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Abstract

The application of synthesis of Petri nets from languages
for practical problems has recently attracted increasing at-
tention. However, the classical synthesis problems are often
not appropriate in realistic settings, because usually it is
not asked for plain-vanilla Petri net synthesis, but specific
additional requirements have to be considered. Having this
in mind, we in this paper survey variants of the classical
language based synthesis problems and develop respective
solution algorithms. This yields a large repertoire of syn-
thesis procedures presented in a uniform way.

1 Introduction

In early stages of system modelling, scenarios or use
cases are often the most intuitive and appropriate model-
ing concept. However, for the final purposes of modelling,
namely the follow-up with documentation, analysis, sim-
ulation, optimization, design or implementation of a sys-
tem, usually integrated state-based system models are de-
sired. To bridge the gap between the scenario view of a
system and a final system model, automatic construction of
a system model from a specification of the system behav-
ior in terms of single scenarios is an important challenge in
many application areas. In particular, in the field of soft-
ware engineering the step of coming from a user oriented
scenario specification to an implementation oriented state
based model of a software system received much attention
in the last years and offers great potential for automation
[12]. Similar problems also occur in the domains of busi-
ness process design (not only restricted to the well-known
field of process mining [19, 4]), hardware design and con-
troller synthesis. In all these areas a popular choice for a
final system model, especially if concurrency is involved,
are Petri nets and domain specific dialects of Petri nets.

In the field of Petri net theory, algorithmic construc-
tion of a Petri net model from a behavioral specification is
known as synthesis [11, 2]. The classical synthesis prob-
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lem is the problem to decide whether, for a given behav-
ioral specification, there exists an unlabeled Petri net, such
that the behavior of this net coincides with the specified be-
havior. In the positive case a synthesis algorithm usually
constructs a witness net. Theoretical results in the literature
mainly differ in the Petri net class and the model for the
behavioral specification considered. Synthesis can be ap-
plied to various classes of Petri nets, including elementary
nets [11], place/transition nets (p/t-nets) [2] and inhibitor
nets [14]. On the one hand, the behavioral specification
can be given by a transition system or by a step transi-
tion system [2], referred to as synthesis up to isomorphism.
On the other hand, synthesis can be based on a language,
the so called synthesis up to language equivalence. A lan-
guage models scenarios of the searched net and therefore
languages are the kind of specification we are interested in
here. As languages, finite or infinite sets of scenarios given
by occurrence sequences, step sequences [8, 1, 2] or par-
tially ordered runs [13, 5] can be considered. In this paper
we consider synthesis of a p/t-net from a finite language of
occurrence sequences.

1.1 Synthesis with Regions

The theoretical basis of Petri net synthesis is the so called
theory of regions. All approaches to Petri net synthesis
based on regions of languages roughly follow the same idea
(seee.g. [2, 13, 14]):

— Let L be the specified language. Instead of solving the
synthesis problem (is there a net with the behavior specified
by £?) and then — in the positive case — synthesizing a wit-
ness net, a net is directly constructed from L.

— The construction starts with the transitions 7" taken from
the action names of L.

— The behavior of the net is restricted by the addition of
places (including their connections to transitions of the net
and their initial markings).

— Places not generating dependencies which contradict the
language specification £ are candidates to be added to the
net. If the behavior of a net consisting of the set of transi-
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tions 7" and one place p includes the behavior specified by
L, then p is such candidate place. These candidate places
are called feasible w.r.t. L. Adding all feasible places yields
the so called saturated feasible net N, which includes the
behavior specified by £ and has minimal additional behav-
ior. The language £(N,) generated by N, represents the
best upper approximation to £ by a Petri net language.

— The set of feasible places w.r.t. L is structurally defined
by so called regions of L. Each region r of L yields a cor-
responding feasible place p, and each feasible place p cor-
responds to some region r of L.

— In literature, there are several region definitions for vari-
ous types of languages, e.g. [8, 1, 2, 13, 5, 14]. In all cases
aregion r of £ can be given by a vector of integer numbers
and the set of all regions is given as the set of solutions of
an inequality system A, - r > c.

— When all, or sufficiently many, regions r are identified,
all places p, of the synthesized net are constructed. The
crucial point is that the set of all regions is in general infi-
nite, whereas in most cases finite sets of regions suffice to
represent N .. As discussed in [14], we distinguish two dif-
ferent principles of computing from the set of all regions a
finite Petri net N representing N, namely the separation
computation and the basis computation. In the first case it
is searched for solutions of A o - r > ¢ which separate min-
imal behavior not specified in £. In the second case a set of
basis solutions of A, - r > ¢ is computed.

— If the behavior £L(N) of N coincides with the behavior
specified by £, then the synthesis problem has a positive an-
swer; otherwise there is no net having the behavior specified
by L, i.e. the synthesis problem has a negative answer.

In our setting of the synthesis of a p/t-net from a finite
language of occurrence sequences we consider the well es-
tablished definition of p/t-net regions for languages of oc-
currence sequences presented e.g. in [2, 4]. In this defini-
tion the vector entries of r directly correspond to the initial
marking of p, and the weights of arcs connected with p,
(such regions are subsumed under the notion of transition
region in [14]). Then, there are basically two procedures to
solve the classical synthesis problem, one using separation
representation and one using basis representation.

1.2 Synthesis Variants

In this paper, we are interested in variants of the classical
synthesis problem varying the problem parameters by either
relaxing or additionally restricting the requirements on the
synthesized net. The problem variants cover aspects rele-
vant for different potential applications of Petri net synthe-
sis. We formulate six main problem variants as well as sev-
eral interesting versions of these variants. For all presented
variants we show solution algorithms. That means, this
paper poses and solves a lot of interesting synthesis ques-

tions going beyond the classical synthesis problem. A key
point is that all the stated problem variants can be solved by
(mostly non-trivial) variations of the same two procedures
to solve the classical problem. Thus, the paper presents a
uniform treatment of the variants covering a wide range of
synthesis problems. While some of the discussed problem
variants are new, others have already been formulated in the
literature (see the following table). But in the latter case
there has usually been presented one solution algorithm for
the respective variant. In contrast, in this paper we system-
atically consider possible solution algorithms for the prob-
lems regarding the ideas of both computation principles.

The following table (for details see the respective sec-
tions) lists the problem variants discussed in this paper. We
formulate six main variants. In the "Bound” variant a lower
and an upper language bound for the behavior of the syn-
thesized net is considered. The “Place Bound” variant sets
a bound for the number of places of the synthesized net. In
the “Identifying States” variant it is postulated that certain
runs of the synthesized net lead to the same marking. In the
”Best Upper Approximation” respectively the "Best Lower
Approximation” variant it is searched for a net whose be-
havior is a best upper respectively lower approximation to
the given language. In the ”Optimization Minimal Weights”
variant, it is asked for a net with minimal arc weights and
initial place markings. For most of these problem variants
we also consider some slight variations, listed in the table
as “versions”. By references it is shown which problem
variants have already been discussed in literature before.
Thereby, we distinguish the applied computation principles
(also references where a similar problem is discussed in lit-
erature possibly in some other context independently from
region theory are shown in the column ”simil. prob. lit.”).
The check marks indicate by which computation principles
the problem variants are solved in this paper. As in the case
of the classical synthesis problem, the "Bound” variant and
the “’Identifying States” variant are solved with polynomial
time consumption. The runtime of the solution algorithms
of the other variants may be problematic in large settings.

The paper is structured as follows: First, in Section
2, we show that the uniform discussion of variants of
the classical synthesis problem adds a new dimension
to a synthesis framework developed in [14]. Then, the
technical part starts. The classical synthesis problem is
solved with both computation principles in Section 3. In
Section 4, solution algorithms for the considered variants
of the classical problem are developed for separation and
basis computation. For the interested reader, we provide
some additional information on the topic of this paper
in a technical report on our homepage (http://www.ku-
eichstaett.de/Fakultaeten/MGF/Informatik/Publikationen/
f_/2009ACSDVariantsTechRep.pdf). =~ Namely, the two
algorithms of Section 3 to solve the classical synthesis
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problem are presented in detailed pseudo-code and for the
classical problem as well as for each considered problem
variant an example including more detailed motivation
of the problem is provided. Readers interested in certain
variants can look up these examples to gain deeper insights.

separation basis simil.
Variant comp. comp. prob.
lit. | here | lit. | here lit.
Bound - v [7] v -
Version Unwanted - v - v -
Version Conform. - v - v [16]
Place Bound - v - - [6, 19]
Version Minimal - v - - [6]
Version Sub-Net [8] v - v [19]
Identifying States - v - v -
Version Separ. - v - v [2]
Best Upper Approx. | - v 81 v -
Best Lower Approx. | - v - | ) -
Version Subset - v - W) -
Opti. Min. Weights - v - - [19]
Version Bound - v - - -
Version Global - v - - [6, 10]

2 Framework

Recently, we examined the detailed analogies and dif-
ferences in synthesis approaches based on regions of lan-
guages [14]. We identified two different types of regions,
called transition regions and token flow regions (this is not
explained in more detail here), and two different princi-
ples of computing from the (infinite) set of all regions a fi-
nite Petri net representing the saturated feasible net, namely
the already mentioned principles of separation computation
and basis computation [14]. Instead of solving the synthe-
sis problem for a certain net class and a certain language
specification, we presented a framework for region based
synthesis of Petri nets from languages, which integrates al-
most all approaches known in literature and filled several
remaining gaps [14]. The framework has four dimensions
defining a synthesis setting: Petri net class, language type,
region type and computation principle (see Fig.1). The first
two dimensions define the synthesis problem, while the lat-
ter two determine a solution principle. Given a language
type and a Petri net class, usually all four combinations of
region type and computation principle yield a solution algo-
rithm for the respective synthesis problem. The region type
together with the language type and the Petri net class de-
termines the inequality system A, - r > c defining the set
of regions. A synthesis algorithm then only depends on this
inequality system and on the computation principle. The
two principles of separation and basis computation are ap-
plicable for almost all inequality systems in the same way,
i.e. with the central ideas of each of the two computation

framework of [14] for the
classical synthesis problem

framework extended by
problem variant

Figure 1. Synthesis framework.

principles nearly all synthesis settings can be solved. This
systematic classification of synthesis approaches has been
developed for the standard classical synthesis problem.

In this paper we solve the mentioned variants of the clas-
sical problem in the setting of the synthesis of a p/t-net (net
class) from a finite language of occurrence sequences (lan-
guage type) using transition regions (region type), whereas
we apply both separation and basis computation (compu-
tation principle). The problem variants are solved by ap-
propriate modifications of the solution algorithms for the
classical synthesis problem. For each variant, we highlight
the main ideas for adapting the two computation principles
such that, similarly as for the classical synthesis problem
(see [14]), the solution algorithms of the variants can in
most cases easily be adapted to other synthesis settings, i.e.
to other net classes such as inhibitor nets, to other language
types such as partial languages and to the region type of
token flow regions. Again, switching to other synthesis set-
tings by changing net class, language type or region type
only changes the inequality system A s - r > c defining re-
gions, but the algorithmic ideas depending on the computa-
tion principle stay the same (apart from some adjustments).
That means, as sketched in Fig. 1, considering different
variants of the classical synthesis problem may be seen as a
fifth dimension added to the synthesis framework presented
in [14]. Altogether, each problem variant, although pre-
sented in our example setting, is discussed in the context
of the general framework shown in Fig. 1 by highlighting
the crucial ideas of the two computation principles.

Note that the setting considered in this paper is restricted
to finite languages and adaptations of the synthesis algo-
rithms to finitely represented infinite languages entail sev-
eral difficulties not discussed here (requiring considerations
going beyond [14]). In the case of occurrence sequences an
overview how to deal with infinite languages is described
in [8] and in [5] a synthesis approach for infinite partial
languages is shown. Concerning applicability of the algo-
rithms, finiteness is a crucial restriction. We consider exact
synthesis algorithms which will not generate loop behavior
if this is not specified. However, real systems often exhibit
loop behavior. In order to be able to handle certain kinds
of finite specifications of loop behavior, the algorithms still
have to be generalized along the lines shown e.g. in [8, 5].
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3 Classical Synthesis Problem

We start the technical part of the paper with basic no-
tions. A p/t-net N is a triple (P, T, W), where P is a (pos-
sibly infinite) set of places, T" is a finite set of transitions
satisfying PNT =0, and W : (P xT)U (T x P) — Nis
an (arc) weight function defining the flow relation (N de-
notes the non-negative integers). A marking of a net N
is a function m : P — N € N¥ (called multi-set over
P) assigning m(p) tokens to a place p € P. A marked
p/t-net is a pair (N, mg), where N is a p/t-net, and mq
is a marking of N, called initial marking. A transition
t is enabled to occur in a marking m of a p/t-net N, if
m(p) > W {(p,t) foreach p € P. In this case, its occurrence
leads to the marking m/(p) = m(p) + W(t,p) — W(p,t),

abbreviated by m L5 m/. A finite sequence of transitions
o=t ...t, € T", n € N, is called an occurrence se-
quence enabled in a marking m and leading to m,, de-
noted by m —2 m,, if there exists a sequence of markings
mi, ..., My such that m A, mi B ILN my,. The
set of all occurrence sequences enabled in mq is denoted
by L(N,mp). The set L(N,my) C T* is a language over
the alphabet 7. The language L£(N,myq) is prefix closed,
ie.ifty...t, € L(IN,mg) then each proper prefix ty .. .t;,
1 < n,(denotedbyty...t; <ty...tp)isalsoin L(N,mg).
The commutative image of a sequence of transitions o € 1™
is the multiset [0] € N”" whose respective entries [o](t)
count the number of occurrences of t € 7 in o.

In our setting, the synthesis starts with a prefix closed fi-
nite language of occurrence sequences £ C 7™ over a fixed
finite alphabet (of transitions) 7' [8, 4].

Problem 1 (Classical Synthesis Problem). Given L, de-
cide whether there exists a p/t-net (N, mg) fulfilling
L(N,mg) = L and compute such net in the positive case.

As stated we apply the region type called transition re-
gion for computing places of the synthesized net. De-
noting T' = {t1,...,t,}, a region of L is a tuple r =
(ro,...,ron) € N?"H1 satisfying
(x) 1o+ 32 ([w](t) - i — [wi](t:) - rnsi) 20
for every wt € L (w € L,t € T). Every region r of L
defines a place p, via mo(py) = 7o, W(ts,pr) == 7; and
W (py,t;) == rp4q for 1 < @ < n. The place p, is called
corresponding place to r. Regions exactly define so called
feasible places: If (N, mp), N = ({p}.T,W,) is a marked
p/t-net with only one place p (W,,, m,, are defined accord-
ing to the definition of p), the place p is called feasible (w.r:t.
L), if L C L(N,my), otherwise non-feasible. That means,
feasible places do not prohibit behavior specified by £. A
central theorem establishes that each place corresponding
to a region of L is feasible w.r.t. £ and each place feasible
w.r.t. £ corresponds to a region of L [8, 4].

The set of regions can be characterized as the (infinite)
set of non-negative integral solutions of a homogenous lin-

ear inequality system A, - r > 0 [4] with integer coeffi-
cients. The matrix A, encodes property (). It consists of
rows a,, satisfying a,; - r > 0 < (%) for each wt € L.
Note that (x) only depends on [w] and ¢, i.e. a,,; may be
equal for different wt € L (duplicate a,,; are omited).

3.1 Separation Computation

To compute a finite net, we first use the principle of sep-

aration computation. The idea behind this strategy is to add
such feasible places to the constructed net, which separate
specified behavior from non-specified behavior. For each
w € L and each t € T such that wt ¢ L, one searches
for a feasible place p,,;, which prohibits the occurrence of
wt. Such wt is called wrong continuation and the set com-
prising of all wrong continuations is denoted by WC. A
feasible place p,,; prohibiting a wrong continuation wt is
called separating feasible place w.r.t. wt. If there is such a
separating feasible place for wt € WC, it is added to the
net. The number of wrong continuations (and thus the num-
ber of places) is bounded by |£| - |T'|. The constructed net
(N, mg) containing one separating feasible place for each
wrong continuation, for which such place exists, is finite.
Separating feasible places are computed through separat-
ing regions. A region r of L is a separating region w.r.t. a
wrong continuation wt if
(%) 70+ 30, ([wl(ts) - s — wtl(t:) - Pss) < O.
In [8, 4, 1] it is shown that a separating feasible place w.r.t.
a wrong continuation wt corresponds to a separating re-
gion w.r.t. wt and vice versa. A separating region r w.r.t.
wt € WC can be calculated (if it exists) as a non-negative
integer solution of a homogenous linear inequality system
with integer coefficients of the form A, -r > 0,b,,,-r < 0,
where the vector b,,; is defined in such a way that by, -r <
0 < (*x). Note that (xx) only depends on [w] and t, i.e.
b, may be equal for different wt € WC' (duplicate by,
can be neglected). If there exists no non-negative integer
solution of the system A, -r > 0, by, - r < 0, there exists
no separating region w.r.t. wt, and thus no separating feasi-
ble place prohibiting wt. If there exists a non-negative inte-
ger solution, any such solution defines a separating feasible
place prohibiting wt. In order to decide the solvability of
the inequality system and to compte a solution in the pos-
itive case several linear programming solvers, such as the
Simplex method, the method by Khachyan or the method
of Karmarkar, can be applied [18] (the latter two have poly-
nomial runtime). It is important here that the homogene-
ity of the system enables the use of such solvers searching
for rational solutions, since multiplying with the common
denominator of the entries of a rational solution yields an
integer solution.

The final synthesis algorithm Algorithm 1 to solve Prob-
lem 1 works as follows [4]: Each wrong continuation is

92



processed. For a wrong continuation the solvability of the
corresponding inequality system is decided. If there is no
solution, the synthesis problem has a negative answer. If
there exists a solution, one such solution is chosen and the
corresponding separating feasible place is added to the net.
If there is such a separating feasible place for every wrong
continuation, it was shown in [8, 4] (by proving that it is
enough to prohibit the set of wrong continuations of £ in
order to prohibit all w ¢ L) that the synthesis problem has a
positive answer and the constructed net is a respective wit-
ness net. Choosing a solver running in polynomial time,
the synthesis algorithm has a polynomial time consumption
[1, 4]. This basic synthesis procedure is improved by the
following principle: For not yet processed wrong continua-
tions, that are prohibited by feasible places already added to
the constructed net, we do not have to calculate a separating
feasible place. Therefore, we choose a certain ordering of
the wrong continuations. We first add a separating feasible
place for the first wrong continuation (if such place exists).
Then, we only add a separating feasible place for the sec-
ond wrong continuation, if it is not prohibited by an already
added feasible place, and so on.

3.2 Basis Computation

Instead of the separation computation, we can also use
the principle of basis computation to compute a finite net.
The idea here is to add a finite subset of the infinite set of
feasible places to the constructed net, such that this sub-
set restricts the behavior of the net in the same way as
the set of all feasible places. The set of solutions of the
system Ay -r > 0,r > 0 defines a pointed polyhedral
cone. Since all values in A, are integral, there always ex-
ists a minimal set of integer solutions {y1,...,yn}, such
that each solution x is a non-negative linear combination of
{¥1,....yn}of the formx = Y7 | \;y; for real numbers
Aly...sAp = 0 [18]. This set is unique up to dilation and
given by the rays of the cone. It can be computed e.g. by the
algorithm of Chernikova, which has exponential runtime in
the worst case. The problem is that the size of {y1,...,yn}
may be exponential, but it often has a reasonable size. We
call the elements of this set basis regions. It is shown in
[8, 4] that the saturated feasible net has the same set of oc-
currence sequences as the finite net (IV, mg) consisting only
of feasible places corresponding to basis regions. Thus,
(N, mg) represents a best upper approximation to L, i.e.
L C L(N,mp) and V(N'mp) : (L C L(N',m()) =
(L(N,mg) € L(N',m()). Consequently, either (N, mg)
solves the synthesis problem positively or the problem has
a negative answer. It remains to check whether (N, my)
solves the synthesis problem positively or not. For this one
can either compute £(N,mq) (which is finite [4]) and test
whether £(N,mg) C L, or one can check whether each

wrong continuation of £ is not enabled in (NN, myg).

The final synthesis algorithm Algorithm 2 to solve Prob-
lem 1 works as follows [4]: The set of basis regions of
Ay -r > 0,r > 0is computed, and the finite set of fea-
sible places corresponding to basis regions is added to the
net. For the resulting net (N, my) it is checked whether
L(N,mg) = L or not. In the positive case the synthesis
problem has a positive answer and (N, mg) is a respective
witness net. In the negative case the synthesis problem has
a negative answer.

4 Variants of the Classical Synthesis Problem

In this section we discuss variants of the classical synthe-
sis problem accounting for typical requirements on a system
model going beyond the classical synthesis question. Since
the variants considered cover a wide field of problems, the
solution methods presented in this section constitute a large
repertoire of synthesis procedures.

4.1 Bound Variant

Instead of specifying a language and asking whether the
language can exactly be reproduced by a net, one can spec-
ify two languages representing a lower and an upper bound
for the behavior of a net. It is asked whether there is a net
having more behavior than specified by the first language,
but less behavior than specified by the second one. This
problem variant is useful in the frequent situations of in-
complete specifications, since it is possible to specify some
range of tolerance for the behavior of the synthesized net.
The variant is particularly relevant in the application field
of control synthesis [7, 10] (see e.g. [9, 15, 3, 10] for re-
fined versions of the supervisory control problem).
Problem 2 (Bound Variant). Given L, L', L C L', decide
whether there exists a marked p/t-net (N, my) fulfilling L C
L(N,mg) C L" and compute such net in the positive case.

The bound variant can be solved by considering regions
w.r.t. L as before (nets only having feasible places w.r.t £
are candidates), but wrong continuations resp. the set inclu-
sion test is considered for £’. Using Algorithm 2 the bound
variant is solved in [7] considering a regular language and
pure nets or p/t-nets. Regarding the best upper approxima-
tion property of (N, my), itis clear that if in Algorithm 2 the
test whether L£(IN,mg) C L is replaced by a test whether
L(N,mg) C L', the algorithm solves Problem 2. More ef-
ficiently, Problem 2 can be solved by changing Algorithm
1 as follows: for each wrong continuation wt € WC' w.r.t.
L' it is searched for a separating region. If there is no such
separating region, there are two cases: Either w € L (it
always holds ¢ € L), then the formulated problem has a
negative answer, or w ¢ L, then w is considered as a wrong
continuation by adding it to the set W C'. If and only if the

93



first case never occurs, a positive answer to the synthesis
problem having (N, mg) as a witness can be deduced anal-
ogously as for Algorithm 1, since in this case some prefix
of each wrong continuation w.r.t. £’ is separated.

Version Unwanted: In applications an upper bound £’
may be specified indirectly by a set L representing a set
L= {w| 3w €L: w prefix of w} of unwanted behav-
ior. The upper bound £’ is then given by the complement of
L. The lower bound £ is given as usual by a specification of
wanted behavior. In this paper, L s finite. But the respective
upper bound £’ may be infinite. In the case of Algorithm 2,
instead of checking whether £L(N, mg) C L', one can test
whether for some w € L, there holds w € L£(N,mg). In
the positive case, the bound variant has a negative answer
(by the best upper approximation property of (N, myg)). In
the negative case, it has a positive answer having (N, mg)
as a witness. In the case of Algorithm 1, instead of consid-
ering wrong continuations w.r.t. £’, the set of occurrence
sequences that have to be separated is directly given by L.

Version Conformance: In some applications, behav-
ioral bounds are given by a conformance measure [ appro-
priately scaling the degree of conformance of a language
and a p/t-net. Then, a value j specifies a lower con-
formance bound. Given a language L, a p/t-net (N, my)
fulfilling £ C L(N,mg) and respecting the conformance
bound through w((N,mg),L) > po may be searched.
While £ defines the lower behavioral bound, the confor-
mance bound can be seen as an upper bound for the be-
havior of the searched net. In the case p is monotonic for
upper approximations of the language in the sense that for
L C L(N,mo) C L(N',m) there holds p((N, mg), L) >
w((N',m{), L), the formulated problem can be solved
as follows: Start computing a best upper approximation
(N, mg) to L as shown later on, and then accomplish a con-
formance test whether p((N, mg), £) > po. In the case of a
synthesis algorithm that adds feasible places stepwise such
as Algorithm 1, the conformance test can also be accom-
plished in each step of the algorithm, and if the test is pos-
itive, the so far computed net solves the problem. A trivial
monotonic conformance measure is p((N,mg),L) = 1 —
(JIL(N,mo) \ L|)/|L(N, mg)| (@ is 0 for infinite L(N, mg)
and 1 for £L(N,mo) = £). Examples for more advanced
conformance measures are shown in [16]. In particular, the
behavioral appropriateness metrics a p of [16] is monotonic.

4.2 Place Bound Variant

A crucial requirement in practice is synthesizing com-
pact, manually interpretable reference models [19]. In par-
ticular, Petri nets having a small number of components are
desired. Thus, an interesting problem is whether there ex-
ists a net having at most a specified number of places, which
has the specified behavior.

Problem 3 (Place Bound Variant). Given L and a bound
b € N\{0}, decide whether there exists a p/t-net (N, mg) =
(P, T,W,mqg), |P| <b, fulfilling L(N, mg) = L and com-

pute such net in the positive case.

Using Algorithm 1 the problem can basically be solved
by partitioning the set of wrong continuations to b sets
WCi,...,WCy. If for one such partition (there are expo-
nentially many of these partitions) it is possible to separate
the b sets of wrong continuations each by one feasible place,
the synthesis problem has a positive answer, otherwise a
negative answer. An advantage of this approach is that still
standard (polynomial) linear programming techniques can
be applied to small problem instances.

But it is also possible to apply a more advanced tech-
nique following ideas developed in [6]. Although, as stated
in [6], the approach in [6] is not a region based synthesis
procedure, the presented principle of considering an integer
linear programming problem can also be used in our set-
ting of regions of languages. The place bound variant can
be solved by solving the following system: A, - r! > 0,
i€ {l,...,b} | —k-swti+ by vt <0,i€{1,...,b},
wt € WC | Y0 s <b—1,wt € WC | v € N2t
i€ {l,...;b} [k € N[sy; € {0,1},4 € {1,...,b},
wt € WC. The vectors r’ represent b regions by the in-
equalities A, - r® > 0. If Swi,i = O then the constraint
—k-sut,i+buwt -r’ < 0is active yielding the usual constraint
to separate the wrong continuation wt by the region r*. If
Swt,i = 1 the constraint can be easily verified by choosing
the variable k large enough, thus resulting in a redundant
constraint. Moreover, the condition Z?:l Sweg < b—1
implies that at least one s, ; is equal to zero, i.e. for each
wrong continuation wt one constraint is active ensuring that
wt is separated by one of the regions r’. This guarantees
that if there is a solution of the system, all wrong continu-
ations are separated by one of the b feasible places corre-
sponding to r', ..., r’ ie. we have a solution net to Prob-
lem 3. Conversely, if Problem 3 has a solution net, the
integer linear programming problem has a solution as fol-
lows: r? can be chosen such that each place of the net cor-
responds to one r’. Furthermore, set swt,i = 0 if the place
corresponding to r* separates wt, and otherwise s, ; = 1.
Choosing k large enough, this ensures that all constraints
—k - Swii + by - r’ < 0 are satisfied. Since every wrong
continuation is separated by one place of the net, the con-
straint Z?:l Swt,i < b—11is fulfilled.

The arising integer linear programming problem can be
solved by standard methods [18] (solving a series of usual
linear programming problems) such as branch and bound
algorithms or the cutting-plane (Gomory) method. Both
have exponential runtime in the worst case. The presented
inequality system is large, which may cause performance
problems. But state of the art integer linear programming
solvers are very efficient, such that also large problems can
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be handled.

Lastly, concerning Problem 3, Algorithm 2 is only use-
ful as a kind of pre-processing: Instead of defining the set
of feasible places by solutions of an inequality system, they
can be given as linear combinations of the places corre-
sponding to basis regions.

Version Minimal: An algorithm solving the place
bound problem can be used to construct a net with a mini-
mal number of places solving the synthesis problem. First it
has to be checked if the synthesis problem is solvable. In the
positive case one decides whether the place bound variant is
solvable for b = 0, then for b = 1, then for b = 2 and so on.
The smallest b giving a positive answer, yields the solution
to the formulated problem and the algorithm terminates.

Again following ideas in [6], the version of the synthesis
problem optimizing the number of places can also be solved
by an integer linear programming problem. If the classical
synthesis problem is solvable, then consider the number b
of places of a solution net and solve the following problem:
Ap-v* >0,i€{l,....b} | =k - S+ by -1° <0,
ie{l,...,bhwt e WC |0 suri <b—1,wt € WC
| k2 — Stgrh > 0,0 € {1,...,b} [ r! € N2+l
i€ {l... .0} | k€ N| 2,800 € {0,1},7 € {1,...,0},
wt € WC | min! Z?:l z;. The inequality system is the
same as before with additional binary variables z; and in-
equalities k - z; — 2320 r; > 0. If z; = 1 this constraint
is trivially fulfilled by choosing k large enough. In the case
z; = 0 the constraint is only satisfied if r* = 0, i.e. the place
defined by r' is the redundant zero place. Additionally, the
integer linear program minimizes Z?:l z;. Therefore, as
many as possible r’ are set to zero such that the correspond-
ing places can be omitted from the computed net. Thus,
solving this problem yields a net solving the synthesis prob-
lem and having a minimal number of places.

Version Sub-Net: A relaxed and simpler problem is
constructing a net solving the synthesis problem which has
no sub-net also solving the synthesis problem. This can be
achieved by answering the usual synthesis problem and in
the positive case exploring all places of the synthesized net
in an arbitrary order. In the case of Algorithm 1 for each
place it is checked whether the place can be removed and
still all wrong continuations are separated by the remaining
places. Note that choosing another ordering of exploring the
places may lead to a net with a smaller number of places [8].
Actually, the proposed procedure means to check for each
place if it is implicit. Searching for implicit places can also
be applied in the case of Algorithm 2. Heuristics to find im-
plicit places can be used to construct approximate solutions.

4.3 Identifying States Variant

In a system specification, there may be partial informa-
tion about states of the system, e.g. error states and nor-

mally terminating states. Typically, it is specified that some
executions yield the same state. Such information can be
integrated in synthesis methods.

Problem 4 (Identifying States Variant). Given L and pair-
wise disjoint L1, ..., L; C L, decide whether there exists a
p/t-net (N, mg) fulfilling L(N, mgo) = L such that for each
Jj € {1,...,1} the occurrence of all o € Lj leads to the
same marking, and compute such net in the positive case.

The additional requirements define additional restric-
tions for regions. Fix o; € L; for each j € {1,...,1}.
Then for each 0 # 05, 0 € Lj, add two rows s, =
(86,0, - -y So2n) and —s, to matrix A £, such thats,-r > 0
and —s, - r > 0 if and only if the occurrence of o and o
lead to the same number of tokens in p,.:

0 fori =10
Sg,i = [o](t:) — [o5](ts) fori=1,...,n
—[o](ti—n) +loj](ti—n) fori=n+1,...,2n

Considering this extended matrix A, Algorithm 1 and
2 solve Problem 4.

Version Separating: The state variant can be general-
ized by not only specifying equal states but also separated
states. That means, for certain pairs (£;, £;) the two mark-
ings defined by £; and L; are specified to be different. For
this the marking in one place separating these two states has
to be different. In the case of Algorithm 1 feasible places
separating such states can be computed similarly as fea-
sible places separating wrong continuations, i.e. for each
such pair of states it is tried to solve the inequality system
A/ -r > 0,r > 0 considered in this subsection together
with (instead of by, - r < 0) an inequality ensuring that
the resulting feasible place separates the two states (defined
by rows similar to s,). Concerning Algorithm 2, the net
(N, mg) computed with the inequality system of this sub-
section is a candidate to solve the problem, i.e. it is suffi-
cient to check if for each specified pair (£;, £;) of different
markings, the two final markings given by the occurrence
of o; and o; in the net (N, mg) are different. If this is
not the case, no feasible place satisfying the requirement
of Problem 4 separates these two states, since each such
feasible place is a non-negative linear combination of the
places of (N, mg). Consequently, the problem has a nega-
tive answer. Completely specifying which states are equal
and which states are separated yields the classical problem
of synthesis up to isomorphism [2].

4.4 Best Upper Approximation

The previous synthesis problems do not require the com-
putation of a net, if exact synthesis is not possible. But
typical applications ask for the construction of a reasonable
system model from arbitrary specifications. For this pur-
pose, synthesis of (best) approximate solutions is appropri-
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ate. Thereby, synthesizing upper approximations to specifi-
cations is useful, because in many applications of net syn-
thesis the behavior explicitly specified by a language should
definitely be included in the language of the synthesized
model. Best upper approximations ensure that only nec-
essary additional behavior is added to the synthesized net.
Thus, computing a best upper approximation may be seen as
anatural completion of the specified language by a Petri net.
Generally, in applications often approximate system models
are sufficient and sometimes upper approximations to spec-
ifications are even desired, since system specifications in
practice are typically incomplete. Formally, we here con-
sider synthesis algorithms generating a net with a language
which is included in each net language larger than the speci-
fied language and is itself larger than the specified language
[8]. The theory of regions shows that such net language
exists [8, 4]. This language is of course unique. In partic-
ular, it is the unique smallest net language larger than the
specified language.

Problem 5 (Best Upper Approximation Variant). Given L,
compute a marked p/t-net (N, my) fulfilling L C L(N,my)
and (Y(N'm{)) : (L(N,mg) \ LIN',my) #0) = (L £
L(N',mp)))-

As shown in Section 3, the first part of Algorithm 2
(without the check whether £(N,mg) = L) already solves
Problem 5. But computing the complete basis often leads to
performance problems. The net (N, mg) computed with Al-
gorithm 1 in general does not solve Problem 5, but (N, m)
is an upper approximation to £, i.e. £L C L(N,mg). The
reason is that even if there is no feasible place prohibiting
a wrong continuation w, there might be one prohibiting wt
— but such places are not added to (N, mg). Therefore, the
following adaptation of Algorithm 1 is necessary to solve
Problem 5: If there is no feasible place prohibiting a wrong
continuation w, for each transition ¢ try to construct a fea-
sible place prohibiting wt by considering wt as a wrong
continuation, and if there is no such place, for each ¢’ try
to construct a feasible place prohibiting wtt’, and so on.
In this algorithm the set of wrong continuations WC' may
grow, but the algorithm terminates: A sequence in which
a transition ¢ occurs more often than the maximal num-
ber of occurrences of ¢ in a sequence of £ can always be
separated by the feasible place p defined by W(p,t) = 1,
Wi(p,t') = 0fort' € T\ {t}, W(t',p) = 0fort' € T,
mo(p) = max{[w](t) | w € L}. Thus, the length of a
sequence added to WC'is bounded by >, . maz{[w](t) |
w € L}+1, and by construction no sequence is added twice
to WC'. The net (N, mg) computed by the sketched adap-
tation of Algorithm 1 fulfills the best upper approximation
property, since every sequence in L(N,mg) \ £ cannot be
prohibited by a feasible place, i.e. such sequence is included
in the behavior L(N', m()) of every net (N', m() fulfilling
L C L(N',mj).

4.5 Best Lower Approximation

Although upper approximations are more common, there
are also examples requiring the synthesis of lower approx-
imations. Lower approximations are nets having only be-
havior specified by the given language. This is useful in
the case the specification is complete, i.e. all behavior not
specified in the language is faulty behavior. In Petri net
theory, best lower approximations exhibit some difficulties
compared to best upper approximations. In particular, there
is no unique largest net language smaller than a specified
language, e.g. £ = {b,a,aa,aab} is no p/t-net language,
but {b,a,aa} and {a,aa, aab} are both p/t-net languages.
Therefore, it is not reasonable to formulate the best lower
approximation variant in such a strict way as in the case of
the best upper approximation variant. We here consider a
best lower approximation to be a lower approximation hav-
ing maximal behavior in the sense that no other lower ap-
proximation has a larger number of occurrence sequences
specified by the language.

Problem 6 (Best Lower Approximation Variant). Given L,
compute a marked p/t-net (N, my) fulfilling L O L(N,mq)
and (Y(N'mp) = (IC(N',mp)| > \L(N,mo)]) = (£ 2
L(N',m{))).

This problem can obviously be solved by solving the
classical synthesis problem for each prefix closed subset of
L. There are subsets with a maximal number of elements
for which Algorithm 1 resp. 2 yields a positive answer. A
net computed in such a case is a best lower approximation.

Using Algorithm 1 the problem can be solved a lot more
efficiently by applying the following procedure: First, apply
Algorithm 1 once and in doing so store all remaining wrong
continuations that cannot be separated. The computed net
is the starting point. In the following, it is only necessary to
consider the remaining stored wrong continuations. Thus,
simplify Algorithm 1 by substituting the usually large set
WC' by the usually small set of remaining stored wrong
continuations. Apply this simplification of Algorithm 1 to
all prefix closed subsets of £ in decreasing order (w.r.t. the
number of elements) until discovering some subset yielding
a positive answer. The places computed in such case sup-
plement the places of the starting net. This yields a net with
maximal behavior separating all wrong continuations.

The problem can also be encoded in an integer linear pro-
gram: k- zyt+ay v’ > 0,wt € L,ou € WC | —k-(1—
Zuwt T D <t Zwt’) +Aw T < 0, wt € L, ou e WC,
wt < vu | =k (D, 1cpn Zwt) + Boy - < 0,00 € WC
| 2wt < Zwe, W't < wt € L] 0¥ € N2"H py € WO |
ke N|zy €{0,1}, wt € L] min! Y . 2w Thereis
one vector r’" defining a place for each wrong continuation
vu. All wrong continuations have to be separated by places
such that the resulting net is a lower approximation. A
wrong continuation is also prohibited if some prefix is sep-
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arated. The constraints —k - (3, -, Zwt) + Doy -1 <0
require that vu is separated by r’“ or that z,; = 1 for
some prefix wt of vu (in the second case the constraint is
redundant, because k& can be chosen arbitrarily large). If
2yrpr = 1, then for all wt > w't’ we have z,; = 1 by
the constraints z,yr < zZwt. If z¢ = 1 the constraints
=k (1 = 2wt + D et Zwitr) + @yt - TV < 0 ensure
that wt is separated by r“, where wt < vu € WC, or
that z,,;» = 1 for some prefix w't’ of wt (in the second
case and in the case z,; = 0 the constraint is redundant,
because k can be chosen arbitrarily large). It is possible to
use r'" to separate wt, because r’" is not longer needed to
separate vu, i.e. r’" separates the minimal prefix wt of vu
with z,,; = 1. Since all words wt with z,,; = 1 are sep-
arated directly or indirectly by separating some prefix, we
do only require sequences wt with z,; = 0 to be enabled
by the constraints k -z, + a,¢ - % > 0. Altogether, the
places corresponding to r’*, vu € W, prohibit all wrong
continuations, i.e. the resulting net is a lower approxima-
tion to £, and all wt € £ with z,,; = 1 are prohibited while
all wt € L with z,,; = 0 are enabled. The objective func-
tion min! Zwt cr Fwt minimizes the number of prohibited
sequences wt € L, such that the resulting net is a best lower
approximation to L.

Version Subset: A weaker problem emerges by re-
placing (|L(N',mf)| > |L(N,mo)]) by (L(N',mp) 2
L(N,my)) in Problem 6. Then one searches for a lower ap-
proximation having maximal behavior w.r.t. set inclusion,
not w.r.t. the number of elements (for infinite languages
only this version is reasonable). This problem can be solved
analogously.

4.6 Optimization

As stated before, a major challenge in Petri net synthesis
is the creation of concise, readable nets (note that readabil-
ity is actually an empirical notion). A promising approach
to generate such nets is linear programming. A problem
that can be solved by linear programming methods is mini-
mizing arc weights and initial markings of places [6]. This
problem is exemplarily considered here, but also other ob-
jective functions are possible. In literature, objective func-
tions for guiding the construction of Petri nets have been
considered in [6, 4, 19].

Problem 7 (Minimal Weights Variant). Given L, de-
cide whether there exists a p/t-net (N, mg) fulfilling
L(N,mg) = L and in the positive case, compute such
p/t-net (N,mg) = (P,T,W,myg) satisfying additionally
maz{mo(p) + 3 yer(W(p,t) + W(t,p)) | p € P} <
max{mo(p) +>_er(W(p,t) + W(t,p)) | p € P'} for all
(N',mg) = (P, T,W' my) fulfilling L(N',my) = L.
This problem can be solved by adding to the inequal-
ity systems considered in Algorithm 1 the linear objec-

tive function min! Zfﬁo r;. That means, instead of just
computing one arbitrary solution of the considered inequal-
ity systems, a solution optimizing the objective function is
computed. This ensures that a place p constructed to sep-
arate a wrong continuation has a minimal value mg(p) +
> ier(W(p,t)+W(t,p)) among all such places. Thus, the
requirement of Problem 7 is satisfied. Actually, the com-
puted net even fulfills stronger requirements, because lo-
cally for each considered wrong continuation a “minimal”
place is computed. The arising integer linear programming
problems can be solved by standard integer linear program-
ming solvers. Note that, while in Algorithm 1 it is possible
to apply rational solvers, this is not any more the case here,
because multiplying an optimal rational solution vector by
the common denominator of the vector entries may lead to
a non-optimal integer solution w.r.t the objective function.

As in the case of the place bound variant, for opti-
mization, computing basis regions is only useful as a pre-
processing step.

Version Bound: Using optimization, it is also possible
to consider bounds for objective functions, e.g. a bound
b for mo(p) + > ,cr(W(p,t) + W(t,p)) (for each place
p). To decide the synthesis problem under this requirement,
the above optimization algorithm is changed as follows: If
some optimal separating region does not fulfill ro + ... +
ron, < b, the decision problem has a negative answer and
the corresponding place is not added.

Version Global: Also, global optimization over a set of
places is possible. By considering each partition WC' =
WCiW...uWC(C, of the set of wrong continuations, trying
to separate the @ sets of wrong continuations each by one
region r, and regarding the objective function min/! Z?ﬁo 5
in each case, the synthesis problem can be solved yielding
in the positive case an optimal net w.r.t. the global objective
function min! 3 p(mo(p)+> e (W(p,t) + W (¢, p))).

Such global optimization problems can also be tackled
by integer linear programming. One can proceed simi-
larly as in the case of Problem 3. There are only two dif-
ferences: First, we allow as many places as wrong con-
tinuations. This is the maximal number of places, which
may be necessary (smaller numbers are then also possible,
because all-zero regions are possible and the correspond-
ing places can be omitted). Second, we simply add a re-
spective objective function to the integer linear program-
ming problem. Considering the global objective function
> opep(mo(p) + 32,cr(W(p,t) + W(t,p))), the system
looks as follows: Ay -1’ > 0,i € {1,...,|WC|} |
k- Spiit by 1t <0,i€{l,... |[WC|}, wt € WC
| L‘;VICI swii < |[WC| — 1, wt € WC | r* € N2HL,
i € {L,...,|WC|} | k € N| syy € {0,1}, 7 €
{1,...,[WC[}, wt € WO | mint ST S22

Developing good synthesis methods using optimization
is one of the main tasks for better practical applicability of
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synthesis [10]. In particular, it is possible to further sim-
plify the synthesized nets, if they do not have to exactly
reproduce the given language. There is a trade-off between
a simpler less precise model and a more complex more pre-
cise model. To account for this, on the one hand, arc weights
and initial markings of places (or similar parameters char-
acterizing the complexity of a net) have to be considered
as structural costs that have to be minimized as shown in
this section. On the other hand, behavior of the net that
is not specified by the language (or some other unwanted
behavior) yields behavioral costs, i.e. instead of solving a
certain exact synthesis problem, one may impose costs for
additional unwanted behavior. Thus, places with small arc
weights (to yield small structural costs) separating many
wrong continuations (to reduce behavioral costs) are de-
sired. Also other kinds of costs may be considered, e.g. for
communication in distributed components or for relaxing
a conformance measure. This leads to complex optimiza-
tion (also non-linear) problems and games with equilibria.
It is mainly asked for heuristical procedures and approxi-
mate solutions. Examples in literature regarding costs are
[3, 17, 15].

5 Conclusion

Although a lot of interesting language based synthesis
problems have been discussed in a systematic way, the
overview given is incomprehensive. It is of course possi-
ble to formulate further problem variants. In literature, the
following additional variants have been considered: Syn-
thesis of nets fulfilling certain properties [6, 19, 4], e.g.
restrictions of arc weights by certain values, restrictions
of markings in certain system states, structural restrictions
to nets of certain types such as free-choice nets, marked
graphs or state machines, fulfillment of transition invari-
ants or correctness properties such as soundness of work-
flow nets (soundness is a certain requirement on liveness
and boundedness of workflow nets), synthesis of bounded
nets [1, 13, 4] (also relaxed versions of boundedness [9])
and synthesis of so called distributable nets [9, 7, 10].

The main direction for future theoretical work is to solve
further problem variants with the same systematic approach
followed in this paper. Furthermore, it is important to con-
sider more practical aspects. In particular, results from em-
pirical studies are significant for fine-tuning the presented
synthesis methods in the view of the application in real in-
dustrial settings.
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