Modeling Quantitative Aspects of Concurrent
Systems Using Weighted Petri Net Transducers

Robert Lorenz®™?

Department of Computer Science, University of Augsburg, Augsburg, Germany
robert.lorenz@informatik.uni-augsburg.de

Abstract. In this paper we present a basic framework for weighted Petri
net transducers (PNTs) for the weighted translation of partial languages
(consisting of partial words) as a natural generalisation of weighted finite
state transducers (FSTs). Weights may represent cost, time consump-
tion, reward, reliability or probability of a transition execution, i.e. PNT's
may serve as a general model to consider such quantitative aspects of pro-
cess calculi represented by arbitrary partial words.

Concerning weights, we use the algebraic structure of concurrent
semirings which is based on bisemirings and induces a natural order
on its elements. Using the operations of this algebra, the weight of gen-
eral partial words can be defined in a natural way and turns out to be
compositional.

As desirable, complex PNTs can be composed from simple PNTs
through composition operations like union, product, closure, parallel
product and also language composition, lifting standard composition
operations on FSTs. Composed PNTs yield a compositional computa-
tion of weights, except for the case of language composition.

For the quick construction of PNT's and evaluation of PNT-algorithms
we developed the tool PNTe°t, PNTL° is a python library based on
the framework SNAKES allowing for the modular construction of PNT's
through composition operations, the visualization of PNT's, and the sim-
ulation of constructed PNTs. We present basic simulation algorithms
and use PNTool to show illustrating examples.

Keywords: Petri net - Petri net transducer - Weighted transducer -
Labelled partial order - Weighted labelled partial order - Partial lan-
guage - Semiring - Bisemiring - Concurrent semiring - Cleanness

1 Introduction

In [25] we presented a basic framework for weighted Petri Net Transducers
(PNTs). A PNT is essentially a place/transition net (PT-net) having transi-
tions equipped with input symbols, output symbols and weights. An labelled
partial order (LPO)! over the set of input symbols (input-LPO) is translated

' Also called partial words [14] or pomsets [29].

into an LPO over the set of output symbols (output-LPO) via weighted LPO-
runs (partially ordered runs) of the net, where weights are coming from an
algebraic bisemiring structure. These weights may represent cost, time consump-
tion, reward, reliability or probability of a transition execution. The underlying
bisemiring structure provides binary operations of addition, sequential multi-
plication and parallel multiplication of weights. The sequential multiplication
is used for determining the weight of transitions occurring sequentially and the
parallel multiplication for determining the weight of transitions occurring in par-
allel. Each translation of an input-LPO into an output-LPO is assigned a weight
which is obtained by the sum of the weights of the LPO-runs of the net relat-
ing the input-LPO to the output-LPO. Thus, PNTs define (in a natural way) a
weighted translation between partial languages, consisting of general LPOs, over
different alphabets and may serve as a general model to consider quantitative
aspects of process calculi represented by such LPOs.

We use a special bisemiring structure called concurrent semirings [16]* to
represent weights. Concurrent semirings are a bisemiring structure with some
additional laws interrelating its operations. They where already used by Gischer
[13], who showed that the set of all extension closed sets of LPOs can be equipped
with algebraic operations yielding a concurrent semiring. In particular, concur-
rent semirings have an idempotent addition inducing a natural order on the set
of weights. This feature allows to define the weight of a general LPO in a natural
way as the supremum of all weights of its sequential parallel extensions (w.r.t.
this order). As a fundamental result we showed in [25] that concurrent semirings
are the least restrictive idempotent bisemiring structure such that LPOs with
less dependencies have bigger weights. Moreover, this weight definition is com-
positional, i.e. the weight of (sequential or parallel) composed LPOs equals the
corresponding bisemiring composition of the weights of its components.

In practical applications, it is important to be able to create complex trans-
ducers through composition of simple ones. To this end in [25] we introduced
cleanness of PN'T's and composition operations of union, product, closure, par-
allel product and language composition on clean PNTs. Cleanness ensures that
runs always terminate properly and is shown to be preserved by the above oper-
ations. Moreover, we showed that the presented composition operations are com-
patible with suitable notions of equivalent PNTs.

The presented framework mainly aims at an application in the field of seman-
tic dialogue modelling as described in [40]. In [22,23] we applied PNTs to small
case studies in this area, in particular we proposed the translation between utter-
ances (represented by words) and meanings (represented by general LPOs) using
PNTs. Other application areas of PN'Ts are, for example, the specification of
man-machine-dialogues or the coordination of intelligent machines (for more
details see the related work section).

2 In [16] concurrent semirings are applied in a trace model of programme semantics.
Another axiomatic approach to partial order semantics using algebraic structures
extending semirings by an additional operation of concurrent composition is [5] using
the notion of trioids.

In order to be able to apply PNTs to practical relevant problems, it is nec-
essary to develop efficient algorithms for the composition of PNTs, the analysis
and optimization of PNTs, the computation of weights of weighted LPOs and
the translation of partial words. As a basis for the implementation and evalua-
tion of such algorithms, we are developing the tool PN'T2°t. PN'T2° is a python
library whose basic functionalities were developed in the bachelor thesis [32] and
presented in [18,24]. Actually, it supports the modular construction of PNTs
through composition operations, an export of PNTs in all standard picture for-
mats, in TikZ-format and in an XML-format based on the standard PNML
format. All figures in this paper showing PNTs were generated with PNT2°F.

In [31] algorithms for the computation of weights of weighted LPOs and for
the translation of partial words were developed. At present we are integrating
these algorithms in PN'TS°Y in an optimized form.

The paper gives an overview of our research on PNTS. It summarizes and
integrates the main results and developments from [18,24,25] extended by sev-
eral examples and remarks and by central algorithms from [31]. It is organised
as follows: In section 2 we recall basic definitions, including LPOs, Petri nets
and concurrent semirings. In section 3 we introduce weighted LPOs and present
fundamental relationships between the weight of LPOs and the algebraic weight
structure of concurrent semirings. Then (section 4) we give syntax, semantics,
equivalence and composition operations of PNTs. In section 5 we propose algo-
rithms for the computation of LPO weights and the translation of partial word
by PNTs and in section 6 we give a brief descrition of PNTS°Y. Finally, we sum-
marize related word in section 7 and give an detailed outlook on future work in
section 8.

2 Basic Definitions and Notations

In this section we recall basic definitions and mathematical notations.

2.1 Mathematical Preliminaries

By Ny we denote the set of non-negative integers, by N the set of positive integers.
Given a finite set X, the symbol | X| denotes the cardinality of X.

The set, of all multisets over a set X is the set Ng* of all functions m : X —
Np. Addition + on multisets is defined by (m + m')(z) = m(z) + m/(x). The
relation < between multisets is defined through m < m’ < Im”(m+m/ = m’).
We write x € m if m(x) > 0. A set A C X is identified with the multiset m 4
satisfying ma(z) = 1 <= z € AAma(z) = 0 < = € A. A multiset m
satisfying m(a) > 0 for exactly one element a we call singleton multiset and
denote it by m(a)a.

Given a binary relation R C X x Y and a binary relation S C Y x Z for
sets X,Y, Z, their composition is defined by Ro S = {(z,2) | Iy € Y((z,y) €
RA(y,2) € S)} € X x Z. For X’ C X and Y’ C Y the restriction of R onto
X’ x Y is denoted by R|x:xy-. For a binary relation R C X x X over a set X,

we denote R! = R and R" = Ro R"! for n > 2. The symbol R* denotes the
transitive closure | J, .y R" of R.

Let A be a finite set of symbols. A (linear) word over A is a finite sequence
of symbols from A. For a word w its length |w| is defined as the number of its
symbols. The symbol ¢ denotes the empty word satisfying |¢| = 0. The empty
word is the neutral element w.r.t. concatenation of words: we = ew = w. By A*
we denote the set of all words over A, including the empty word. A language
over A is a (possibly infinite) subset of A*.

A step over A is a multiset over A. A step sequence or step-wise linear word
over A is an element of (N{')* and a step language over A is a (possibly infinite)
subset of (NZ')*.

A directed graph is a pair G = (V, —), where V is a finite sel of nodes and
—C V x V is a binary relation over V, called the set of edges. The preset of
a node v € V is the set *v = {u | u — v}. The postset of a node v € V is
the set v* = {u | v — u}. A path is a sequence of (not necessarily distinct)
nodes vy ...v, (n > 1) such that v; — v;41 fori=1,...,n—1. A path vy ... v,
is a cycle, if v1 = v,. A directed graph is called acyclic, if it has no cycles.
An acyclic directed graph G’ = (V,—=') is an extension of an acyclic directed
graph G = (V,—) if -=C—'. In this case we write G’ < G. An acyclic directed
graph (V',—) is a prefix of an acyclic directed graph (V,—) if V/ C V and
(WeVHIAN(v—-v)=(veV).

An irreflerive partial order over a set V is a binary relation <C V x V which
satisfies Vo € V(v £ v) (irreflexivity) and <=<7 (transitivity). We identify a
finite irreflexive partial order < over V with the directed graph (V,<). Two
nodes v,v" € V of an irreflexive partial order po = (V, <) are called independent
ifv £ v and v’ £ v. By co. C V xV we denote the set of all pairs of independent
nodes of V. The set of minimal nodes of an irreflexive partial order is min(po) =
{v| *v =0} and the set of maximal nodes max(po) = {v | v®* = 0}. We denote
by po|lw = (W, < |wxw) the restriction of po to a subset W C V.

A reflexive partial order over V is a binary relation <C V x V which sat-
isfies Vo € V(v < v) (reflexivity) and Vo € V(v S w Aw < v = v = w)
(antisymmetry) and which is transitive.

A semiring is a quintuple . = (S, ®,®,0,1), where (S, ®,0) is a commu-
tative monoid, (S, ®,1) is a monoid, ® (the S-multiplication) distributes over
@ (the S-addition) from both sides of ® and the zero 0 is absorbing w.r.t. ®
(0®r = z®0 = 0). If ® is commutative, then the semiring is called commutative.

2.2 Labelled Partial Orders

We use irreflexive partial orders labelled by action names to represent single
non-sequential runs of concurrent systems. The nodes of such a labelled partial
order represent events and its arrows an “earlier than”-relation between them in
the sense that one event can be observed earlier than another event. If there are
no arrows between two events, then these events are independent and are called
concurrent. Concurrent events can be observed in arbitrary sequential order and
simultaneously.

Formally, a labelled partial order (LPO) over a set X is a 3-tuple (V, <,l),
where (V, <) is an irreflexive partial order and [: V' — X is a labelling function
on V. In particular, LPOs are directed graphs, thus all notions introduced w.r.t.
directed graphs may also be used for LPOs. LPOs over X are also called partial
words over X.

In most cases, we only consider LPOs up to isomorphism, i.e. only the
labelling of events is of interest, but not the event names. Formally, two LPOs
(V,<,1) and (V', <’ 1") are isomorphic, if there is a bijective renaming function
I:V — V' satisfying l(v) = I'(I(v)) and v < w < [(v) <" I(w). If an LPO
Ipo is of the form ({v}, 1), then it is called a singleton LPO and denoted by
Ipo = 1(v). A set of pairwise non-isomorphic LPOs we call a partial language. If
L is a partial language, then an LPO [lpo € L is called minimal (in L), if there
is no extension of Ipo in L. In figures, in general we do not show the names of
the nodes of an LPO, but only their labels and we often omit transitive arrows
of LPOs for a clearer presentation.

rl It rl Jt rl lt rl It
S @ o u S @ o u S @ o u S @e—>@ u
Ipoq Ipos Ipos lpos

Fig.1. An N-form (lpo,) together with its minimal sequential parallel extensions
(Ipoy, lpos, lpoy).

A step-wise linear LPO is an LPO (V, <,l) where the relation co. is transi-
tive. The maximal sets of independent events of such an LPO are called steps.
The steps of a step-wise linear LPO are linearly ordered. Thus, step-wise linear
LPOs can be identified with step sequences. A step-linearisation of an LPO Ipo
is a step-wise linear LPO which is an extension of Ipo.

The set of sequential parallel LPOs (sp-LPOs) is the smallest set of
LPOs containing all singleton LPOs (over a set X) and being closed
under the sequential and parallel product of LPOs. The sequential prod-
uct of two LPOs Ilpo; = (Vi,<3,l1) and Ilpo, = (Va,<a.l3) is defined
by Ipoy;lpo, = (V1 UV, <1 U< U(Vy x Vo),1l; Uly), where Vi and V; are
assumed to be disjoint. Their parallel product is defined by Ipo, || lpo, =
(V1 UV, <1 U <o,l; Uly), where again V; and Vs are assumed to be disjoint.

Each sp-LPO (over X) is defined by an sp-term (over X). Such terms are
defined as follows:

— Each z € X is an sp-term.
— If s,t are sp-terms, then also s;t and s || t are sp-terms.

For an LPO Ipo we denote by SP(lpo) the set of all sequential parallel exten-
sions of Ipo and by SP i, (lpo) the set of all minimal sequential parallel exten-
sions of Ipo in SP(Ipo).

Given an LPO Ipo = (V, <,1), an N-form of Ipo is a sub-LPO consisting of
four nodes u,v,z,y € V satisfying u < x, u < y, v < y and uco< v, vcoc x,
x co-y. An LPO is N-free, if it does not contain an N-form. There is the following
important relationship between sp-LPOs and N-free LPOs:

Theorem 1. An LPO is N-free if and only if it is sequential parallel.

A proof can be found in [13]. This proof is constructive: Given an N-free
LPO, it shows a method to construct an sp-term defining the LPO. We will
describe and use this method later on.

Figure 1 shows four LPOs: LPO [po; consists of an N-form and the LPOs
lpoy = (r || 1):(s || w), lpog = r3(s || (t;u)) and Ipoy = ((rss) ||);u are its
minimal sequential parallel extensions.

The sequential and parallel product of LPOs is extended to sets of LPOs
A, B in the obvious way: A || B={a | b|a € A,b € B} and A;B = {a;b |
a € A,b € B}. Moreover, we define the closure of a set of LPOs A by A* =
{a1;...5a, | n € Nya; € A} U {e}, where € denotes the empty LPO having an
empty set of nodes.

2.3 Continuous Concurrent Semirings

A binary operation & on a set S defines a binary relation on S via a <g b &
a®b=0>b. If & is idempotent, associative and commutative, then this relation is
reflexive, transitive and antisymmetric, hence a reflexive partial order. Moreover,
if S is equipped with the partial order <g, then Va,b € S : a & b = sup{a, b},
where the supremum is taken w.r.t. <g.

If (S,®,0) is a monoid, and if T C S is an arbitrary subset, then @ T :=
@,cr t = sup(T), where the supremum of the empty set is understood to be
the neutral element of the monoid. A semiring (S, ®, ®, 0, 1) is called idempotent,
if & is idempotent. An idempotent semiring is called continuous [7], if, for any
subset 1" C S, the supremum is well-defined in S (that means the semiring
is complete), and ® distributes over the supremum from both sides: Vs € S :
sQDT =Dcr s®@t and (PT)®s=D,cr t®s. L

A bisemiring is a six-tuple . = (S,®,®,X,0,1), where (5,3, ®,0,1) is a
semiring and (S, ®,X,0,1) is a commutative semiring.? The binary operation X
on the set S is called S-parallel multiplication. If ® distributes over X from both
sides, the bisemiring is called distributive, if @& is idempotent, the bisemiring
is called idempotent, and if both semirings (S, ®,®,0,1) and (S,®,X,0,1) are
continuous, the bisemiring is called continuous.

According to [16], a concurrent semiring is an idempotent bisemiring (S,
®, ®,X,0,1) satisfying

Va,b,e,de€ S: (aXb)®(cKd) <g (a®c)X(b®d). (CS)

3 In particular, both multiplications share the same unit. A similar algebraic structure
without requiring commutativity of the second semiring is defined in [6], where it is
called Q-Algebra and coined for application in quality management. In [20] a slightly
different notion of bisemirings is used where parallel multiplication may miss a unit.

ot
ot

Concurrent semirings will be used to define the weight of a run of a Petri net
transducer. ® will be used to model the composition of weights of a sequence of
runs and X models the composition of weights of concurrent runs. Therefore, X
is required to be commutative. The unit 1 can be thought of as the weight of
the empty run (the analogue of the empty word). It is shared by ® and X, since
the sequential or concurrent execution of a run r and the empty run does not
change r. Using ® and X, the weight of a sequential parallel run can be defined
then in the standard way (for details see the next section).

As explained above, idempotence of @ induces a natural order on the set of
weights. We will define the weight of a general run in a natural way as the supre-
mum of all weights of its sequential parallel extensions w.r.t. this order. Condition
(CS) will ensure that runs with fewer dependencies have bigger weights.

Example 1. If .¥ = (S,®,®,0,1) is an idempotent semiring such that <g
is a total order and 1 is maximal w.r.t. to that order, then we have . =
(S, max, ®,0,1), and (S, max, ®, min, 0, 1) is a concurrent semiring extending .& .
If .7 = (S,®,®,0,1) is an idempotent and commutative semiring, then the
doubled semiring (S, ®, ®,®,0,1) is a concurrent semiring extending .#.

Ezample 2. Based on the well-known Viterbi semiring ([0, 1], max, -, 0, 1) repre-
senting probabilities of actions, the structure ¥ := ([0, 1], max, -, min, 0, 1) yields
a continuous concurrent semiring.

The structure .7 := ([0, 0], min, 4, max, 00, 0) is a continuous concurrent
semiring. It is based on the well-known tropical semiring ([0, oo, min, +, oc, 0)
representing execution times of actions.

Note that ¥ and .7 are isomorphic, e.g. an isomorphism is given by t =
— log(v). Both concurrent semirings extend a semiring as in the first construction
of example 1.

An example of a concurrent semiring, which is not of the above kind, is
o = ({—o0} U0, 00[, max, +,X, —00,0), where a ¥b := a + b+ min(a,b). It is
based on the arctic semiring or max-plus-algebra.

2.4 Petri Nets

A net is a 3-tuple N = (P, T, I'), where P is a finite set of places, T is a finite
set of transitions disjoint from P and F' C (P xT)U (T x P) is the flow relation.
A marking of a net assigns to each place p € P a number m(p) € Ny, ie. a
marking is a multiset over P. A marked net is a net N = (P, T, F') together with
an initial marking my.

A place/transition Petri net (PT-net) is a 4-tuple N = (P, T, F, W), where
(P,T,F) is anet and W : (P x T)U (T x P) — Ny is a flow weight func-
tion satisfying W(z,y) > 0 < (z,y) € F. For (transition) steps 7 over
T we introduce the two multisets of places *7(p) = >, 7()W(p,t) and
T (p) = D 1er T(W (L. p). A transition step 7 can occur in m, if m > °r.
If a transition step 7 occurs in m, then the resulting marking m’ is defined by
m' =m — *7 + 7°. We write m — m/ to denote that 7 can occur in m and

that its occurrence leads to m’. A step execution in m of a PT-net is a finite
sequence of multisets of transitions ¢ = 77 ...7, such that there are markings
ma, ..., my, satisfying m —— my; — ... — m,,. The markings which can be
reached from the initial marking mg via step executions are called reachable.
We use LPOs over T' to represent single non-sequential runs of PT-nets, i.e.
the events of an LPO represent transition occurrences. An LPO Ipo = (V, <,I)
over T is an LPO-run of a marked PT-net N = (P, T, F, W, mg) if each step-
linearisation of lpo is a step execution of N in my. If an LPO-run lpo = (V, <, 1)

occurs in a marking m, the resulting marking m’ is defined by m’ = m —

. l
Yovev *l(v) + Xyevi(v)®. We write m % m’ to denote the occurrence of an
LPO-run Ilpo. An LPO-run Ipo of N is said to be minimal, if there exists no
other LPO-run lpo’ of N such that Ipo is an extension of Ipo’.

3 Weighted LPOs

For the representation of runs of weighted Petri net transducers (PNT's), we con-
sider weighted LPOs (WLPOs) which are LPOs with additional node weights
[25]. We assume that the set of possible weights is equipped with the algebraic
structure of a concurrent semiring. Then the total weight of a WLPO is com-
puted from the node weights using binary operations of this algebraic structure.
As a central property we showed in [25], that the use of a concurrent semiring
ensures that total weights of runs can be computed in a compositional way and
that runs with fewer dependencies have bigger weights (w.r.t. the order induced
by the idempotent addition operation).

A weighted LPO (WLPO) over an alphabet &/ and a bisemiring . = (S,
®,®,X,0,1) is a quadruple (V, <,l,v) such that (V,<,l) is an LPO over &/
and v : V — S is an additional weight function. We use all notions introduced
for LPOs also for WLPOs. Figure 2 shows examples of WLPOs, where labels
[(v) =t and weights s are annotated to a node v in the form t/s.

The total weight of sp-WLPOs can be defined through applying ® to the
sequential product and X to the parallel product of sub-WLPOs.

Definition 1 (Weight of sp-WLPOs [25]). We define the weight w(wlpo)
of an sp-WLPO wlpo = (V, <,l,v) over a bisemiring inductively as follows:

~ If V =A{v}, then w(wlpo) = v(v).
— If wlpo = wlpo, ; wlpoy, then w(wlpo) = w(wlpo,) @ w(wlpo,).
— If wlpo = wlpo, || wilpoy, then w(wlpo) = w(wlpo,) X w(wlposy).

This is the standard technique to define weights of sp-LLPOs [20] with weights
coming from a bisemiring. In particular, the given weight of sp-WLPOs is well-
defined, since the set of sp-WLPOs as well as the sub-structure (5, ®,X) of a
bisemiring (S, ®, ®,X,0,1) form an sp-algebra admitting an sp-algebra homo-
morphism from the set of sp-WLPOs into the bisemiring.

In [25] we proposed the following weight definition for a general WLPO based
on the weigths of its sequential parallel extensions.

Definition 2 (Sequential-Parallel Weight of WLPOs [25]). Let wipo =
(V,<,l,w) be a WLPO. Then its sp-weight is defined by

wsp(wlpo) = GB w(wlpo').

wipo’ €SP (wlpo)

As the considered bisemiring of weights is idempotent, the sp-weight of a
WLPO-run equals the maximal weight of its sequential parallel extensions.

As a fundamental result we showed in [25] that condition (CS) of concurrent
semirings is the minimal requirement on idempotent bisemirings such that less
restrictive weighted LPOs yield bigger weights.

Theorem 2 ([25]). Let &/ be an alphabet and . = (S,®,®,X,0,1) be an
tdempotent bisemiring. Then the following assertions are equivalent:

(A) If uy,us are sp-WLPOs over & and . and if uy is an extension of us,
then w(uy) <g w(us).
(B) .7 is a concurrent semiring.

Obviously, one gets a similar result, if inequation CS is reversed.

Corollary 1. Let & be an alphabet and . = (S, ®, ®,X,0,1) be an idempotent
bisemiring. Then the following assertions are equivalent:

(A) If uy,us are sp-WLPOs over & and . and if uy is an extension of us,
then w(u1) >g w(us).
(B) .7 satisfies

Va,b,ec,de S: (aXb)®(cXd) >4 (a®c) X (b d). (CS)

Moreover, the use of concurrent semirings ensures that the sp-weight of
WLPOs can be computed in a modular way using bisemiring-operations [25].

Theorem 3 ([25]). Let & be an alphabet and . = (S,®,®,X,0,1) be a
concurrent semiring. Then the following assertions hold for weighted LPOs
wlpo, ., wlpoy over & and .7 :

(C) wap(wpos ; wlpoy) = wap(wlpo1) © wap(wipoy).
(D) wsp(wlpoy || wipoy) = wep(wipoy) B wep(wipoy).

r/3 t/2 r/0.8 t/0.5
s/5 u/4 s/0.6 u/0.8
wlpoq wlpoz

Fig. 2. WLPOs over the concurrent semirings .7 (wlpo,) and ¥ (wlpo,).

Example 3. Consider the concurrent semiring .7 defined in subsection 2.3. It can
be used to compute the minimal execution time of a run given by an arbitrary
WLPO wlpo of a concurrent system.

The WLPO wlpo, shown in figure 2 is a WLPO over .7. The weights of its

minimal sp-extensions (see figure 1) are:

—w((r || t);(s] u)) =max(3,2) + max(5,4) = 8,
—w(((r;s)]| t);u) =max(3+5,2)+4 =12,
- w(r;(s| (t;u))) =34+ max(5,2+4) = 9.

Thus, the minimal execution time is min(8, 12,9) = 8. Note, however, that there
is a more efficient method to compute the minimal execution time of a general
LPO computing the maximal weigth of a line of the LPO.

Ezxample 4. Consider the concurrent semiring 7 defined in subsection 2.3. The
decision for min as parallel multiplication can be interpreted as follows: If wipo =
wlpoy || wlpos, then wipo; and wlpo, are both necessary but independent parts
of the run wipo of a concurrent system and the probability of wlpo cannot be
better than the probability of one of its parts. In [39] we give a justification for
that choice of min in the context of semantic dialogue modelling.

The WLPO wlpo, shown in figure 2 is a WLPO over #. The weights of its
minimal sp-extensions (see figure 1) are:

w((r |l t);(s] w)) =min(0.8,0.5) - min(0.6,0.8) = 0.3,
w(((r;s)] t);u) =min(0.8-0.6,0.5) - 0.8 = 0.384,
w(r;(s | (¢;u))) = 0.8-min(0.6,0.8 - 0.5) = 0.32.

Thus, the weight (probability) of wipo, is max(0.3,0.384,0.32) = 0.384.

Remark 1. Concurrent semirings are probably not the most abstract algebraic
structure yielding the previous results.

There may be abstractions of the underlying structure of idempotent bisemir-
ings in two directions:

— It is possible to define natural partial orders on non-idempotent semirings
viaa<b:&3Je: ade=>b]T].

— It is possible to consider structures having no shared unit for ® and X. In this
context, in [16] the following axioms are used to define so called concurrent
SEMIGroups:

(i) a®b < alXb.

(ii) (aX®b)®c< (a®c)Xb.

(iii) c® (aXb) < (c®a) X b.

(iv) (aX®b) @ (¢cXd) < (a®c)X(b®d) (this condition equals condition

(CS) of concurrent semirings).

It is easy to see that axioms (i) to (iii) follow from axiom (iv), if ® and

X share a unit. If this is not the case, axioms (i) to (iv) are irreducible as

proven in [16]. The axioms (i) to (iv) seem to be suitable to derive similar

results as for concurrent semirings.

We decided to use concurrent semirings because they appear in a natural
way in the context of sets of extension closed sp-LPOs as shown by Gischer [13].
However, the mentioned more abstract algebraic structures may make accessible
additional practical problems using PN'Ts. This is a topic of further research.

4 Petri Net Transducers

A PNT is a Petri net which, for every transition occurrence, may read a symbol
x from an input alphabet 3’ and may print a symbol y from an output alphabet
A. Additionally, a weight s from a bisemiring is assigned to each transition. If no
input symbol should be read or no output symbol should be printed, we use the
empty word symbol € as annotation. We use the basic Petri net class of PT-nets
to define PNT's. In graphics an input symbol z, an output symbol y and a weight
s of a transition ¢ are annotated to t in the form z:y/s, and annotations of the
form e:¢/1 are not shown.

Definition 3 (Petri Net Transducer [25]). A Petri net transducer (PNT)
over a bisemiring . = (S,®,®,X,0,1) is a tuple N = (P,T,F,W,pr,pr, X, 0,
A, 0,w), where

- (P, T,F,W) is a marked PT-net (called the underlying PT-net),
— pr € P is the source place satisfying *p; = 0,

— pr € P is the sink place satisfying py =0,

— XY is a set of input symbols,

- 0:T — X U{e} is the input mapping,

— A is a set of output symbols,

- 0:T — AU{e} is the output mapping.

~ w:T — S s the weight function.

We call the marking mo = py the initial marking and mp = pp the final mark-
ing. A PNT is called clean, if the final marking is the only reachable marking m
with m(pr) > 0.

A WLPO wlpo = (V,<,l,v) over T is a weighted LPO-run of N, if the

underlying LPO Ipo = (V,<,l) is an LPO-run of N with m tro, mp and if
v(v) = w(l(v))) for eachv € V. We denote by WLPO(N) the set of all weighted
LPO-runs of N.

The cleanness property is similar to cleanness of Boxes [4] or soundness of
workflow nets [35] and ensures that PN'T semantics are closed under (sequential)
product and closure. The final marking can be reached only from a finite set of
reachable markings [15].

Considering non-sequential semantics of Petri nets, a PNT can be used to
translate a partial language into another partial language, where so called input
words are related to so called output words. Input and output words are defined
as LPOs lpo. = (V, <,l.) with a labelling function I, : V — & U {e} for some
input or output alphabet .&/. Such LPOs we call e-LPOs. For each such e-LPO

60

we construct the corresponding e-free LPO Ipo = (W, < |wxw,le|w) by delet-
ing e-labelled nodes together with their adjacent edges via W = V \ IZ1(¢).
Since partial orders are transitive, this does not change the order between the
remaining nodes.

Definition 4 (Input and Output Labels of Runs [25]). Let N = (P, T, F,
W, pr,pp, X, 0,A,0,w) be a PNT and let wipo = (V,<,l,v) € WLPO(N).

The input of wlpo s the e-free LPO wlpos. corresponding to the €-LPO
(V,<,001).

The output of wlpo is the -free LPO wlpo 5 corresponding to the e-LPO
(V,<,001).

For LPOs u over X and v over A, we denote by WLPO(N,u) the subset of
all WLPOs wlpo from WLPO(N) with input wlpos. = u, and by WLPO(N,u,v)
the subset of all WLPOs from WLPO(N,u) with output wipo o = v.

The input language L;(N) of N is the set of all inputs of weighted LPO-
runs. Its elements are also called input words. The output language Lo(IN) of
N is the set of all outputs of weighted LPO-runs. Its elements are also called
output words.

The language L(N) of N is the set of all pairs of LPOs (u,v) over X x A
with WLPO(N,u,v) # ().

a:u/0.8 €:v/0.6

c:x/0.5 d:£/0.8

PNT

a 0.8 0.6 u v
\ ./S.\ o
— e / °
c d 0.5 0.8 X

Input Run Output

Fig. 3. A PNT together with an LPO-run and associated input and output.

The input and output language of a PNT N are extension closed, since
WLPO(N) is extension closed. The output weight of a PN'T assigned to all pairs
of LPOs w over X and v over A is based on weights of its WLPO-runs.

Definition 5 (Output Weight of PNTs [25]). Let N = (P,T,F,W,p;,pr,
Y, 0,4,6,w) be a PNT over a concurrent semiring . = (S,®,®,X,0,1), u be

61

an LPO over X and v be an LPO over A. The output weight N (u,v) is defined
by
N(u,v) = @ Wsp(wlpo)a

wipo€ WLPO(N,u,v)

when this sum is well-defined in S (note that the sum may be infinite). We set
N(u,v) =0 if WLPO(N,u,v) = 0.

The output weight equals the supremum of all weights of corresponding runs,
since @ is idempotent. If the concurrent semiring is continuous, the supremum
always exists in S [7]. From the considerations in the previous section we imme-
diately deduce that it is enough to consider minimal weighted sp-runs in the
defining sum of the output weight using condition (CS) of concurrent semirings.

Corollary 2 ([25]). Let N = (P,T,F,W,p;,pp, X, 0,A,6,w) be a PNT over a
concurrent semiring . = (S,®,®,X,0,1), u be an LPO over X and v be an
LPO over A. Then

N(u,v) = @ w(wlpo'),

wipo € WLPO i, (N,u,v), wlpo’ €SP i (wlpo)

when this sum is well-defined in S, where WLPO p,;,,(+) is the subset of all min-
imal WLPOs in WLPO(-).

Figure 3 shows an example of a PNT together with an LPO-run and associ-
ated input and output. The figure illustrates the translation of partial words in
the presence of e-inputs and -outputs. According to example 4 the output weight
of the shown input-output-pair equals 0.384.

In practical applications, it is important to be able to create complex trans-
ducers through composition of simple ones. For this purpose we introduced in
[25] composition operations of union, product, closure and parallel product for
clean PNTs. Cleanness ensures that runs always terminate properly and is pre-
served by the above operations.

For each operation, there are a functional definition defining the output
weight of the composed PNT based on the output weights its components and
bisemiring-operations and an effective (and more or less straightforward) con-
struction of the composed PNT. In the following, we recall the functional def-
initions and illustrate the constructions (explicitly given in [25]) in figure 4,
where for a compact presentation input symbols, output symbols and weights of
transitions are omitted if possible.

The sum (or union) N1 & Ny of two PNTs Ny and Ny over . with the same
input alphabet Y and output alphabet A is defined as a PNT over . in such a
way that for each pair of LPOs u over Y and v over A:

(N1 @ No)(u,v) = Ny(u,v) @ No(u,v).

The product (concatenation) N1 & Na of two PNTs Ny and Ny over . with
the same input alphabet X and output alphabet A is defined as a PNT over .&

62

in such a way that for each pair of LPOs u over X and v over A:

(N1 ® Nao)(u,v) = GB Ny (u1,v1) @ No(ug,va).

U=u1i ; U2, V=01 ; U2
The product of n > 0 instances of a PNT N we denote by N". By convention
N = .7 where .# is the PNT satisfying .#(u,v) = 1 if u and v are both the
empty LPO (0,0,0) and .# (u,v) = 0 otherwise.
The closure N* of a PNT N over . with input alphabet X' and output
alphabet A is defined as a PNT over . in such a way that for each pair of
LPOs u over X and v over A:

N*(u,v) = @N"(u,v).
n=0

The parallel product N1 X Ny of two PNTs Ny and Ny over . with the same
input alphabet Y’ and output alphabet A is defined as a PNT over . in such a
way that for each pair of LPOs u over X and v over A:

(N1|Z|N2)(U,’U) = @ Nl(ul,’ljl)gNg(’U,g,Ug).

u=u1 ||uz, v=v1||v2

a:x/0.7]

_ PO O~ . ||
OO PO
p:y/08 a:x/0.7
a:x/0.7 b:y/0.8 O O

b:y/0.8

Fig. 4. Tllustration of the union, (sequential) product, closure and parallel product of
PNTs N, = N(a,x,.7) and N2 = N(b,y,.8) over 7.

Moreover, we proposed the following construction of the central transducer
composition operation of language composition [25]:

Let N1 be a PNT over . with input alphabet Y; and output alphabet A;
and a Ny be a PNT over . with input alphabet X5 = A; and output alphabet
Ay. The composed PNT N;[®] Ny is constructed as the parallel product of Ny
and No, where each transition ¢; from N7 is merged with each transition ¢, from
Ny satisfying 6(t1) = o(t2) to a transition ¢ with input symbol o(¢) = o(¢1) and
output symbol 0(¢) = §(t2), weight w(t) = w(t1) ® w(tz) and connections *t =
t1 + ®to and t =1t} +1¢5. Moreover, all transitions of N} having empty output
symbol, as well as all transitions of Ny having empty input symbol are kept with
unchanged input symbols, output symbols, weights and connections. All other
transitions of Ny and Ny are omitted. Figure 5 illustrates the construction.

We proved in [25] that this construction perserves cleaness and yields the
following properties concerning compositionality w.r.t. weights:

63

Theorem 4 ([25]). The PNT N1[®|Ny satisfies the following properties:
(i) If % is the doubled semiring, then

(N1 [®]N2) (u, w) = @D N1 (u,v) @ Na(v, w),

v

where the sum runs over all LPOs over Xy = Ay representing outputs of
weighted LPO-runs of N1 and inputs of weighted LPO-runs of Ns.

(it) If (N1[®]N2)(u, w) = @, Ni(u,v) op Nao(v,w), where the sum runs over
all LPOs v over Yy = Aq representing outputs of weighted LPO-runs of
N7 and inputs of weighted LPO-runs of Ny and op is a semiring operation,
then op = ® and . is the doubled semiring.

€:2/0.5

t
a:x/0.6 N3[®]
x:b/0.7

Ny @——1"—0O

Fig. 5. Language composition for N3 = N(z,b,.6) X N(e, z,.5) and Ny = N(a,z,.7)
over V.

Concerning PNT' semantics, only the input output behaviour is relevant.
Since transitions also may have empty input and/or empty output, there are
always (infinitely) many PNTs having the same semantics. For practical appli-
cation, such PNTs are equivalent.

Definition 6. Fquivalent PNTs [25]] Let Ny, Ny be two PNTs.

(a) N1 and No are called structure equivalent, if L(IN1) = L(N3).
(b) If Ny and No are structure equivalent, then they are called output equivalent,
if N1(u,v) = Na(u,v) for all (u,v) € L(N7) = L(N>).

Two structure equivalent PN'T's perform the same translation between input
and output words, but the weights of these translations may be different. Two
output equivalent PNTs perform the same weighted translation between input
and output words, but the distribution of weights within WLPO-runs may be
different.

Example 5. Consider a fixed concurrent semiring serving as the set of weights.
We denote by N(a,b,w) the clean PNT consisting of no other places than the
source and sink place and exactly one transition with input symbol a, output
symbol b and weight w connecting the source with the sink place.

64

The following PNTs are structure equivalent: Ny = N(a,b,w), Ny =
N(a,e,u) @ N(e,b,v) and N3 = N(a,e,x) X N(e, b,y). They are output equiv-
alent if w = v ® v = x W y. Moreover, the following PNTs are output equiv-
alent: No = N(a,€e,u) ® N(¢,b,v), N5 = N(a,e,v) @ N(¢,b,u) and Ng =
N(a,e,u ®v) ® N(e,b,1).

An important application of equivalence in practise is the transformation of a
PNT into an equivalent and simpler PN'T allowing for more efficient algorithms.
A central technique to do this is to replace parts of a complex composed PNT
by equivalent parts. This technique requires that equivalence is consistent with
composition operations.

To this end, we showed in [25], that the composition operations of union,
sequential product, closure and parallel product preserve output equivalence of
PNTs and that language composition perserves structure equivalence, but in
general does not preserve output equivalence.

An important topic of further research is the deveopment of techniques and
rules for the transformstion of a PNT into an equivalent PNT, as for example
the removal of e-transitions, the merging of transitions or the pushing of weights
along paths.

5 Algorithms

In order to be able to apply PNTs to practical relevant problems, it is necessary
to develop efficient algorithms for the composition of PNTs, the analysis and
optimization of PNTs, the computation of weights of weighted LPOs and the
translation of partial words. In [18,24] we presented the tool PNToL, which
supports the modular construction of PNTs through composition operations
and an export of PNTs in all standard picture formats, in TikZ-format and in
an XML-format based on the standard PNML format (see the following section).

In this section we briefly present algorithms for the computation of the weight
of general WLPOs, of the input and output language and of the output weight of
input-output-pairs of PN'T's. Basic versions of these algorithms were developed in
the master thesis [31]. At present we are integrating these algorithms in PNT2°v,

5.1 Computing the weight of WLPOs

For the computation of the weight of some WLPO we can distinguish between
WLPOs which are sequential parallel and WLPOs which are not sequential par-
allel.

In the first case of sp-WLPOs, according to definition 1, the weight can
be computed directly from the sp-term defining the underlying LPO using the
binary operations of the concurrent semiring of weights. That means, given a
WLPO wlpo we need to do the following;:

1. Decide, whether wipo is sequential parallel (or, equivalently, N-free).

2. Compute the sp-term defining the LPO underlying wipo, if the answer to
the first step is yes.

From the proof of theorem 1 in [13] we can deduce a method, given an N-free
LPO, to construct the sp-term defining the LPO in a top down way. The proof
shows that if this method fails at some point, then the LPO must contain an
N-form. Thus, we can use this method for both steps.

The method is as follows, where we denote the sp-term defining an sp-LPO
Ipo = (V, <, 1) by sp(lpo):

(I) If V= {v}, then sp(lpo) = I(v).

(IT) If the undirected graph underlying Ipo is not connected, then it can
be decomposed into its connected components lpo, ..., lpo, and we get
sp(Ipo) = sp(lpoy) || -+ || sp(lpoy,).

Proceed with step (I) applied to lpoy, ..., Ipo,,.
(ITT) If min(lpo) = {v} then sp(lpo) = l(v); sp(lpolw) with W =V \ {v}.
Proceed with step (1) applied to Ipo|w .

(IV) Denote D = {v | Vo' € min(lpo) (v’ < v)}. If Ipo is N-free, then D # () and
Ipo = Ipo|y\ p; lpo|p, i.e. sp(lpo) = sp(lpo|v\p); sp(lpo|p).

Proceed with step (1) applied to Ipo|y\p and Ipo|p.

If the construction of step (IV) fails (D = 0 or Ipo # Ipo|y\p;lpo|p), then
an N-form can be found in linear time.

It is easy to see by symmetrie, that the above construction can be completed
by the following criteria for the N-freeness of an LPO:

(III)’ If max(lpo) = {v} then sp(lpo) = sp(lpo|w);l(v) with W =V \ {v}.
(IV)” Denote E = {v | Vo' € max(lpo)(v < v")}. If Ipo is N-free, then E # () and
lpo = Ipo|E; lp0|V\E-

Using these facts, it is possible to adapt the described method also for the
computation of the weight of WLPOs which are not N-free. In this case, accord-
ing to definition 2, it is necessary to compute the maximum of the weights of
all minimal sequential parallel extensions. That means we need to compute the
sp-terms defining all minimal sequential parallel extensions. This can be done by
extending each N-form, which is found in step (IV), in a minimal way. There are
three possibilities of minimal extensions of N-forms, all shown in figure 1. We
get the following algorithm for the computation of all sp-terms defining minimal
sequential parallel extensions of a general LPO:

(I) If V.= {v}, then sp(lpo) = l(v).

(IT) If the undirected graph underlying Ipo is not connected, then it can
be decomposed into its connected components Ilpo, ..., Ilpo, and we get
sp(lpo) = sp(lpoy) || -+ || sp(lpoy,).

Proceed with step (I) applied to lpoy, ..., Ilpo,,.
(IT1) (a) If min(lpo) = {v} then sp(lpo) = l(v); sp(lpo|lw) with W =V \ {v}.
Proceed with step (I) applied to Ipo|w .

66

(b) If max(lpo) = {v} then sp(lpo) = sp(lpo|w);l(v) with W =V \ {v}.
Proceed with step (1) applied to lpo|w .

(IV) Denote D = {v | Yo' € min(lpo)(v < v)} and E = {v | V' €
max(lpo)(v < v')}.

(a) If D = 0 or Ipo # Ipoly\p;lpo|p, and E = () or lpo # Ipo|g; Ipo|y\g:
Find an N-form and proceed with step (I1I) for each minimal extension
of lpo w.r.t. this N-form.

(b) If lpo = lpo|v\p; lpo|p: sp(lpo) = sp(lpoly\p); sp(lpo|p).

Proceed with step (1) applied to lpo|y\p and Ipo|p.

(¢) If Ipo # lpo|w; Ipoly\ : sp(lpo) = sp(lpo|k); sp(lpolv\)-

Proceed with step (1) applied to lpoly\ g and Ipo|g.

This is a recursive procedure splitting into three paths for each found N-
form. That means, its running time is exponential in the number of N-forms
contained in the considered LPO. Moreover, a minimal extension of an LPO
w.r.t. an N-form may produce additional N-forms. As an example, see LPO Ipo,
from figure 6: If the N-form defined by {a, b, ¢, d} is extended by the edge b < d,
then the new N-form defined by {b, z, ¢, d} is produced.

On the other side, if a PNT is composed using operation for union, sequential
product, closure and/or parallel product, then the above algorithms needs to be
applied only to LPO-runs of its PNT-components, since the computation of
weights is compositional.

Furthermore, there a several possibilities to optimize the step (IV) concerning
the definition of D and E and the choice of the next N-form. For example, we
can use the following constructions in order to find possibilities for a sequential
composition in a more effective way::

If D # 0 and Ipo # Ipo|y\p;lpo|p, then there is an N-form with nodes in
D and in V' \ D. If we delete all nodes from D belonging to an N-form which
is not completely contained in D, we may get a non-empty subset D' C D
satisfying Ipo = Ipo[y\ ps; lpo|p/. As an example, see LPO Ipo, from figure 6: If
we delete the node d belonging to the N-form defined by {a, b, ¢, d} from the set
D = {d,z,y}, we get the set D" = {z,y} satisfying lpoy = Ipos|v\ p/; Ipos|pr. An
analoguous construction holds for F.

If D=0 or lpo # Ipo|y\p;lpo|p, in general many N-forms can be found. If
we minimally extend one of these N-forms, also some other N-forms may be min-
imally extended because of transitivity. In step (IV)(a) we should choose such an
N-form, whose extension also extends a maximal number of other N-forms. As
an example, see LPO [po, from figure 6: The N-form defined by {a, b, ¢, d} causes
many other N-forms due to transitivity, as for example {a, z,c,d}, {a,b,c,y} or
{a,b,z,y} (and so on). If we extend the N-form {a,z,c,d} by the edge z < d,
then also the other mentioned N-forms are extended. In this example, the exten-
sion z < d of the N-form {a, z, ¢, d} extends a maximal number of other N-forms.
A similar argumentation holds for the extension ¢ < b of the N-form {a, b, ¢, d}
and the extension a < v of the N-form {a,b,v,d}. Again, an analoguous con-
struction holds for F.

67

a c a ®cC ue oV
b @ d b ® d a @ cC
X @ X oY b e d

X0 oY
Ipoy Ipos lpos

Fig. 6. Example-LPOs illustrating the computation of minimal series parallel exten-
sions.

An exact and formal definition of such optimizations and their implemen-
tation, as well as experimental results are topics of further research. Moreover,
it is necessary to have a closer look at the language composition of PNTs. On
the one side, the weight of LPO-runs is not compositional w.r.t. to language
composition, but on the other side, the structure of LPO-runs of a composed
PNT can be determined from LPO-runs of its components. This may be used to
construct sp-extensions of LPO-runs of a composed PNT from sp-extensions of
LPO-runs of its components.

5.2 Computing the output weight of input-output-pairs

In order to compute the language of a PNT (the set of input-output-pairs), it
is necessary to compute all of its LPO-runs. The most effective algorithm doing
this for PT-nets is the token flow unfolding algorithm [3].

For PT-nets (underlying a PNT) having a finite set of LPO-runs, the token
flow unfolding is finite and contains all LPO-runs of the net.

If a PT-net has infinitely many LPO-runs, then there are two possibilities.
The first possibility is, that the PT-net is bounded. In this case the set of reach-
able markings is finite and it is possible to compute the so called complete finite
prefix of the token flow unfolding. This prefix contains for each reachable mark-
ing at least one LPO-run leading to this marking. Since it is possible to compute
all these markings, we may restrict the finite prefix to those LPO-runs leading
to the final marking and we may use the algorithm to test, whether the PT-net
is clean.

Note that the behavior of a bounded PNT may contain cycles (leading from a
reachable marking back to the same marking). If all cycles produce empty input
(empty output), then the input language (output language) is finite, otherwise
infinite. It is possible during the computation of the finite prefix, to save addi-
tionally all sub-LLPOs of LPO-runs which form a cycle. This information makes
it possible later on to decide, whether a given input (output) belongs to the
input language (output language) of the PNT.

68

The second possibility is, that the PT-net is unbounded. Then there is at
least one unbounded place. If an unbounded place contributes to a reachable
marking, from which the final marking can be reached, then the PT-net is not
clean. If an unbounded place does not contribute to a reachable marking, from
which the final marking can be reached, then it belongs to a useless part of the
PNT. Therefore we do not want to consider PNTs having unbounded places.*
The token flow unfolding algorithm can easily be extended in such a way that
unbounded places are recognized.

In concrete applications it may not be of interest to compute the whole
behavior of a PNT, but to test, whether a PNT has a given input and/or output.
Consider the case of a given input. Then it is possible to restrict the computation
of the token flow unfolding to such LPO-runs having the given input. Cycles not
having empty input should not be cut (as it is the case for the computation
of the finite prefix), but unfolded as many times as needed to get or to exceed
the given input. When constructing such a restricted unfolding, special care
need transitions having empty input. In particular, cycles with empty input
must be cut after their first occurrence and stored for the weight computation.
Analoguous considerations hold for the case of a given output and the case of a
given input-output-pair.

Finally, if an input-output-pair belongs to the behavior of a PNT, its weight
is computet as the supremum of the weights of all LPO-runs producing the input-
output-pair. Note that the set of all such LPO-runs may be infinite if there are
cycles with empty input and empty output - in this case the weight computation
needs special care and depends on the used concurrent semiring.

6 Tool Support

For the modular construction of concrete PNTs in case studies and practical
applications and as a basis for the implementation and evaluation of algorithms
for analysis, simulation and optimisation of PN'Ts we are developing the tool
PNTe°v. Tts basic functionality was developed in the bachelor thesis [32] and
presented in [18,24].

PNTeoF is a python [36] library and implemented within the framework
SNAKES supporting the rapid prototyping of new Petri net formalisms and
providing many basic Petri net components and functionality [27,28]. PNT2v
is mainly targeted at researchers in the area of PNTs. By the use of SNAKES
it is relatively easy to implement and evaluate extensions, variations and new
algorithms, as for example: Composition operations, algebraic weight structures,
simulation algorithms and optimisation algorithms.

Constructed PNTs can be exported in an XML-format which is based on the
standard PNML format developed for basic Petri net variants [33]. Moreover,
PNTs can be visualised and pictures can be exported in all standard formats.

* Note that this implies that the sequential language of a PNT is regular. In order
to deal with more general languages it would be necessary to use more general net
classes combined with the concept of cleanness, as for example inhibitor nets.

69

The support of graphical output serves both as a possibility to check the imple-
mentation and as a handy utility in the process of writing scientific papers.
PNT Vs functionality supports fast construction of concrete example PNTs for
case studies. PNML export can be used to analyse constructed example PN'T's
with other Petri net tools.

In the context of our research activities, PN'T°°" serves as a scientific proto-
type for the development of an open library openPN'T' of efficient algorithms for
the construction, composition, simulation and optimisation of PNTs which can
be used in real world examples.

PNT2°F can be downloaded from our website [17] as a ZIP-archive. Assumed
you have a working installation of Python, SNAKES, Graphviz, and dot2tex you
only need to copy the py-files into the plugins sub-directory of your SNAKES
installation.

6.1 Functionality

In this subsection we show how PN'T " is used to construct and compose PN'T’s.
We list the source code of the examples.

To use PNT>°" one has to create a text file and put the following code into
it. These lines load the SNAKES library and the transducer-plugin.

1 import snakes.plugins
2 snakes.plugins.load (["transducer’|, ’'snakes.nets’, ’'pnts’)
3 from pnts import x

Using the class method N from the class PetriNet a PNT consisting of a
source place with one token, a sink place, and a single transition in between
can be created (line 4). The parameters of this single transition are provided as
named parameters to N.

In lines 5 and 6 graphical output of the PNT's is generated. The format of the
output is controlled by the extension of the file-name given to the method draw
as first argument. The orientation of the generated graphs is controlled by the
parameter leftright of the method draw. This parameter is only effective if
TikZ-output is to be created. For more available export formats one may consult
the documentation of the Graphviz [12] package which is utilised by SNAKES
for the export.

A PNT can be saved in PNML-format using the function savePNML — a
wrapper of SNAKES methods — taking a file-name as second argument (line 7).
For loading we provide 1o0adPNML.

4 n = PetriNet .N('N1’, weight = .5, input_symbol = eps,
output_symbol = 'b")

5 n.draw("N.tikz", leftright = True)

6 n.draw("N.png")

7 savePNML(n, "N.pnml")

70

It is also possible to construct the same PNT (and also more complex PNT's)
by adding all components (places with markings, transitions, edges with weights)
separately:

s 1n = PetriNet('N1")
o n.add_place(Place(’'p_I’, 1), is_source = True)
1o n.add_place(Place(’'p_F’), is_sink = True)

11 n.add_transition(Transition(’t_1’, input_symbol=eps,
output_symbol="b’) ,weight=0.5)

12 n.add_input('p_I', "t_1")

13 n.add-output(’'p_F’, "t_1")

Finally, PNTs can be composed by several compsition operations. An exam-
ple for the use the operation of parallel composition is shown in line 14.

14 nl =mn | n

The other available operators are: = for concatenation, + for union, ~ for
closure, and > for language composition.

There are many possibilities to influence the graphical output, like renaming
of transitions, using subscripts in transition names, adjustment of label positions,
and more. Moreover, it is possible to change the marking of a PNT be firing
transitions. For details we refer to [18].

6.2 Architecture

PNT2°F is implemented as a bunch of plugins on top of SNAKES and thus as a
Python library. Actually SNAKES implements so-called coloured Petri nets [19]
where Python objects and expressions are used for the annotations. However
PNTe°" does not use most of these features.

A plugin for SNAKES is a separate Python library which specialises already
defined classes or adds new classes to SNAKES. Plugins can be loaded and are
stacked onto each other. This way a class hierarchy is established. A function
extend has to be implemented and some rules have to be followed for which the
interested reader should refer to the SNAKES homepage. A plugin can depend
on other plugins and can even mention conflicting plugins.

In the following we briefly describe each of the plugins that comprise PNT=°,
The first and fourth plugin can be used independently from the other plugins
while the remaining three build upon each other.

The d2t-Plugin. This plugin extends the features of the gv-plugin which is
delivered with SNAKES. By the use of that plugin a representation of Petri nets
in the dot-language from Graphviz [12] can be produced which is then processed
by Graphviz to compute a layout and eventually produce a graphical output.
Our d2t-plugin adds several features to the graphical output routine, like the
possibilties to use subscripts in object names, to rename objects for the graphical
output, and to use the export format TikZ.

71

The pt-Plugin. As already said, SNAKES implements coloured Petri nets.
Since the underlying net of a PNT is actually a place/transition Petri net we
decided to write a plugin which restricts the nets of SNAKES by only allowing
those constructs which are needed for them.

The terminal-Plugin. By using the pt-plugin and adding a few features to
the class PetriNet, this plugin implements Petri nets that have a single source
place and single sink place. Although SNAKES delivers the 1abel-plugin to add
properties to any node of a net we decided to implement our own mechanism
because we only need a fraction of its functionality.

With these properties it is possible to define several composition operations.
While SNAKES delivers the ops-plugin which implements composition opera-
tions according to [4] we implemented our own mechanism because the definitions
of the operations defer.

Additionally, we provide a notation to create a singleton net consisting of a
source and a sink place and a transition in between. This feature is implemented
as the class method N of the class PetriNet.

The bisemiring-Plugin. We implemented the class Bisemiring and the
association of weights to transitions in a separate plugin. Bisemiring objects
hold definitions of the set of weights, neutral elements and functions for binary
addition, sequential multiplication and parallel multiplication of a bisemiring.

A PNT contains an object of class Bisemiring which is the Viterbi-
bisemiring as default. Every transition has a weight which can be checked against
the bisemiring of the net.

The transducer-Plugin. The last plugin builds on top of the terminal-
and bisemiring-plugin and equips transitions with input- and output-symbols
which can be arbitrary Python objects. An additional class implements the e-
symbol. The N-method is extended to support weights and input- and output-
symbols for the single transition. This plugin implements the additional composi-
tion operation of language composition. Also the graphical output of transitions
is changed using the functionality of d2t-plugin. The generated TikZ-code uses
definitions from a separate sty-file to provide adaptable graphics.

7 Related Work

There are several less general models using weigths with underlying algebraic
structure.

Weighted finite automata are classical non-deterministic finite automata in
which transitions carry weights [8]. These weights may represent cost, time
consumption or probability of a transition execution. The behaviour of such
automata is defined by a function associating with each word the weight of
its execution. For a uniform definition of the behaviour, the set of weights is

72

equipped with the underlying algebraic structure of a semiring. The multipli-
cation operation of the semiring is used for determining the weight of a path,
and the weight of a word is obtained by the sum of the weights of its under-
lying paths. If each transition additionally is equipped with an output symbol,
the resulting automaton is called a transducer. Such transducers are used for
the translation between languages over different alphabets for example in nat-
ural language processing. For weighted finite automata and transducers (also
called finite state transducers or FSTs) there are efficient implementations of
composition and optimisation operations in standard libraries [26,41].

There are generalisations of weighted finite automata to weighted automata
over discrete structures other than finite words, some of them introducing con-
currency into the model through considering LPOs not consisting of a total order
on their symbols but of a partial order.

In [11] an overview is given on weighted finite automata (and transducers)
processing tree structures. They are used to recognise weighted context-free lan-
guages with weights coming from semirings and do not consider concurrency.

In [10] weighted asynchronous cellular automata accepting weighted traces,
a special restricted kind of LPOs, are described. Here also only semirings are
used to describe weights, i.e. no difference is made between the combination of
weights of transitions occurring in sequential order and occurring in parallel.

In [20] weighted branching automata accepting weighted sp-LPOs are intro-
duced. Here, weights come from bisemirings where the algebraic structure of
semirings is extended by a third operation of parallel multiplication (which in
this case needs no unit) used for the combination of weights of concurrent tran-
sition occurrences.

For all these automata models there are widely developed theories concern-
ing equivalent representations as rational expressions or logic formulae, useful
composition operations and closure properties [8].

Another extended automata model are Q-Automata [6] whose computations
are step sequences. Q-Automata are coined for application in quality manage-
ment with weights modelling costs and coming from a bisemiring, whose parallel
multiplication may not be commutative.

PNTs, as introduced in this paper, are a natural generalisation of all these
automata based weighted transducer models working on finite words, traces or
sp-LPOs. If a semiring can be extended to a concurrent semiring, then each
FST over this semiring is output equivalent to a PNT [25]. However, since not
each semiring can be extended to a concurrent semiring, not each FST can be
represented by an equivalent PNT. In [25] we examine several conditions of
semirings, which allow an extension to concurrent semirings.

There are already several publications introducing PNTs and applying them
in different application areas [34,37,38]. However, these are mainly case studies
lacking a common basic formal definition and without any theoretical devel-
opment. Moreover, these publications only make use of sequential semantics of
PNTs and do not consider weights.

73

Another Petri net model with transitions having assigned weights are stochas-
tic Petri nets (SPNs). SPNs introduce a temporal specification of probabilistic
nature and are applied to the performance analysis of timed systems. The weights
have no underlying algebraic structure and are used to compute firing probabil-
ities of untimed transitions.

8 Further Work

Up to now, we have developed a basic theoretical framework of PNTs and basic
tool support providing the computation of weights of PN'T-runs, the computation
of PNT-languages and several composition operations on PNTs. Moreover, we
applied PNTs in some case studies in the field of semantic dialogue modelling.

In order to apply PNTs to practical relevant problems, there are impor-
tant further research steps in several directions. First, the presented theoretical
framework needs to be completed:

— There are several additional composition operations of FSTs (for example
inversion or reversal) which need to be examined also w.r.t. PNTs.

— In order to get more efficient algorithms, optimisation techniques must be
developed as in the case of FSTs (for example elimination of e-transitions or
pushing and merging of weights alongs paths).

— For analysis purpose, we need to examine which classical Petri net properties
(as for example boundedness) are consistent with composition operations.

The presented simulation algorithms need to be improved as described in
section 5. Moreover, for practical application in the field of semantic dialogue
modelling and speech recognition the algorithms developed so far need to be
improved and extended:

— We need on-the-fly simulation algorithms computing the N best runs of a
PNT (similar to N-best-paths algorithms for FSTs in the field of natural
language processing).

— It is necessary to develop semi-automatic procedures to construct PNTs for
the translation between the syntactic and semantic level from experimental
audio data (generated in Wizard-of-Oz experiments), for example using Petri
net synthesis methods [21].

— Possibily, algorithms can be fine tuned concerning the concurrent Viterbi
semiring (used in this application field).

As described, we use PN'T>°" for the quick construction of PNT's for the use in
case studies and as a scientific prototype for the development of an open library
openPN'T of efficient algorithms for the construction, composition, simulation
and optimisation of PNTs which can be used in real world examples (similar to
the open library openFST [1] for FST-algorithms).

Finally, the framework can be extended w.r.t. several aspects:

74

— It is possible to consider other Petri net classes, either with the aim to

increase the expressiveness of the model (for example using inhibitor nets),
or with the aim to restrict expressiveness in order to get more effective algo-
rithms and improved analysis and compositionality properties (for exapmle
using free choice nets).

On the other side, more usefull examples of concurrent semirings can be col-
lected and described. Moreover, the algebraic structure of concurrent semir-
ings used as the weight model can be generalized in order to broaden the
field of possible applications.

Concepts which are more general than cleanness can be considered for ensur-
ing compositionality (for example adapting generlized versions of soundness).

References

10.

11.

12.

13.

14.

15.

Allauzen, C., Riley, M.D., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst: a general
and efficient weighted finite-state transducer library. In: Holub, J., Zd’4rek, J.
(eds.) CTAA 2007. LNCS, vol. 4783, pp. 11-23. Springer, Heidelberg (2007)
Aéma, P., Balbo, G. (eds.): Application and Theory of Petri Nets 1997. Lecture
Notes in Computer Science, vol. 1248. Springer, Heidelberg (1997)

Bergenthum, R., Mauser, S., Lorenz, R., Juhds, G.: Unfolding Semantics of Petri
Nets Based on Token Flows. Fundam. Inform. 94, 331-360 (2009)

Best, E., Devillers, R.R., Hall, J.G.: The Box Calculus: a New Causal Algebra with
Multi-label Communication. In: Rozenberg [30], pp. 21-69

Boudol, G., Castellani, I.: On the semantics of concurrency: partial orders and
transition systems. In: Ehrig, H., Kowalski, R.A., Levi, G., Montanari, U. (eds.)
TAPSOFT ’87. LNCS, vol. 249. Springer, Heidelberg (1987)

Chothia, T., Klejin, J.: Q-Automata: Modelling the Resource Usage of Concurrent
Components. Electronic Notes in Theoretical Computer Science 175(175), 153-167
(2007)

Droste, M., Kuich, W.: Semirings and Formal Power Series. In: Droste et al. [8],
ch. 1, pp. 3-28 (2009)

Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Mono-
graphs in Theoretical Computer Science. Springer (2009)

Esposito, A., Esposito, A.M., Vinciarelli, A., Hoffmann, R., Miiller, V.C. (eds.):
Cognitive Behavioural Systems. LNCS, vol. 7403. Springer, Heidelberg (2012)
Fichtner, I., Kuske, D., Meinecke, I.: Traces, series-parallel posets, and Ppictures:
a weighted study. In: Droste et al. [8], ch. 10, pp. 405-452 (2009)

Filop, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste
et al. [8], ch. 9, pp. 313-404 (2009)

Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. SOFTWARE - PRACTICE AND EXPERIENCE
30(11), 1203-1233 (2000)

Gischer, J.L.: The Equational Theory of Pomsets. Theoretical Computer Science
61, 199224 (1988)

Grabowski, J.: On Partial Languages. Fundamenta Informaticae 4(2), 428-498
(1981)

Hack, M.: Petri net languages. Technical Report Memo 124, computation structures
group, massachusetts institute of technology (1975)

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Hoare, T., Moller, B., Struth, G., Wehrman, I.: Concurrent Kleene Algebra and
its Foundations. The Journal of Logic and Algebraic Programming 80, 266—-296
(2011)

Huber, M.: PNTool-Homepage (2014). www.informatik.uni-augsburg.de/
lehrstuehle/inf/mitarbeiter /huber/software/

Huber, M., Lorenz, R.: Constructing Petri Net Transducers with PNTool. In:
Moldt, D., Rolke, H. (eds) Proceedings of the International Workshop on Petri
Nets and Software Engineering, Co-located with 35th International Conference on
Application and Theory of Petri Nets and Concurrency (PetriNets 2014) and 14th
International Conference on Application of Concurrency to System Design (ACSD
2014), Tunis, Tunisia, June 23-24, 2014, vol. 1160 of CEUR Workshop Proceedings,
pp. 339-341. CEUR-WS.org (2014)

Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use, vol. 1 of EATCS Monographs in Theoretical Computer Science. Springer
(1992)

Kuske, D., Meinecke, I.: Branching Automata with Costs - A Way of Reflecting
Parallelism in Costs. Theoretical Computer Science 328, 53-75 (2004)

Lorenz, R., Desel, J., Juhds, G.: Models from Scenarios. T Petri Nets and Other
Models of Concurrency 7, 314-371 (2013)

Lorenz, R., Huber, M.: Petri Net Transducers in Semantic Dialogue Modelling.
In: Proceedings of “Elektronische Sprachsignalverarbeitung (ESSV)”, vol. 64 of
Studientexte zur Sprachkommunikation, pp. 286-297 (2012)

Lorenz, R., Huber, M.: Realizing the Translation of utterances into meanings by
petri net transducers. In: Proceedings of “Elektronische Sprachsignalverarbeitung
(ESSV)”, vol. 65 of Studientexte zur Sprachkommunikation (2013)

Lorenz, R., Huber, M., Strafiner, D.: Constructing petri net transducers with
PNTool. In: Proceedings of “Elektronische Sprachsignalverarbeitung (ESSV)”, vol.
71 of Studientexte zur Sprachkommunikation (2014)

Lorenz, R., Huber, M., Wirsching, G.: On weighted petri net transducers. In: Cia-
rdo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 233-252.
Springer, Heidelberg (2014)

Mohri, M.: Weighted Automata Algorithms. In: Droste et al. [8], ch. 6, pp. 213-254
(2009)

Pommereau, F.: Quickly Prototyping Petri Nets Tools with SNAKES. In: Simu-
Tools, p. 17. ICST (2008)

Pommereau, F.: The SNAKES toolkit (2013). https://www.ibisc.univ-evry.fr/
fpommereau/SNAKES

Pratt, V.: Modelling Concurrency with Partial Orders. Int. Journal of Parallel
Programming 15, 33-71 (1986)

Rozenberg, G. (ed.): APN 1992. LNCS, vol. 609. Springer, Heidelberg (1992)
Schlosser, C.: Entwurf und Implementierung von Algorithmen zur gewichteten
Ubersetzung partieller Worter mit Petrinetz-Transduktoren. Master thesis, Augs-
burg University (2014)

Strassner, D.: Prototypische Implementierung von Petrinetz-Transduktoren mit
SNAKES. Bachelor thesis, Augsburg University (2013)

P. team. PNML.org: The Petri Net Markup Language home, p. 8 (2011). http://
www.pnml.org

van Biljon, W.R.: Extending Petri nets for specifying man-machine dialogues. Int.
J. Man-Mach. Stud. 28(4), 437-455 (1988)

van der Aalst, W.M.P.: Verification of Workflow Nets. In: Aéma and Balbo [2], pp.
407-426

76

36.

37.

38.

39.

40.

41.

van Rossum, G., Drake, F.L.: The Python Language Reference Manual. Python-
Labs, Virginia (2001)

Wang, F.-Y., Mittmann, M., Saridis, G.N.: Coordination specification for CIRSSE
robotic platform system using Petri net transducers. Journal of Intelligent and
Robotic Systems 9, 209-233 (1994)

Wang, F.-Y., Saridis, G.N.: A model for coordination of intelligent machines using
Petri nets. In: Proceedings of the IEEE International Symposium on Intelligent
Control, pp. 28-33. IEEE Comput. Soc. Press (1989)

Wirsching, G., Huber, M., Kolbl, C.: Zur logik von bestenlisten in der dialogmodel-
lierung. In: Proceedings of “Elektronische Sprachsignalverarbeitung (ESSV)”, vol.
61 of Studientexte zur Sprachkommunikation, pp. 309-316 (2011)

Wirsching, G., Huber, M., Kolbl, C., Lorenz, R., Romer, R.: Semantic dialogue
modeling. In: Esposito et al. [9], pp. 104-113

Wolff, M.: Akustische Mustererkennung. Habilitation (2009)

