
Interleaved programs and rely-guarantee reasoning with
ITL

Gerhard Schellhorn, Bogdan Tofan, Gidon Ernst, Wolfgang Reif

Angaben zur Veröffentlichung / Publication details:

Schellhorn, Gerhard, Bogdan Tofan, Gidon Ernst, and Wolfgang Reif. 2011. “Interleaved
programs and rely-guarantee reasoning with ITL.” In 2011 Eighteenth International
Symposium on Temporal Representation and Reasoning, 12-14 September 2011, Lubeck,
Germany, edited by Carlo Combi, Martin Leucker, and Frank Wolter, 99–106. Piscataway,
NJ: IEEE. https://doi.org/10.1109/time.2011.12.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:
Deutsches Urheberrecht
Weitere Informationen finden Sie unter: / For more information see:
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

licgercopyright

https://doi.org/10.1109/time.2011.12
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

Interleaved Programs and Rely-Guarantee Reasoning with ITL

Gerhard Schellhorn, Bogdan Tofan, Gidon Ernst and Wolfgang Reif

Institute for Software and Systems Engineering
University of Augsburg

Augsburg, Germany
{schellhorn,tofan,ernst,reif}@informatik.uni-augsburg.de

Abstract—This paper presents a logic that extends basic
ITL with explicit, interleaved programs. The calculus is based
on symbolic execution, as previously described. We extend
this former work here, by integrating the logic with higher-
order logic, adding recursive procedures and rules to reason
about fairness. Further, we show how rules for rely-guarantee
reasoning can be derived and outline the application of some
features to verify concurrent programs in practice. The logic is
implemented in the interactive verification environment KIV.

Keywords-Interval Temporal Logic; Compositional Reason-
ing; Concurrency; Rely-Guarantee Reasoning

I. INTRODUCTION

Compared to sequential programs, the design and verifi-

cation of concurrent programs is more difficult. Two reasons

contribute to this: the more complex control flow caused by

scheduling and the fact that reasoning about initial and final

states only (pre- and postconditions) is no longer sufficient,

but must be extended to intermediate states.

Numerous specialized automatic methods have been de-

veloped to verify decidable system classes, e.g., model

checking, decision procedures and abstract interpretation

techniques. While these are often successful on correct

programs, they have two significant disadvantages: first, they

typically do not provide insight, why a property is correct.

Second, there is usually not much feedback when they fail. If

there is an output, it is often hard to understand, in particular

when programs are encoded as first-order specifications of

transition systems with program counters.

The alternative to specific automated proof techniques

is interactive theorem proving. A main advantage is that

expressive specification languages can be used and (read-

able) feedback for failed proof attempts can be provided.

Of course, the price is that a much higher expertise with

the tool is required. Most interactive provers are based on

variants of higher-order logic (HOL). However, embedding

concurrency into HOL requires a big effort to encode the se-

mantics of programs and of (temporal) assertions. Therefore,

the expressive temporal logic and the native programming

language described here has been directly implemented in

the theorem prover KIV [1] with the following goals:

- High-level verification of system designs with abstract

programs and abstract (algebraic) data types, as op-

posed to verification using a fixed set of data types

and a specific programming language.

- Readable proof goals with explicit programs that are

not encoded as transition systems.

- Verification of sequential programs should not become

more complicated using the extended logic than using

the wp-calculus already implemented in KIV.

- Arbitrary correctness and progress properties of pro-

grams should be expressible.

- Compositional proofs for parallel programs, in partic-

ular rely-guarantee reasoning.

The basic approach to extend ITL [2] by shared-variable

interleaved programs has already been described in [3]. It

focuses on porting the well-known principle of symbolic

execution [4] of sequential programs to parallel programs.

For lack of space, we do not repeat the rules used to

implement this principle here.

Instead, this paper focuses on several extensions of the

logic. Section II describes the embedding of the basic logic

into higher-order logic, instead of first-order logic. Global

frame assumptions are replaced with local ones. Section

III describes compositional interleaving. Section IV adds

recursive procedures. Section V outlines how forms of rely-

guarantee reasoning can be derived, by abstracting each

program with a rely-guarantee formula. Section VI describes

well-founded induction, and shows how weak fairness of

interleaving is encoded. Section VII outlines a few appli-

cations, highlighting the use of some features of the logic.

Finally, Section VIII concludes.

II. THE BASIC LOGIC

Our definition of ITL is similar to [5], but instead of

first-order logic we use higher-order logic, i.e., simply

typed lambda calculus as the base logic and we extend the

semantics to interleaved programs.

A. Signatures and Algebras

A higher-order signature SIG = (S,OP) consists of two

finite sets. A set S of sorts, with bool ∈ S, which is used

to define the set of types T as the least set that includes

all sorts and all function types t → t, where t ∈ T and

t = t1, . . . , tn. The set OP contains typed operators op : t,

99

including the usual boolean operators, e.g., true, false : bool
and . ∨ . : bool × bool → bool.

The semantics of a signature is an algebra A, which

defines a nonempty carrier set As as the semantics of every

sort s. The set Abool is always {tt, ff}. The semantics of

a function type is the set of all functions of that type. An

operator symbol op is interpreted as a total function opA.

The predefined boolean operators have standard semantics.

B. Expressions and Temporal Formulas

Temporal logic expressions are defined over a signature

SIG, dynamic (flexible) variables x, y, z ∈ X and static

variables u ∈ U . In concrete formulas, we follow the

KIV convention to use uppercase names for flexible and

lowercase names for static variables. An arbitrary variable

is written v ∈ X ∪ U . As usual in higher-order logic,

expressions e of type bool are formulas, denoted by ϕ.

e ::= u | x | x′ | x′′ | op | e(e) | e1 = e2 | λu. e | ∀ v. ϕ |
ϕ1 until ϕ2 |ϕ1; ϕ2 |ϕ∗ |Aϕ | step |ϕ1‖ϕ2 |ϕ1 ‖nfϕ2

Expressions must satisfy standard typing constraints, e.g., in

e(e) the type of e must be a function type with argument

types equal to the types of the arguments e. The parameters

of lambda expressions and quantifiers must all be different

variables. The first line defines higher-order expressions that

do not involve temporal logic. Dynamic variables can be

primed and double primed. Lambda expressions allow for

static variables only, while quantifiers allow both static and

dynamic variables. The chop operator ϕ1; ϕ2 is used as

sequential composition of programs. The star operator ϕ∗

is similar to a loop. Universal path quantification is denoted

as Aϕ, and step characterizes atomic steps of a program.

ϕ1‖ϕ2 and ϕ1 ‖nf ϕ2 denote weak-fair and arbitrary (non-

fair) interleaving of ϕ1 and ϕ2. By convention, temporal

operators bind stronger than junctors, and quantifiers bind

as far to the right as possible. Free variables free(e) are

defined as usual.

C. Semantics

Standard semantics of ITL defines an interval I =
(I(0), I(1), . . .) to be a finite or infinite sequence of states,

where a state maps variables to values. Static variables are

disallowed to change between states. To have a composi-

tional semantics for interleaving (as explained in Section

III), our semantics alternates between system and envi-

ronment transitions by adding intermediate primed states:

I = (I(0), I ′(0), I(1), I ′(1), . . .). The transitions from I(0)
to I ′(0), I(1) to I ′(1) etc. are system steps, while the steps

from I ′(0) to I(1), I ′(1) to I(2) etc. are environment steps.

The idea is similar to reactive sequences in [6].

Finite intervals with length #I = n have 2n + 1 states

and end in the unprimed state I(n). Infinite intervals have

#I = ∞. For an interval I and m ≤ n ≤ #I , I[m..n]

denotes the subinterval from I(m) to I(n) inclusive. I[n..]
is the postfix starting with I(n).

The semantics �e�(I) of an expression e of type t w.r.t.

an interval I (and an algebra A, which we leave implicit) is

an element of At. In particular, a formula ϕ evaluates to ff
or tt. In the latter case we write I |= ϕ (ϕ holds over I). A

formula is valid, written |= ϕ, if it holds for all I .

Unprimed variables are evaluated over the first state, i.e.,

�v�(I) = I(0)(v). Primed and double primed variables

x′ and x′′ are evaluated over I ′(0) and I(1) respectively,

if the interval is nonempty. For an empty interval, both

are evaluated over I(0) by convention. Operators get their

semantics from the algebra, i.e., �op�(I) = opA.

The semantics of quantifiers is defined using value se-
quences σ = (σ(0), σ′(0), . . .) for a vector v of variables.

Each σ(i) and σ′(i) is a tuple of values of the same types

as v. If some vk is a static variable, then all values σ(i)k
and σ′(i)k for that variable have to be identical. The value

sequence for x in I is written I(x), and the modified

interval I[v ← σ] maps v in each state to the corresponding

values in σ, when #σ = #I . Similarly, I[u ← a] modifies

static variables u to values a. The semantics of a tuple of

expressions e is the tuple of semantic values for each ek.

With these prerequisites, the semantics of the rest of the

expressions, except interleaving, is defined as follows:

�e(e)�(I) ≡ �e�(I)(�e�(I))

�λu.e�(I) ≡ a �→ �e�(I[u ← a])

I |= e1 = e2 iff �e1�(I) = �e2�(I)

I |= ∀ v. ϕ iff for all σ, #σ = #I : I[v ← σ] |= ϕ

I |= step iff #I = 1

I |= ϕ1 until ϕ2 iff there is n ≤ #I with I[n..] |= ϕ2

and for all m < n : I[m..] |= ϕ1

I |= Aϕ iff for all J with J(0) = I(0) : J |= ϕ

I |= ϕ1; ϕ2 iff either #I =∞ and I |= ϕ1

or there is n ≤ #I, n
=∞ with

I[0..n] |= ϕ1 and I[n..] |= ϕ2

I |= ϕ∗ iff either #I = 0 or there is a sequence

ν = (n0, n1, . . .), n0 = 0, such that

for i+ 1 < #ν : ni < ni+1 ≤ #I

and I[ni..ni+1] |= ϕ. Additionally,

when #ν <∞ : I[n#ν−1..] |= ϕ

The semantics of higher-order formulas ϕ(x) without

primed variables or temporal operators depends on I(0)
only. These formulas are called state formulas in the fol-

lowing. Higher-order formulas ϕ(x, x′) describe properties

of the first system step, while formulas ϕ(x′, x′′) describe

the first environment step respectively.

The semantics of the chop operator “; ” agrees with the

semantics of a compound. Either the first part (ϕ1) does

100

not terminate and the full interval is a run of ϕ1, or the

interval can be split into two parts: a first, finite part where

ϕ1 runs and a second, possibly infinite, part where ϕ2 runs.

Similarly, the star operator corresponds to a loop which runs

ϕ for a nondeterministic, maybe infinite number of times.

The iteration splits the interval into finitely or infinitely

many parts I[0..n1], I[n1..n2], . . ., each of which is required

to satisfy ϕ (the last part is infinite, if the split is finite, but

the interval infinite). For an empty interval ϕ∗ trivially holds

using zero iterations.
In the following, we use the following operators defined

as abbreviations:

∃ v. ϕ ≡ ¬ ∀ v. ¬ ϕ Eϕ ≡ ¬ A¬ ϕ
� ϕ ≡ true until ϕ � ϕ ≡ ¬ � ¬ ϕ
◦ ϕ ≡ step; ϕ • ϕ ≡ ¬ ◦ ¬ ϕ
last ≡ ¬ (step; true) inf ≡ � ¬ last

The empty interval consisting of just I(0) is characterized

by the formula last, infinite intervals by inf.

D. Programs
Programs are introduced as specific formulas, which influ-

ence system steps only. A program is valid over an interval

I if I is a possible run of the program. Finite intervals

correspond to terminating programs.
Deviating from [3], assignments x := e are not required to

leave all variables except x unchanged (expressed there as a

formula �x�, the global frame assumption). This requirement

turned out not to be practical, as then all variables are free

in assignments, which prevents elimination of quantifiers by

new variables, as used in the rules of sequent calculus.
Therefore, like in TLA [7], we now use an explicit vector

of disjoint, flexible variables x as a local frame assumption

around a program α. Assignments in [α]x leave all variables

unchanged that do not occur on the left hand side, but are

in x. For (parallel) assignments we therefore have:

[z := e]x ≡ z′ = e ∧ step ∧ y = y′ , where y = x \ z
Any formula ϕ may be used as a program. Frame assump-

tions propagate over chop and star to assignments

[ϕ1; ϕ2]x ≡ [ϕ1]x; [ϕ2]x and [ϕ∗]x ≡ ([ϕ]x)
∗

and similarly over interleaving. Frame assumptions around

other types of formulas are simply dropped. All the usual

constructs for sequential programs can now be defined:

[skip]x ≡ step ∧ x′ = x

[if∗ϕ then α1 else α2]x ≡ ϕ ∧ [α1]x ∨ ¬ ϕ ∧ [α2]x

[if ϕ then α1 else α2]x ≡ [if∗ϕ then (skip; α1)

else (skip; α2)]x

[while∗ ϕ do α]x ≡ (ϕ ∧ [α]x)
∗; (¬ ϕ ∧ last)

[while ϕ do α]x ≡ [while∗ ϕ do (skip; α)]x

[let z = e in α]x ≡ ∃ y. y = e ∧ [α
y
z]x,y ∧ � y′′ = y′

[choose z with ϕ ≡ (∃ y. ϕy
z ∧ [α1

y
z]x,y ∧ � y′′ = y′)

in α1 ifnone α2]x ∨ (¬ ∃ z. ϕ) ∧ [α2]x

skip is a stutter step, which leaves all variables in x
unchanged. A normal if evaluates the test in an extra step

(indicated by leading skips in the then and else part). if∗ is

used to model instructions such as compare-and-set (CAS),

which execute a test and an assignment atomically.

The definition of let introduces new flexible variables

y as local variables for z. These must be disjoint from

the variables used in e, x and α. The variables in α are

renamed to these new variables, written α
y
z . The �-formula

indicates that the local variables y are not modified by

environment steps. The choose is a nondeterministic let

(taken from ASMs [8]). It chooses some values that satisfy

ϕ, binds them to y and executes α1 with z renamed to y.

If there is no possible choice of values, e.g., if ϕ is false,

then α2 is executed. Note that the semantics of programs

is well-defined without any restrictions on the expressions

and formulas used in programs. In practice, however, tests

and assignments are state expressions (such programs are

guaranteed to have a nonempty set of runs from any initial

state, while others could be equivalent to false).

III. COMPOSITIONAL INTERLEAVING

One of the crucial design criteria for our logic was that

interleaving (and operators such as chop and star) must be

compositional, i.e., the following rule of sequent calculus is

sound1.

[α1]x � ϕ1 [α2]x � ϕ2 (ϕ1‖ϕ2) � ψ
[α1 ‖α2]x � ψ (1)

Proving that an interleaved program [α1 ‖α2]x satisfies a

property ψ then can be done by proving that the two

individual programs satisfy properties ϕ1 and ϕ2 and then

abstracting the programs to their properties to prove ψ.

Section V shows how this feature can be exploited, by

setting ϕ1 and ϕ2 to suitable rely-guarantee properties.

Compositionality holds, when the semantics of interleaving

is definable by interleaving individual intervals:

I |= ϕ1 ‖ϕ2 iff there are I1, I2 :

I1 |= ϕ1 and I2 |= ϕ2 and I ∈ I1 ‖ I2
This definition of interleaving is possible only for a seman-

tics of programs that takes its environment into account.

Therefore, we have chosen a semantics with alternating

system and environment steps.

In our setting, parallel programs communicate via shared

variables. For synchronization we use an operator await ϕ

1A sequent ϕ1, ϕ2, . . . � ψ1, ψ2, . . . abbreviates the formula
(ϕ1 ∧ ϕ2 ∧ . . .) → (ψ1 ∨ ψ2 ∨ . . .). A rule is sound, if valid
premises above the line imply a valid conclusion. Rules are applied
bottom-up reducing goals to simpler goals.

101

that blocks the executing process as long as condition ϕ is

not satisfied. A blocked process repeatedly executes stutter

steps that additionally fulfill the formula blocked. It is

defined in terms of a special boolean variable Blk, which is

implicitly contained in all frame assumptions and therefore

not changed by assignments and skip. In contrast, a blocked

step is specified to toggle Blk.

blocked ≡ Blk′
= Blk

[await ϕ]x ≡ [while∗ ¬ ϕ do Blk := ¬ Blk]x

We now define weak fair I1 ‖ I2 and non-fair I1 ‖nf I2
interleaving of two intervals. In comparison to [3] (that is

based on SOS rules) we prefer a slightly different approach

here that fits better to the axioms from Section VI.

To characterize fairness, we introduce explicitly scheduled
interleavings I1 ⊕ I2. They are sets of pairs (I, s) of the

resulting intervals I and schedules s = (s(0), s(1), . . .).
Each s(i) is either 1 or 2, indicating which interval was

scheduled for execution. We denote the postfix of s starting

with s(n) as s[n..]. A schedule is fair if it is either finite, or

infinitely often changes the selected process. Thus, we have:

I1 ‖ I2 ≡ {I : there is a fair s with (I, s) ∈ I1 ⊕ I2}
I1 ‖nf I2 ≡ {I : there is s with (I, s) ∈ I1 ⊕ I2}

The set I1⊕I2 is defined recursively as the union of 6 cases.

We describe the first three, where I1 is scheduled, the other

three cases are symmetric.

1) The first process terminates in the current state, i.e.,

I1 is empty. If I1(0) = I2(0), then {(I2, ())} with an

empty schedule is returned. Otherwise interleaving is

not possible and the empty set is returned.

2) The first step of process 1 is not blocked

(I1 |= ¬ blocked). Then its first system transition is

executed, and the system continues with interleaving

the remaining process with the second. The set of all

pairs (I, s) is returned, where I(0) = I1(0), I
′(0) =

I ′1(0), s(0) = 1 and (I[1..], s[1..]) ∈ I1[1..] ⊕ I2.

3) The first process is blocked in the current state. If I2
has terminated, then the result is as in the first case,

but with I1 and I2 exchanged. Otherwise, I1(0) =
I2(0) must hold, to have any results, and a transition

of the second process is taken, even though the first

is scheduled. The resulting pairs (I, s) have s(0) = 1,

I(0) = I2(0), I
′(0) = I ′2(0), and (I[1..], s[1..]) must be

in I1[1..] ⊕ I2[1..]. Both transitions are consumed and

the overall transition is blocked iff the first transition

of I2 is blocked too.

Note that the schedule ends as soon as one interval

is finished, it may be shorter than the resulting in-

terleaved interval. As an example for interleaving con-

sider two one-step intervals I1 = (I1(0), I
′
1(0), I1(1)) and

I2 = (I2(0), I
′
2(0), I2(1)) with unblocked steps and a

schedule s = (1, 2). The interleaved result then is I =

(I1(0), I
′
1(0), I2(0), I

′
2(0), I1(1)), when I2(1) = I1(1). Oth-

erwise interleaving is not possible. The local environment

step from I ′1(0) to I1(1) is mapped to the sequence

(I ′1(0), I2(0), I
′
2(0), I1(1)) in the result, corresponding to the

intuition that the environment steps of one process consist

of alternating sequences of global environment steps and

steps of the other process. Environment assumptions for one

process (cf. rely conditions in Section V) must therefore be

satisfied by such sequences.

IV. PROCEDURES

To be practically useful, a programming language should

have recursive procedures. Many semantic encodings of

programming languages either do not consider procedures

at all, or they study procedures without parameters only. A

common way of introducing procedures when defining the

semantics of programming languages is to have local proce-

dure declarations and environments which store them. Our

logic instead prefers globally defined procedures. This has

the advantage that it becomes possible to specify procedures

using axioms in addition to procedure implementations. We

will exploit the possibility to specify procedures in Section

VII. We do not use procedures that compute on global

variables, since these do not allow to determine the modified

variables. Instead, all variables a procedure computes on

must be given explicitly as parameters.

Technically, the signature SIG = (S,OP, Proc) is ex-

tended with typed procedure names p : t1; t2 ∈ Proc. The

first vector of types indicates the types of input (or call

by value) parameters, the second vector indicates the types

of input/output (or call by reference) parameters. The set

of formulas (boolean expressions) is extended to contain

procedure calls p(e;x), where e are expressions of types

t1 and x are pairwise disjoint variables of types t2.

The semantics pA of a procedure p : t1; t2 is part of the

algebra A and consists of a set of pairs (a, σ). Each pair

describes a potential run of the procedure: a is a vector

of initial values for the input parameters from the carrier

sets of types t1. σ is a value sequence that exhibits, how

the reference parameters change in each step. Note that

this semantics implies that input parameters work like local

variables. Changes to these parameters while the procedure

is executing are not globally visible. The semantics of a

procedure call is

I |= p(e;x) iff (�e�(I), I(x)) ∈ pA

A procedure call within a frame assumption abbreviates

[p(e; z)]x ≡ p(e; z) ∧ � y = y′ , where y = x \ z
Specifications may now contain axioms for procedures. A

typical contract for a procedure with pre- and postcondition

ϕ, ψ is:

ϕ ∧ p(x; y) ∧ (� y′′ = y′) → � (last ∧ ψ)

102

It states that starting the procedure p in a state where ϕ
holds and assuming that the environment never changes the

reference parameters y, the procedure will always reach a

final state, where ψ holds. Procedures can also be used

as placeholders for arbitrary formulas ϕ by specifying

p(;x) ↔ ϕ using x = free(ϕ) as reference parameters.

The implementation of procedures is specified by (possi-

bly mutually recursive) procedure declarations of the form

p(x; y). α. Two requirements for the body α guarantee

that the semantics is correct. First, α may only assign to

its parameters x, y and local variables introduced by let
and choose. Second, α must be a regular program: such

a program uses state formulas only in its expressions (tests,

parameters of procedures, right hand sides of assignments).

Regular programs α can be proved to be monotonic in

their calls: for two procedures p and q with the same argu-

ment types if pA ⊆ qA, then {I : I |= α} ⊆ {I : I |= α′}
where α′ replaces all calls to p in α with calls to q. There-

fore, the semantics of recursive procedure declarations can

be defined according to Knaster-Tarski’s standard fixpoint

theorem. In particular, a declaration p(x; y).α yields the

fixpoint equation

pA = {(I(0)(x), I(y)) : I |= [let z = x in αz
x]y}

For deduction, the unfolding axiom

p(e; y) ↔ ∃ z. z = e ∧ [αz
x]y,z ∧ � z′ = z′′

is implied, which directly expands the let. New local vari-

ables z, which can not be changed by the environment, are

used for the value parameters x (initialized with e). Changes

to the reference parameters are globally visible.

V. RELY-GUARANTEE PROOFS

Rely-guarantee rules [9] define suitable abstractions for

individual system components to avoid reasoning about

their interleaved execution. In our setting, these abstractions

typically are

p(y) � R(y ′, y ′′) +−→ G(y , y ′)

where a procedure p is abstracted by a temporal formula

R
+−→ G. The state variables y and the frame assumption

are usually omitted. The sustains operator
+−→ ensures that

the guarantee conditions G are maintained by p’s steps, as

long as previous environment transitions have preserved its

rely conditions R. It is defined as2

R
+−→ G ≡ ¬ (Runtil¬ G)

2In previous work, we used the equivalent, but more complex formula
G unless (G ∧ ¬ R). Formula G∗; (G ∧ ¬ R) is equivalent too.

For instance, the verification of p1 ‖nf p2 can be decom-

posed with the following rely-guarantee rule, for i = 1, 2.

� reflexive(Gi) � transitive(Ri) Gi � R3−i

pi � Ri
+−→ Gi R � Ri Gi � G

p1 ‖nf p2, � R � � G

(2)

The conclusion of this rule states that each step of an

interleaved system execution preserves a guarantee G at all

times in an environment R. This is because a component’s

rely Ri is preserved by both the system’s environment

and each step of the other component. Hence, the first

premise ensures that each system step of pi preserves its

guarantee Gi, thus G, at all times. Note that according to

the definition of interleaving in Section III, an environment

step of a procedure can consist of both steps of the global

environment and steps of the other program. Therefore,

guarantee conditions must imply the other rely.

The calculus permits to formally derive rule (2) as fol-

lows: first, components p1 and p2 are abstracted by the

corresponding sustains formula using (1). Then the proof

derives a contradiction by induction over the number of steps

until G is violated and symbolic execution. Abstraction is

used, since an arbitrary component procedure pi can not be

executed. The sustains operator, however, can be executed

according to the following unwinding rule.

(R
+−→ G) ↔ G ∧ (R → • (R +−→ G))

A symbolic execution step of
+−→ proves that G is main-

tained by the first program transition and by the rest of the

interval if the previous environment transition satisfies R.

We note that rely-guarantee rules for systems with an un-

bounded number of interleaved components can be derived

as well. In practice, these rules typically include further

predicates, e.g., for invariants or pre- postconditions. We

have also derived local rely-guarantee rules, where specifica-

tions consider a small number of representative components

only, instead of using an arbitrary number of local states, as

in the original approach [9]. Such reductions are useful when

verifying concurrent data structures, where processes exhibit

similar behaviors. Rely-guarantee reasoning also serves as

a base for the decomposition of global correctness and

progress properties of concurrent systems (cf. Section VII).

Furthermore, we have encoded the complete rely-

guarantee proof system from Xu et al. [10]. Informally, their

rely-guarantee specifications p sat (pre, rely , guar , post)
ensure that starting from a state that satisfies precondition

pre in an environment that always fulfills rely , program

p satisfies the guarantee guar in each step and establishes

postcondition post upon termination. A translation of these

specifications in our logic is:

p, pre � rely∗ +−→ (guar ∧ (last → post))

103

By using the transitive closure rely∗, we can summarize

consecutive rely (environment) transitions. This is neces-

sary to weaken our requirement of transitive relies, since

environment steps abstract from the number of transitions

of other processes in our setting. In contrast, executions in

[10] record environment transitions at the level of atomic

actions and therefore do not have to be transitive.

To prove that no deadlocks occur, Xu uses an addi-

tional run-predicate, which characterizes unblocked pro-

gram states. A similar encoding can be defined in our setting,

by introducing an additional predicate run and adding

run → ¬ blocked to the guarantee conditions. Moreover,

we can express total correctness of programs w.r.t. a rely-

guarantee specification simply as

p, pre � (rely∗ +−→ guar) ∧ � (last ∧ post)

VI. INDUCTION AND WEAK FAIRNESS

In higher-order logic, proving a formula ϕ(N) by in-

duction over a well-founded order ≺ gives an induction

hypothesis ∀ M. M ≺ N → ϕ(M), which must be shown

to imply ϕ(N). For temporal reasoning this is not sufficient,

as this induction hypothesis would hold only for the current
interval, while de facto it holds for all intervals.

In [3] we have put a � in front of the induction hypothesis,

which gives an induction hypothesis for all suffixes of

the current interval. However, when recursive procedures

are used, it is sometimes necessary to have the induction

hypothesis for an infix of the current interval, which is

determined by a recursive call. Thus, the following stronger

rule is used for induction over a term e:

e = n, Ind-Hyp(n) � ϕ
� ϕ (3)

where Ind-Hyp(n) ≡ A∀ v.(e ≺ n → ϕ), n is a new static

variable, and v = free(ϕ) ∪ free(e).

The validity of the induction hypothesis depends on the

static variable n only, so it is preserved unchanged when

stepping through an interval by symbolic execution3. The

induction hypothesis is applied like a global lemma e ≺
n → ϕ.

To reason about temporal formulas, in addition to well-

founded induction most calculi use additional induction rules

to reason about the passing of time (here: the length of

intervals). Our calculus prefers to reduce such principles

to standard well-founded induction whenever possible. In

particular, the following equivalence is used:

� ϕ ↔ ∃ N. N = N ′′ + 1 until ϕ (4)

3It would be sufficient to use the weaker x� operator instead of A, where
“for all subintervals” is defined as x�ϕ ≡ true; ϕ; true. However, x� has
other uses (see [11]) where it should be symbolically executed, while the
induction hypothesis should not.

N is a new flexible variable for natural numbers, that is

decremented until a state is reached, where ϕ holds. Note

that N = N ′′ + 1 is equivalent to N > 0 ∧ N ′′ = N−1.

When proving a property � ϕ, this equivalence is used

to get a proof by contradiction, by assuming that there is

a number of steps N , after which ϕ is false. The proof is

then by induction over the initial value of N . Proving that

a program satisfies a rely-guarantee property R
+−→ G first

introduces a new boolean variable B, and then applies (4)

on � B.

(R
+−→ G) ↔ ∀ B. � B → ((R ∧ ¬ B)

+−→ G)

The resulting counter N counts the number of steps for

which the guarantee must be upheld, provided the rely is

true until then.

Both induction principles are special cases of induction

over the length of a prefix of the current interval (called

prefix induction). Such an induction is possible for safety

formulas ϕ, that are valid over a full interval I , when

every prefix of I can be extended to an interval where ϕ
holds. All higher-order formulas, always-, until- formulas

and all regular sequential programs without local variables

and procedure calls fall into the class of safety formulas.

More details on prefix induction and the semantics of the

necessary prefix operator is given in [12].

Reasoning about an interleaved program α1 ‖α2 by sym-

bolic execution is indifferent to whether the interleaving is

weak-fair or nonfair. Either the first step of α1 is executed,

leaving a restprogram α′1 ‖α2, or the first step of α2 is

executed, leaving α1 ‖α′2.

However, symbolic execution alone is not sufficient to

deal with weak fairness. We need a way to ensure, that

in a fair interleaving, eventually each of the programs will

execute a step. To make this “eventually” explicit, we define

an extended interleaving operator L1: α1 ‖L2: α2, where

L1 and L2 are two formulas (“labels”), which enforce

scheduling. Informally, whenever label L1 is true, the next

step of the interleaving must be one of α1. If this step is

blocked, then a step of α2 is executed as well. If α1 is in its

last state then L1 has no effect. α1 ‖α2 is thus considered

as an abbreviation for both labels being false. The definition

of Section III is adapted to remove (I, s) from I1⊕I2 if for

some n < #s I[n...] |= L1, but s(n) = 2, or if I[n...] |= L2

and s(n) = 1. No interleaving is possible when both L1 and

L2 are true in the same state.

Using scheduling labels is inspired by the auxiliary vari-

ables used in [13] to encode fairness. However, our calculus

does not pre-encode fairness (by immediately transforming

the program), but introduces them on the fly by the rule

L1: α1 ‖L2: α2 ↔ ∃ B. � B ∧ ((L1∨B): α1 ‖L2: α2)

and a symmetric rule for α2. Typically, L1 and L2 are both

104

false, so the rule simplifies to:

α1 ‖α2 ↔ ∃ B. � B ∧ (B: α1 ‖α2) (5)

Informally, the formula asserts that there exists a number of

steps, after which the new boolean variable B becomes true,

thus enforcing a step of α1.

A simple example demonstrates the interplay between the

given rules.

�X ′ = X ′′, X = 0, [X := 1 ‖ skip∗]X � � X = 1

would be proved by applying (5), then (4) on � B, which

introduces the variable N . Induction (3) over N then yields

N = N ′′ + 1 until B, n = N, Ind-Hyp(n),
�X ′′ = X ′, X = 0, [B: X := 1 ‖ skip∗]X � � X = 1

Executing a step now either makes B true, then the left

process is scheduled and X=1 now, or if B remains false,

then the resulting sequent is almost identical, but N has been

decremented (n = N+1) and induction can be applied.

Interestingly, nonfair interleaving satisfies almost the same

rule. Either α1 will be scheduled after some steps, or the run

consists of an infinite sequence of unblocked α2 steps:

α1 ‖nf α2 ↔ (∃ B. � B ∧ (B: α1 ‖nf α2))

∨ α2 ∧ inf ∧ � ¬ blocked ∧ E ∃ x. α1

The requirement E ∃ x. α1 where x = free(α1) ensures that

α1 is satisfied by at least one interval I1 that can be used

to derive I2 ∈ (I1 ‖nf I2). Compared to fair interleaving,

this rule introduces only a simple additional case in proofs.

It has been used in the verification of lock-freedom, where

unfair scheduling of processes must be considered.

VII. APPLICATIONS

Based on rely-guarantee reasoning, we have derived

decomposition theorems for linearizability [14] and lock-

freedom [15]. This section outlines them and their applica-

tion on some case studies from the literature. Further details

are available online [16].

Decomposition of Linearizability and Lock-Freedom
Linearizable procedures appear to take effect instantly at

one step (the linearization point) between invocation and re-

sponse. We prove linearizability by locating the linearization

point of a procedure cp during its execution in a refinement

proof, using an abstraction predicate Abs(cs, as), which re-

lates valid concrete states cs to corresponding abstract states

as . Refinement between a concrete and abstract procedure

cp resp. ap can then be expressed as

cp(cs) � ∃ as. ap(as) ∧ � (Abs(cs, as) ∧ Abs(cs ′, as ′))

To prove linearizability, ap is instantiated with skip steps

skip∗ that model concrete non-linearization steps, and an

atomic step alin(as) for the linearization point. Moreover,

rely conditions R that were established by rely-guarantee

reasoning may be assumed (cf. [12] for details). When Abs
is a partial function Absf , the existential quantifier for as
can be dropped, resulting in the proof obligation

cp(cs),� (R ∧ Absf (cs) = as ∧ Absf (cs ′) = as ′) (6)

� skip∗; alin(as); skip∗

The right hand side becomes a safety formula and prefix

induction can be applied. Finding an induction principle that

also covers existentially quantified (safety) formulas is an

open issue.
Lock-free implementations avoid major problems asso-

ciated with locks, such as convoying, deadlocks, livelocks

or priority inversion. Lock-freedom guarantees termination

of some operation in a finite number of steps, even when

individual operations are arbitrarily delayed or fail. However,

individual operations might starve under interference.
We use an additional, reflexive and transitive relation U to

describe interference freedom (“unchanged”). To prove lock-

freedom, each system procedure must terminate without U -

interference and also after violating predicate U in a step

(cf. [17] for details):

cp,� R � � (� U (cs ′, cs ′′) ∨ ¬ U (cs , cs ′) → � last)

The temporal framework permits to derive that this local

proof obligation implies lock-freedom of an interleaved

system. In contrast, [18] defines a new logic to reason about

lock-freedom, outlining their decomposition on paper only.
Case Studies Proof obligation (6) suffices to verify lin-

earizability of algorithms that have an internal linearization

point (within the code of the executing process), even when

its location depends on subsequent system behavior. This is

possible, since future states of an interval can be easily ana-

lyzed in temporal logic. One example of such a linearization

point can be found in Michael and Scott’s lock-free queue

algorithm [19]. In case of a dequeue when the queue is

empty, the reading of the shared head-of-queue pointer is a

linearization point if the read copy equals the shared head-of-

queue in a future state. While other verification approaches,

e.g., [20], require additional techniques in such cases, one

can decide whether to linearize in the current state of an

execution, using the temporal next operator.
Our verification of a lock-free stack with hazard pointers

applies abstraction on sequential programs. In programming

environments without support for garbage collection, hazard

pointers [21] enable safe memory reclamation of objects that

are removed from a lock-free data structure. Each process

is associated with a fixed number of shared pointers (so

called hazard pointers), to signal contending processes not

to deallocate a location.
Originally, atomic access on hazard pointers was assumed.

Our work confirms that non-atomic access to hazard pointers

suffices too, even though a process might then read cor-

rupted hazard pointer entries. To generically specify non-

atomic read and write operations, we exploit that we can

105

specify procedures. The non-atomic read operation na read
is specified as follows.

na read(Lv ,Sv) �
◦ � last ∧ � (¬ blocked ∧ Sv = Sv ′)

∧ (� (◦ ¬ last → Sv ′ = Sv ′′)
→ � (◦ last → Lv ′ = Sv ′))

Procedure na read terminates after at least one step, it does

not block and never changes the shared value Sv to be

read; if Sv is never changed by the environment, the local

copy Lv finally equals Sv . Using such generic specifications,

we can abstract from implementation details of non-atomic

access to shared variables. The proofs apply abstraction to

replace each generic procedure call with its specification,

thus enabling symbolic execution.

VIII. CONCLUSION

This paper contributes some new and improved concepts

and their semantic foundation – embedding into higher-order

logic, procedures, rules for fairness and induction – to the

basic approach based on symbolic execution of programs

and formulas we have defined earlier. The calculus has

been successfully used to verify a number of case studies.

The current focus was on verification of linearizability and

lock-freedom of lock-free algorithms, where we managed to

verify some significant examples that had no mechanized

proof before. Proof complexity has been quite manageable.

The main difficulty of concurrency proofs is finding correct
theorems with correct invariants and rely conditions.

There are still some open problems. Finding good proof

rules that allow elegant verification of refinement “modulo

stuttering” (as in TLA, but for arbitrary programs, not just

transition systems) is still an open issue that is of great

practical relevance. From the theoretical point of view, our

calculus contains two complete fragments: Moszkowski’s

ITL axioms [22] and the rely-guarantee calculus from [10].

Completeness in general, however, is still an open issue.

REFERENCES

[1] W. Reif, G. Schellhorn, K. Stenzel, and M. Balser, “Structured
specifications and interactive proofs with KIV,” in Automated
Deduction—A Basis for Appl., W. Bibel and P. Schmitt, Eds.
Dordrecht: Kluwer, vol. II, pp. 13 – 39, 1998.

[2] B. Moszkowski, “A temporal logic for multilevel reasoning
about hardware,” IEEE, vol. 18, no. 2, pp. 10–19, 1985.

[3] S. Bäumler, M. Balser, F. Nafz, W. Reif, and G. Schellhorn,
“Interactive verification of concurrent systems using symbolic
execution,” AI Comm., vol. 23, no. (2,3), pp. 285–307, 2010.

[4] R. M. Burstall, “Program proving as hand simulation with a
little induction,” Information Processing, pp. 309–312, 1974.

[5] A. Cau, B. Moszkowski, and H. Zedan, ITL – Interval
Temporal Logic, Software Techn. Research Laboratory, SER-
Centre, De Montfort University, The Gateway, Leicester,
2002, www.cms.dmu.ac.uk/ cau/itlhomepage.

[6] W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman,
Y. Lakhnech, M. Poel, and J. Zwiers, Concurrency Verifi-
cation: Introduction to Compositional and Noncompositional
Methods, ser. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2001, no. 54.

[7] L. Lamport, “The temporal logic of actions,” ACM Trans.
Program. Lang. Syst., vol. 16, no. 3, pp. 872–923, 1994.

[8] E. Börger and R. F. Stärk, Abstract State Machines—
A Method for High-Level System Design and Analysis.
Springer-Verlag, 2003.

[9] C. B. Jones, “Specification and design of (parallel) programs,”
in Proc. of IFIP’83. North-Holland, pp. 321–332, 1983.

[10] Q. Xu, W. de Roever, and J. He, “The rely-guarantee method
for verifying shared variable concurrent programs,” FACJ,
vol. 9, no. 2, pp. 149–174, 1997.

[11] F. Ortmeier and G. Schellhorn, “Formal fault tree analysis -
practical experiences,” in Proceedings of AVoCS 2006, 2006.

[12] S. Bäumler, G. Schellhorn, B. Tofan, and W. Reif,
“Proving linearizability with temporal logic,” Formal As-
pects of Computing (FAC), 2009, appeared online first,
http://www.springerlink.com/content/7507m59834066h04/.

[13] K. Apt and E.-R. Olderog, Verification of Sequential and
Concurrent Programs. Springer-Verlag, 1991.

[14] M. Herlihy and J. Wing, “Linearizability: A correctness
condition for concurrent objects,” ACM Trans. on Prog.
Languages and Systems, vol. 12, no. 3, pp. 463–492, 1990.

[15] H. Massalin and C. Pu, “A lock-free multiprocessor os ker-
nel,” Columbia University, Tech. Rep. CUCS-005-91, 1991.

[16] “Presentation of KIV-proofs for concurrent algorithms,” 2011,
http://www.informatik.uni-augsburg.de/
swt/projects/lock-free.html.

[17] B. Tofan, S. Bäumler, G. Schellhorn, and W. Reif, “Temporal
logic verification of lock-freedom,” in In Proc. of MPC 2010,
ser. Springer LNCS 6120, 2010, pp. 377–396.

[18] A. Gotsman, B. Cook, M. Parkinson, and V. Vafeiadis,
“Proving that nonblocking algorithms don’t block,” in POPL.
ACM, 2009, pp. 16–28.

[19] M. M. Michael and M. L. Scott, “Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms,” in
Proc. 15th ACM Symp. on Principles of Distributed Comput-
ing, 1996, pp. 267–275.

[20] S. Doherty, L. Groves, V. Luchangco, and M. Moir, “Formal
verification of a practical lock-free queue algorithm,” in
FORTE 2004, ser. LNCS, vol. 3235, 2004, pp. 97–114.

[21] M. M. Michael, “Hazard pointers: Safe memory reclamation
for lock-free objects,” IEEE Trans. Parallel Distrib. Syst.,
vol. 15, no. 6, pp. 491–504, 2004.

[22] B. C. Moszkowski, “An automata-theoretic completeness
proof for interval temporal logic,” in Proc. of ICALP. Lon-
don, UK: Springer-Verlag, pp. 223–234, 2000.

106

