significantly simplifies the proofs. Thus they
are not directly related to this work. We do not know of any other mechanized
verification of a lock-free algorithm with hazard pointers. [17] describes a mech-
anized proof of a lock-free queue with modification counters [3], which focuses
on linearizability. Neither an ABA-problem nor lock-freedom are discussed.

M anual Proofs. Michael [4] gives a semantic verification condition which en-
sures safe memory reclamation for a lock-free algorithm with hazard pointers.
This global condition requires the existence of a time in the past from which a
hazardous location is safely covered by a hazard pointer. Michael verifies neither
linearizability nor lock-freedom of the extended stack, but informally ensures
safety by construction. Our verification of the stack formally resembles Michael’s

253

arguments, while avoiding both global reasoning and reasoning about the past.
A key idea was to map Michael’s temporal interval in which memory-safety and
ABA-prevention are guaranteed, to a corresponding code interval (Hazardpc).

There are two formal pen and paper proofs of a Treiber-like stack with hazard
pointers. Parkinson et al. [5] apply concurrent separation logic (CSL) to verify a
variant of the original stack, focusing on heap-modular reasoning and fractional
permissions, which are used for simple properties such as (12) or (15). Their
central correctness argument states that after a hazard pointer covers a loca-
tion t, it can not be removed from the stack and then reinserted, which avoids
the ABA-problem. Restricting this property to the case that t is covered by a
validated hazard pointer better captures the essence of the reclamation scheme.
While we use mainly simple formulas to ensure ABA-avoidance for validated
hazard pointers, their proof requires rather complex auxiliary data structures.

Fu et al. [18] verify the stack in a program logic for history (HLRG). It provides
temporal operators of the past only and evaluates state assertions in the last state
of an execution. Their proof is based on rather complex global arguments about
the temporal past of finite executions, while our verification conditions are just
state/step invariants. Their implementation is not lock-free, since their HPR-
traversal does not complete when a location is covered by a hazard pointer and
the associated process fails. Michael’s traversal, however, completes independent
from environment behavior.

CSL and HLRG are based on separation logic and use abstract code anno-
tations in their verification, while we use refinement, separating concrete from
abstract code. They benefit from the implicit treatment of different heap lo-
cations by the separating conjunction operator, while we have to encode some
disjointness properties explicitly. Their verification considers memory-safety and
structural invariance of the stack only, but proves neither linearizability nor lock-
freedom. They use process-global conditions and do not exploit symmetry.

8 Summary and Discussion

This work describes the first mechanized verification of a challenging lock-free
stack. The proof intuitively applies central properties of the hazard pointers
method and takes advantage of the relation between Michael’s method and GC.
It addresses the main safety and liveness aspects, avoiding process-global reason-
ing, complex history variables and reasoning about the past. Hence, it contributes
an improved formal verification of the stack with hazard pointers.

Furthermore, we have applied our verification technique to the Michael-Scott
queue with hazard pointers [4], where each process requires two hazard pointers.
The central verification condition ishazard has been used analogously to ensure
that the hazardous snapshot locations of the queue are not concurrently freed.
The verification conditions from our previous proof under GC have been simply
reused (cf. [8]). This indicates that the results of this work can be carried over
to verify other lock-free algorithms in a similar way. A mechanized, schematic
proof of correctness for an arbitrary underlying data structure, however, is left
for future work.

254

As a further extension of our work, Maged Michael proposed that reading
and writing hazard pointers non-atomically should be safe too, even though the
scan algorithm may then read corrupted values. We confirmed this conjecture by
replacing the atomic assignments with generic read and write procedures. These
were specified to work correctly only if the environment does not concurrently
modify the shared value. Just a few minor modifications of the proofs were
necessary (cf. [8]).

Our current approach to verify linearizability suffices for algorithms that have
an internal linearization point within the code of the executing process, even
when its location depends on subsequent system behavior. This is possible, since
future states of an interval can be easily analyzed in ITL (refer to [14] for more
details). A generalization of the technique, using the results of [19], is part of
current work.

Acknowledgments. We thank Jorg Pfiahler for verifying the Michael-Scott
queue with hazard pointers, resp. Alexander Knapp and Maged Michael for
fruitful discussions.

References

1. Massalin, H., Pu, C.: A lock-free multiprocessor os kernel. Technical Report CUCS-
005-91, Columbia University (1991)

2. Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent ob-
jects. ACM Trans. on Prog. Languages and Systems 12(3), 463-492 (1990)

3. Treiber, R.K.: System programming: Coping with parallelism. Technical Report
RJ 5118, IBM Almaden Research Center (1986)

4. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 15(6), 491-504 (2004)

5. Parkinson, M., Bornat, R., O’Hearn, P.: Modular verification of a non-blocking
stack. SIGPLAN Not. 42(1), 297-302 (2007)

6. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications
and interactive proofs with KIV. In: Bibel, W., Schmitt, P. (eds.) Automated
Deduction—A Basis for Applications. Systems and Implementation Techniques,
vol. IT, pp. 13-39. Kluwer Academic Publishers, Dordrecht (1998)

7. Tofan, B., Schellhorn, G., Reif, W.: Verifying a stack with hazard pointers in tem-
poral logic. Technical Report 2011-08, Universitat Augsburg (2011),
http://opus.bibliothek.uni-augsburg.de/volltexte/2011/1717/

8. KIV. Presentation of proofs for concurrent algorithms (2011),
http://www.informatik.uni-augsburg.de/swt/projects/lock-free.html

9. Moszkowski, B.: Executing Temporal Logic Programs. Cambr. Univ. Press, Cam-
bridge (1986)

10. de Roever, W.P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M.,
Zwiers, J.: Concurrency Verification: Introduction to Compositional and Noncom-
positional Methods. Cambridge Tracts in Theoretical Computer Science, vol. 54.
Cambridge University Press, Cambridge (2001)

11. Burstall, R.M.: Program proving as hand simulation with a little induction. Infor-
mation Processing 74, 309-312 (1974)

http://opus.bibliothek.uni-augsburg.de/volltexte/2011/1717/
http://www.informatik.uni-augsburg.de/swt/projects/lock-free.html

12.

13.

14.

15.

16.

17.

18.

19.

255

Baumler, S., Balser, M., Nafz, F., Reif, W., Schellhorn, G.: Interactive verification
of concurrent systems using symbolic execution. AT Communications 23(2,3), 285—
307 (2010)

Schellhorn, G., Tofan, B., Ernst, G., Reif, W.: Interleaved programs and rely-
guarantee reasoning with ITL. In: Proc. of TIME. IEEE, CPS (to appear, 2011)
Baumler, S.; Schellhorn, G., Tofan, B., Reif, W.: Proving linearizability with tem-
poral logic. In: Formal Aspects of Computing (FAC) (2009), appeared online first
http://www.springerlink.com/content/7507m59834066h04/

Tofan, B., Baumler, S., Schellhorn, G., Reif, W.: Temporal logic verification of
lock-freedom. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS,
vol. 6120, pp. 377-396. Springer, Heidelberg (2010)

Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings of
IFIP 1983, pp. 321-332. North-Holland, Amsterdam (1983)

Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical
lock-free queue algorithm. In: de Frutos-Escrig, D., Ndnez, M. (eds.) FORTE 2004.
LNCS, vol. 3235, pp. 97-114. Springer, Heidelberg (2004)

Fu, M., Li, Y., Feng, X., Shao, Z., Zhang, Y.: Reasoning about optimistic con-
currency using a program logic for history. In: Gastin, P., Laroussinie, F. (eds.)
CONCUR 2010. LNCS, vol. 6269, pp. 388—402. Springer, Heidelberg (2010)
Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisabilty with potential
linearisation points. In: Proc. Formal Methods (to appear, 2011)

http://www.springerlink.com/content/7507m59834066h04/

