Unifying Petri Net Semantics with Token Flows

Gabriel Juhds!, Robert Lorenz?, and Jorg Desel®

! Faculty of Electrical Engineering and Information Technology
Slovak University of Technology, Bratislava, Slovakia
gabriel.juhas@stuba.sk
2 Department of Computer Science, University of Augsburg, Germany
robert.lorenz@informatik.uni-augsburg.de
3 Department of Applied Computer Science
Catholic University of Eichstitt-Ingolstadt, Germany
joerg.desel@ku-eichstaett.de

Abstract. In this paper we advocate a unifying technique for description of Petri
net semantics. Semantics, i.e. a possible behaviour, is basically a set of node-
labelled and arc-labelled directed acyclic graphs, called token flows, where the
graphs are distinguished up to isomorphism. The nodes of a token flow represent
occurrences of transitions of the underlying net, so they are labelled by transi-
tions. Arcs are labelled by multisets of places. Namelly, an arc between an oc-
currence x of a transition a and an occurrence y of a transition b is labelled by
a multiset of places, saying how many tokens produced by the occurrence = of
the transition a is consumed by the occurrence y of the transition b. The variants
of Petri net behaviour are given by different interpretation of arcs and different
structure of token flows, resulting in different sets of labelled directed acyclic
graphs accepted by the net. We show that the most prominent semantics of Petri
nets, namely processes of Goltz and Reisig, partial languages of Petri nets intro-
duced by Grabowski, rewriting terms of Meseguer and Montanari, step sequences
as well as classical occurrence (firing) sequences correspond to different subsets
of token flows. Finally, we discuss several results achieved using token flows dur-
ing the last four years, including polynomial test for the acceptance of a partial
word by a Petri net, synthesis of Petri nets from partial languages and token flow
unfolding.

1 Introduction

Let us begin with a short story: An alien from a foreign planet comes with his UFO and
observes the following situation. He sees a man pressing a button of his mobile phone,
then the man is starting to call and after that sitting down. Actually, the man is totally
surprised because he had never seen a UFO and an alien, so he immediately calls his
wife and sits down to realize what he just saw. The alien writes a report to his planet:
”On Earth, if you want to sit down, you first have to press a button on a mobile phone
and then to start to talk to the phone.” As we all know, this is not exactly true, because
you can sit down independently (concurrently) from pressing a button and starting to
call. But it is still partially true, because in order to call you have to press a button of
your phone (or to do something equivalent).

In the case of a sequential machine with a single processor, it is not necessary to
deal with the problem of independency of events or actions. One can at most observe
non-determinism, e.g. observe sitting down and calling in any order. But concurrency
substantially differs from non-determinism. Concurrency is not only the possibility to
occur in any order, but to be independent of each other. A typical example making
this difference clear, is the occurrence of two events (e.g. two persons wanting to call)
sharing one resource (only one phone available). These two events can occur in any
order but they obviously cannot happen in parallel. One could say that concurrency
includes possible occurrence in any order and simultaneous occurrence. The introduc-
ing example also shows that concurrency is not only simultaneous occurrence, which
1s transitive: a man can sit down concurrently to pressing a button and concurrently
to starting to call. However, pressing a button and starting to call are not concurrent,
but causally dependent. Observe that the action calling in the short story causally de-
pends on the action pressing a button, but we can make more calls and pressing buttons
many times. If we say that calling is an action and pressing a button is another action,
we speak about causal dependencies between occurences of actions rather than about
causal dependencies between actions alone.

The study of concurrency as a phenomenon of systems behavior became much at-
tention in recent years, because of an increasing number of distributed systems, multi-
processors systems and communication networks, which are concurrent in their nature.
There are many ways in the literature to describe non-sequential behaviour, most of
them are based on directed acyclic graphs (DAGs). Usually, nodes of DAGs represent
the occurrences of actions, i.e. they are labelled by the set of actions and the labelled
DAGs (LDAGs) are distinguished up to isomorphism. Such LDAGs are reffered in the
literature as abstract [16]. Very often LDAGs with the transitive arcs are used, i.e. the
partial orders. Such structures are referred as partially ordered multisets, shortly pom-
sets, and can formally be seen as isomorphism classes of labelled partial orders [18].
Pomsets are also called partial words [9], emphasizing their close relation to words or
sequences; the total order of elements in a sequence is replaced by a partial order.

Petri nets are one of the most prominent formalisms for both understanding the con-
currency phenomenon on theoretical and conceptual level and for modelling of real
concurrent systems in many application areas. There are many reasons for that, among
others the combination of graphical notation and sound mathematical description, see
e.g. [5] for a more detailed discussion.

A place/transition Petri net (shorty a Petri net), consists of a set of transitions (ac-
tions), which can occur (fire) and a set of places (buffers of tokens), which can carry
a number of tokens. Distribution of tokens in places constitutes a state of a Petri net,
called a marking. Formally, a marking is given by a multiset of places, i.e. by a function
attaching to each place the number of tokens contained in the place. An occurrence of
a transition in a marking removes prescribed fixed numbers of tokens from places, i.e.
consume a multiset of places, and adds prescribed fixed numbers of tokens to places,
i.e. produce a multiset of places, resulting in a new marking. A transition is enabled to
occur in a marking, if there is enouhg number of tokens to consume by an occurrence
of the transition. In the paper, occurrences of transitions will be referred as events. We
also consider a fixed initial marking and a set of legal final markings.

pressing a button calling [pressing abutton

O—1 0O

sitting

Fig. 1. A Petri net modelling the introductory story (left). To describe the independency relation
we need at least two steps sequences: the sequence with step “pressing a button and sitting”
followed by the step calling” and the sequence with the step ”’pressing a button” followed by the
step 7sitting and calling”. The underlying pomset of the behaviour (right).

There are many different ways how to define behaviour of Petri nets. The simplest
way is to take occurrence sequences, i.e. sequences of occuring transitions.

Another possibility is to extend the sequences of occuring transitions to sequences
of steps of transitions. Steps are multisets of transitions. A step is enabled to occur in
a marking if there is enough tokens to consume by the simultaneous occurrences of
transitions in the multiset. A situation described in the introductory example, where
independence relation of transition occurrences is not transitive, cannot be decribed by
a single step sequence, see Figure 1.

Therefore, pomsets seems to be a better choice to formalize non-sequential semantics
(see e.g. [18,9]. The natural question arises: which pomsets do express behaviour of
a Petri net? The answer has close relationships to the step semantics. In [9,12] it is
suggested to take pomsets satisfying: For each co-set of events (i.e. for each set of
unordered events) there holds: The step of events in the co-set is enabled to occur in the
marking reached from the initial marking by occurrence of all events smaller than an
event from the co-set.

Another possibility to express behaviour of Petri nets, is to take processes of [7,8],
which are a special kind of acyclic nets, called occurrence nets, together with a la-
belling which associates the places (called conditions) and transitions (called events)
of the occurrence nets to the places and transitions of the original nets preserving the
number of consumed and produces tokens, see Figure 2. Processes can be understood
as (unbranched) unfoldings of the original nets: every event in the process represents
an occurrence of its label in the original net. Abstracting from conditions of process
nets, LDAGs on events are defined. These LDAGs express the direct causality between
events. Adding transitive arcs to these LDAGs, we get pomsets called runs, which ex-
press (not necessarily direct) causality between events. In contrast to enabled pomsets,
events ordered by an arc in a run cannot be independent. A special role plays those runs,
which are minimal w.r.t. extension: they express the minimal causality between events.
An important result relating enabled pomsets and runs was proven in [12,19]: Every
enabled pomset includes a run and every run is an enabled pomset. Therefore, minimal
enabled pomsets equal minimal runs. In contrast to sequential semantics and step se-
mantics, processes distinguish between the history of tokens. An example is shown in
Figure 2. The process nets distinguish a token in place p3 produced by the occurrence
of transition ¢; from a token in place ps produced by the occurrence of transition t,.
As a consequence, one occurrence sequence, e.g. t1lst3, can be an extension of two

2
1 1N\ 452

PN

2 p3 t3 p5
pé
O 74' p2 2 t4 p6
p4
p3
pl t1 p4 3 t3 p4

p5

5

b

v

P

=]
—
-
—
=
=
-
w
=
N
-
w
e~

p4

p5
O——
p4
pZ\ 2 t3 p4
p4

O

p3
p4 p5

3
ot u \%)<)
3
t3 ps t4 p6
O e
p4

Fig. 2. A Petri net (above) with three processes (below)

different processes. The process semantics defined in [7] is also called individual token
semantics. Notice that in the case of the process semantics of elementary nets (with at
most one token in a place), any occurrence sequence and any step sequence uniquely
determine a process. In [3] the collective token semantics, which does not distinguish
between the history of tokens, is introduced. It is defined using an equivalence rela-
tion between processes. The equivalence relates processes differing only in permuting
(swapping) unordered conditions representing tokens in the same place of the original
net. For example, the processes in Figure 2 are equivalent w.r.t. swapping equivalence.
For swapping equivalence classes, called commutative processes, there holds that any
occurrence sequence and any step sequence uniquely determine a commutative process.

In [15] behaviour is described using rewrite terms generated from elementary terms
using concurrent and sequential composition. In this algebraic approach any transition
t is an elementary rewrite term, allowing to replace the marking consume(t) by the
marking produce(t). Any marking consisting of a single place p is an elementary term
rewriting p by p itself. Rewrite terms are constructed inductively from elementary terms
using operator ; for sequential and operator || for concurrent composition. Each term has
associated an initial marking and final marking. Two terms can be composed sequen-
tially only if the final marking of the first term coincides with the initial marking of
the second one. For concurrent composition of two terms, the initial marking of the
resulting term is obtained by multiset addition of the initial markings of the composed
terms, and likewise for the final marking. The behavior of a net is given by equivalence
classes of rewrite terms defined by a set of equations. In [4] it is shown that the equiva-
lence class of rewrite terms as defined in [15] corresponds to the swapping equivalence
class of processes. Obviously, one can attach pomsets to rewrite terms. Each process
term « defines a partially ordered set of events representing transition occurrences in
an obvious way: an event e; is smaller than an event e, if the rewrite term « contains a
sub-term «1; a2 such that e; occurs in o and e occurs in ao. The pomsets of rewrite
terms have a special structure. It is proven in [6], that a pomset is generated by concur-
rent and sequential composition from single element pomsets if and only if it does not
contain the shape of so called N-form. As a consequence, we get the characterization
of pomsets which are associated to rewrite terms of a Petri net: an enabed pomset is
associated with a rewrite term of a net if and only if it is N-free.

Most of the discussed results showing the correspondence between different seman-
tics are quite complicated, despite the clear intuition. The differences in the technique
used to describe the behaviour often cause, that even straightforward relationships have
technically difficult proofs. The formal description of the intuition chosen for single se-
mantics has some limitations too. Consider for example enabled pomsets and processes.
The definition of enabled pomsets is inherently exponential: to test the enabledness us-
ing co-sets and steps in innefective. The main advantages of the processes, as claimed
in the literature, is that they describe behaviour in the same modelling language, i.e.
using occurrence nets. But this is also their main disadvantage, because to model each
individual token by a single condition make the formal manipulation with processes
difficult. In fact, there is no need to remember each single token (it is suitable for el-
ementary nets, where at most one token for each place can be present in a marking,
but not so efficient for place/transition Petri nets), but it is enough to remember how

many tokens produced by an occurrence are consumed by another occurrence, i.e. how
many tokens flow on the arcs connecting occurrences of transitions, abstracting from
the individuality of conditions.

The natural question arise: Is there a possibility to express all semantics discussed
above using a unifying but yet simple formal description? We give a positive answer to
this question, presenting a framework for description of different variants of semantics
of Petri nets. The semantics in the framework is basically a set of node-labelled and arc-
labelled directed acyclic graphs, called token flows, where the graphs are distinguished
up to isomorphism, defined originally in [10]. The nodes of a token flow represent
occurrences of transitions of the underlying net, so they are labelled by transitions.
Arcs are labelled by multisets of places. Namelly, an arc between an occurrence x of
a transition a and an occurrence y of a transition b is labelled by a multiset of places,
saying how many tokens produced by the occurrence x of the transition a is consumed
by the occurrence y of the transition b. A token flow of a Petri net have to fulfill so
called token flow property:

— Ingoing token flow (i.e. the sum of multisets over ingoing arcs) of any occurrence
of a transition a equals the multiset of places consumed in the net by firing
transition a.

— Outgoing token flow (i.e. the sum of multisets over outgoing arcs) of any occur-
rence of a transition a equals the multiset of places produced in the net by firing
transition a.

To keep the information which occurrences consume tokens directly from the initial
marking and which occurrences produce unconsumed tokens in the final marking, we
add a special single entry node and a special single exit node, which are labelled by the
initial and a final marking. respectively. The outgoing token flow of the entry equals
the initial marking and the ingoing token flow of the exit equals a final marking. An
important question arises, when expressing the behaviour by a set of LDAGsS, i.e. by
an LDAG language: What is the interpretation of arcs in an LDAG? The answer is not
unique. Using Petri nets, there are two basic interpretations:

1. An occurrence y of an action b directly causaly depends on an occurrence x of an
action a: By the occurrence y of a transition b, transition b consumes some tokens
produced by the occurrence x of a. This interpretaton is used by processes of Petri
nets [7,8]. Direct causal interpretation of arcs is resulting in the requirement that
there is a non-zero token flow between the occurrences, i.e. the multiset label of
any arc does not equal empty multiset. The transitive closure of direct causality
gives causal dependency.

2. An occurrence y of an action b follows an occurrence z of an action a: The oc-
currence y of a transition b is either causaly dependent on the occurrence x or the
occurrences y and x are independent. This interpretation is used in the occurrence
sequences, step sequences and enabled pomsets of Petri nets [9]. We call this inter-
pretation occurrence interpretation. By occurrence interpretation, also arcs with the
zero token flow are allowed.

The variants of Petri net behaviour are given by different interpretation of arcs and
different structure of token flows, resulting in different sets of labelled directed acyclic

graphs accepted by the net. We show that the most prominent semantics of Petri nets
correspond to different subsets of token flows. Namely:

— Processes of Goltz and Reisig [7,8] correspond to direct causal token flows, i.e. to
the token flows with direct causal interpretation of arcs, where all arcs have non-
zero token flows.

— Token flows in which LDAGs are pomsets and at least the skeleton arcs (non-
transitive arcs) have non-zero token flows are called the causal token flows of Petri
nets and represent the causal semantics. They are obtained from direct causal token
flows by adding all transitive arcs.

— Enabled pomsets, i.e. partial words introduced by Grabowski [9], correspond to
pomset token flows, 1.e. to the token flows, where LDAGs are pomsets with occur-
rence interpretation of arcs (arcs may have the zero token flow).

— Rewriting terms of Meseguer and Montanari [15] correspond to N-free token flows,
1.e. to the pomset token flows where the underlying pomsets are N-free.

: 2
t1 2 452

pl

p

p4+p5+p6

p4+p5+p6

p4+p5+p6

Fig. 3. Petri net from the Figurefefprocex (above) and the dicausal token flows corresponding to
the processes in Figure 2

— Step sequences correspond to step ordered multiset token flows, shortly somset
token flows, i.e. to the pomset token flows, where the relation given by unordered
pairs of nodes is transitive.

— Occurrence sequences correspond to totally ordered token flows, shortly fomset
token flows, i.e. to the pomset token flows where the relation given by unordered
pairs of nodes is empty.

For better illustration, dicausal token flows corresponding to processes from Figure 2
are included in Figure 3.

An important role plays the equivalence given by symmetric and transitive closure
of the extension relation of LDAGs, called extension equivalence: equivalence classes
given by exchange equivalence on sequences, swapping equivalence on processes, and
equivalence on rewrite terms correspond to restrictions of exchange equivalence classes
to tomset token flows, direct causal token flows and N-free token flows, respectively.

Finally, we discuss the results achieved using token flows during the last four years,
including the first polynomial test for the acceptance of a partial word by a Petri net,
synthesis of Petri nets from partial languages and token flow unfolding.

2 Token Flows

We use N to denote the nonnegative integers. Given a finite set A, |A| denotes the
cardinality of A. Given a function f from A to B and C' C A we write f|c to denote
the restriction of f to C. We write A \ B to denote the usual set difference of sets A
and B. The set of all subsets of a set A is denoted by 2. The set of all multisets over
a set A, i.e. the set of functions from A to N is denoted by N. We use () to denote
the empty multiset, i.e. Va € A : ()(a) = 0. The sum of multisets, the comparison
of multisets and the difference of multisets are given as usual: given m, m’ € N,
(m +m/)(a) = m(a) + m/(a) foreacha € A, m > m’ < m(a) > m/(a) for each
a € A, and whenever m > m/ then (m — m’)(a) = m(a) — m’(a) for each a € A.

We write . , m(a)a to denote the multiset m over A. Given a function [from a
set V to a set X, and a subset S C V, we define the multiset ZSGS I(s) C NX by
(> sesl(8)(x) = [{v eV [ve S Al(v) = x}| Given a binary relation R C A x A
over a set A, RT denotes the transitive closure of R and R* the reflexive and transitive
closure of R.

A directed graph is a pair (V, —), where V' is a finite set of nodesand — C V xV isa
binary relation over V called the set of arcs. Given a binary relation — we write v — v’
to denote (v,v’) € — and v /4 v’ to denote (v, v’) ¢ —. We define *v = {v’ | v/ — v}
and v* {v | v — v'}. Anode v € V is called entry (also initial node, source, start or
input), if *v = (). A node v € V is called exit (also final node, sink, end or output),
if v* = (. Skeleton of a directed graph (V, —) is the directed graph (V,—’) with
—'={(v,v") | Av" : v =T v —7 v/} containing no transitiove arcs of —.

A partial order is a directed graph po = (V, <), where < is irreflexive and transitive
on V. Given a partial order (V, <), foraset S C V andanodev € V Av ¢ S we
write v < S, if v < s foranode s € S. Two nodes v, v’ of a partial order (V, <) are
called independent if v £ v' and v' £ v. By co C V x V we denote the set of all
pairs of independent nodes of V. A co-set in a partial order (V, <) is a subset S C V

10

fulfilling: Vz,y € S : xcoy. A cut (also called a slice) is a maximal co-set. A partial
order to = (V, <) satisfying V(v,v") € V x V :v £ v = (v <V V' <) isatotal
order. A partial order so = (V, <), where co is transitive, is a step order. Given a step
order so = (V, <), we write S < S’ for cuts S, 5" € V whenever there exist v € S
such that v < S’. Because relation co is symmetric and reflexive, in a step order it is
an equivalence relation. A partial order po = (V, <) satisfying (v < v/ Aw < w' Av <
w') = =(vcow Av' cow A v’ cow'’) is an N-free partial order.

A directed acyclic graph is a directed graph dag = (V,—), where the pog,y, =
(V,—71) is a partial order. Given directed acyclic graphs (V, —) and (V, —') we say
that (V, —) is an extension of (V, =) iff -’ C —.

A labelled directed acyclic graph, shortly an LDAG, is a triple ldag = (V, —,1),
where (V, —) is a directed acyclic graph and [is a labelling function from V' to a set of
labels. Two LDAGs (V1, —1, 1), (Va, <2, l2) are isomorphic iff there exists a bijection
~ from V; to V5 between nodes which preserve the arcs and the labelling function, i.e.
Yoi,v9 € Vi @ 11 —1 vy < ’7(’1}1) —9 ’}/(Ug) A ll(’l}l) = ZQ(’Y(’Ul)) We are
not interested in the identity of nodes of an LDAG, so we distinguish LDAGs up to
isomorphism. Without lose of generality, we will use any LDAG from an isomorphism
class of LDAGs to denote the whole class.

A pomset is an LDAG lpo = (V, <, 1), where (V, <) is a partial order. A tomset is
an LDAG lto = (V, <, 1), where (V, <) is a total order. A somset is an LDAG lso =
(V, <,1), where (V, <) is a step order. An N-free pomset is an LDAG (V, <, [), where
(V, <) is an N-free partial order.

An LDAG language is a set of (isomorphism classes of) LDAGs. Given an LDAG
language L, and a subset L' C L, L’ is called a sublanguage of L, and by L,,;, we
denote its minimal sublanguage L.,,;,, = {(V,—,1) € L | A(V,—',1) € L :—='C—}.

We use special LDAGs with a single entry and a single exit. An ldag = (V, —,1)
with a single entry and a single exit is called single-entry and single-exit LDAG, shortly
a SESE LDAG, entry(ldag) denotes its entry and exit(ldag) denotes its exit.

We also remove nodes and delete arcs from an LDAG. Let ldag = (V, —,[) be an
LDAG. Let X C V. We define remove(ldag, X) = (V',—=',1"), where V' =V \ X,
—'=—=NV'xV')andVv € V' : I'(v) = I(v). Observe, that removing nodes from an
LDAG one gets an LDAG. Moreover, removing nodes from a pomset one gets a pomset.
Let — C —. We define delete(ldag, —) = (V,—,1), where — = {v — v’ | v A v'}.

Now we are prepared to define token flow functions of LDAGs over a finite set, and
ingoing and outgoing token flows.

Definition 1 (Token flow function). Let ldag = (V,—,l) be an LDAG. Let P be a
finite set. A function flow from the set of arcs — to N*' is called a token flow function
of ldag over P. The function flow defines two functions attaching multisets over P to
nodes:

— the function in i, from V to NP, given by in o0 (v) = D ey flow(v', v),
called the ingoing token flow of v,
— the function out 1., from V to N, given by out 1,,(v) = 3 flow(v,v"),

called the outgoing token flow of v.

v’ v

11

Let us define the first central notion of the paper - a token flow over a finite set: it is an
LDAG with a single entry, a single exit, and with arcs labelled by multisets over a finite
set.

Definition 2 (Token flow). Letr P be a finite set. A token flow over P is a pair flowdag
= (ldag, flow), where ldag = (V,—,1) is a SESE LDAG, and flow is a token flow
function of ldag over P. A set of token flows over P is called P-token flow language,
or shortly token flow language.

3 Token Flows of Petri Nets

Definition 3 (Petri Net). A place/transition Petri net (shortly a Petri net) is a 6-tuple
PN = (P, T, consume, produce, initial, final) where P is a finite set of places, T' is
a finite set of transitions, T N (P UNY) = (), consume and produce are functions from
T to N, such thatVt € T : consume(t) # O Aproduce(t) # 0, multiset initial € N¥
is an initial marking and final C N is a set of legal final markings.

In the rest of the paper we suppose that a PN = (P, T, consume, produce, initial,
final) is given. A multiset m € N* is called a marking of PN. Sequential behaviour of
the PN is given by occurrences (firings) of transitions: A transition ¢ € 7' is enabled to
occur in a marking m of PN iff m > consume(t). An occurrence of enabled transition
t in a marking m leads to the follower marking m’ = m — comsume(t) + produce(t).

We write . —— m/ to denote that ¢ is enabled to occur in m and that its occur-
rence leads to m’. Sequential behaviour can easily be extended to the simplest way
to dercsribe concurrent occurrences of transitions - to the occurrences of steps, which
are multisets of transitions: Given a step s € N7, denote by consume(s) the mul-
tiset of places given by Vp € P : consume(s)(p) = > ,cp s(t)consume(t)(p).
By produce(s) denote the multiset of places given by Vp € P : produce(s)(p) =
> et s(t)produce(t)(p). A step s € N7 is enabled to occur in a marking m of PN
iff m > consume(s). An occurrence of enabled step s in a marking m leads to the fol-
lower marking m’ = m — comsume(s) + produce(s). We write m —— m/ to denote
that s is enabled to occur in m and that its occurrence leads to m/.

Le us notice, that the above definition differs from the usual definition of place Petri
nets, however the difference is only technnical. Usually, a place/transition Petri net is
given as a bipartite directed graph with weighted arcs, with nodes formed by places
and transition, places and arcs labelled by nonnegative integers. The labelling of places
gives the marking. From technical reasons in our definition we additionaly require that
no transition equals a multiset of places. In a usual definition, instead of the functions
consume, produce the relationship between places and transitions is given using a set
of arcs F' C ((P x T) U (T x P)) (also called flow relation) and a weight function
W from F' to N. Using our definition, F' and W can be easily reconstructed: F' =
{(p,t) € P x T | consume(t)(p) # 0} U{(t,p) € T x P | produce(t)(p) # 0},
V(p,t) € F: W(p,t) = consume(t)(p),V(t,p) € F: W(t,p) = produce(t)(p).

In a usual definition, the set of final marking is not defined. The intended meaning
of the set of final markings is to allow acceptance of only a subset of LDAGs generated

12

by processes. Obviously, taking the set of all multisets as legal final marking, one gets
that all of the processes are accepted.

Now we are prepared to define the second central notion of the paper: token flows
of PN, as token flows over P such that the entry is labelled by the initial marking and
the outgoing token flow of the entry equals the initial marking, the exit is labelled by
a final marking and the outgoing token flow of the exit equals the final marking, and
for all other nodes the ingoing token flow equals the consume value of their label and
outgoing token flow equals the produce value of their label.

Definition 4 (Token Flow of a Petri Net). Let PN = (P, T, consume, produce,
initial, final) be a Petri net and let flowdag = (ldag, flow) be a token flow over
P with ldag = (V, —,1). Then flowdag is called token flow of PN, and we say that
flow fulfils the token flow property iff:

1. Yo € V : v ¢ {entry(ldag), exit(ldag)} = (l(v) € T A consume(l(v)) =
iNflow (V) A produce(l(v)) = out £l (v))

2. l(entry(ldag)) = out fion (entry(ldag)) = initial,

3. l(exit(ldag)) = infiow(exit(ldag)) C final,

The set of all token flows of PN is denoted by LZ{I(PN) and called the token flow
language of PN.

Observe that given a SESE LDAG Ildag = (V,—,1) with the entry labelled by the
initial marking, the exit labelled by any final marking and remaining nodes labelled by
transitions of PV, the token flow functions fulfilling the token flow property are simply
nonnegative integer solutions of the system (1 - 3) of linear equations from the previous
definition, with in 0., (v) replaced by > ., flow(v',v), out i (v) replaced by
Y wepe Jlow(v,v") for any v € V, and unknown variables flow(v,v")(p) for each
p € P and each v — v’. We will call such a system the token flow system of the ldag.

Using the interpretation of arcs in the token flows and the structure of the LDAGs,
one can define all prominent semantics of PN. Basiacally, a semantics denoted by sem
is determinded by a subset LY, (PN) C L%tf(PN) of token flows of PN. Each
semantics can be recognignized on four levels. The first level is given by a language
obtained from token flows by forgetting the flow function. The second level is formed
by the minimal sublanguage of this language. The third level is given by a language
obained from the first level by forgetting the entry and exit. The fourth level is given by
the minimal sublangage of the third language.

Definition 5 (Languages of a Petri Net). Let L'/ (PN) C LZ{Z(PN). We derive

following four LDAG languages from LS (PN):

sem

SEM

1. L' (PN) = {ldag | (Idag, flow) € LY
2 LZO

sem(

N)mi
3. L™ (PN) = {remove(ldag, {entry(ldag), exit(ldag)}) | ldag € L**(PN)},
4 LTI'LO ()

sem

(PN)},

min:

Given an ldag € L',(PN), its final marking, i.e. the label of the final node, can be
easily determined.

13

Proposition 1. Let ldag € L'S,(PN) with ldag = (V,—,1). Then l(exit(ldag)) =
initial + ZvEV\{entry(ldag),ewit(ldag)}(pTOduce(l(U)) - consume(l(v))).

If Li° (PN) is a pomset language, then for each LDAG Ildag’ € L™° (PN), there

exists one and only one SESE LDAGs ldag € L%, (PN), such that [dag’ = remove
(ldag, {entry(ldag), exit(ldag)}. As a consequence for pomset languages we get that
L7 (PN)pin is the image of the restriction of remove(ldag, {entry(ldag), exit

(1dag)}) to L. (PN)min.

sem

3.1 Token Flow Semantics of Petri Nets

As the first semantics we define the direct causal token flows. The arcs in a direct causal
token flow represent direct causality, i.e. the fact, that the source of the arc produced at
least one token consumed by the target of the arc.

Definition 6 (Direct Causal Token Flow). Let flowdag = (ldag, flow) with ldag =
(V,—,1) be a token flow of PN satisfying V(v,v') € —: flow(v,v") # 0. Then
flowdag is called direct causal token flow of PN, shortly dicausal token flow of PN.
The set of all dicausal token flows of PN is denoted by chausal(PN) and called
dicausal token flow language of PN.

Observe, that the inequations flow(v,v") # () can be rewrited to the integer inequation
> pep Jlow(v,v')(p) # 0. Adding the inequations to the token flow system of ldag
we get the system of linear inequetions, called dicausal token flow system of ldag.
Obviously, ldag € L%, ..q(PN) iff the dicausal token flow system of ldag has a
nonnegative integer solution.

Dicausal token flows of PN contain complete information about causal dependency
of transition occurrences, including the information which occurrences consume tokens
from the initial marking and which occurrences produce tokens in the final marking.
The difference between elements of L', ,;(PN) and L2 ., (PN) is that in the
elements from L7° (P N) the information which occurrences consume tokens from the
initial marking and which occurrences produce tokens in the final marking is forgotten.

The second semantics are the causal token flows. The arcs in a causal pomset

represent causality between the source and the target, not necessarily the direct one.

Definition 7 (Causal Token Flow). Let flowdag = (ldag, flow) be a token flow of
PN such that ldag = (V, <,l) is a pomset. Let (V,—) be the skeleton of (V,<). If
V(v,v") € —: flow(v,v") # () then flowdag is called causal token flow of PN. The
set of all causal token flows of PN is denoted by LZ‘ZU sat(PN) and called causal token
flow language of PN.

The next semantics are the pomset token flows. In a pomset token flow, the arcs represent
the fact, that the source and the target occurred sequentially. This in fact means, that
either these occurrences are independent or the target is causaly dependent on the source.

Definition 8 (Pomset Token Flow). Let flowdag = (ldag, flow) be a token flow of
PN such that ldag is a pomset. Then flowdag is called pomset token flow of PN.

The set of all pomset token flows of PN is denoted by L;J;m set (PN) and called pomset
token flow language of PN.

The next semantics are token flows, where the underlying LDAGs are N-free pomsets.

14

Definition 9 (N-Free Token Flow). Ler flowdag = (ldag, flow) be a token flow of
PN such that ldag is an N-free pomset. Then flowdag is called N-free token flow of
PN. The set of all N-free token flows of PN is denoted by L%free(PN) and called
N-free token flow language of PN.

As the last two semantics we define somset and tomset token flows.

Definition 10 (Somset Token Flow). Let flowdag = (Idag, flow) be a token flow of
PN such that ldag is a somset. Then flowdag is called somset token flow of PN.
The set of all somset token flows of PN is denoted by L?;m set (PN) and called somset
token flow language of PN.

Definition 11 (Tomset Token Flow). Ler flowdag = (ldag, flow) be a token flow
of PN such that ldag is a tomset. Then flowdag is called tomset token flow of PN.
The set of all tomset token flows of PN is denoted by L PN) and called tomset
token flow language of PN.

tomset(

3.2 Relationship between Token Flow Semantics of Petri Nets

Directly from the above defintions we can see the following relationships between
the presented token flow semantics of PN. Let (Idag, flow) be a token flow of PN
with ldag = (V,—.1). We define positive(ldag, flow) = delete(ldag,{v — v’ |
flow(v,v") = 0}). Consider that = € {io, nio}, i.e. = can be replaced by either io or
nio, and sem € {causal,pomset, N free, somset, tomset}:

(PN) {(V7 _>+7l) | (V7 _>7l) € Lflicauqal(PN)}

causal

icausat(PN) = {positive(ldag, flow) | (ldag, flow) € L{L,,(PN)}
Lfomset(PN) C L?omset(PN) C L?Vfree(PN) C Lpomset(PN)
causal(PN) C Lgomset(PN)

Another important relationship between these semantics is the relationship w.r.t. ex-
tension. Taking two sets X, Y of pomsets, we denote by X > Y that for each pomset
(V, <, 1) from X there exists a pomset (V, <’, 1) from Y such that (V, <) is an extension
of (V,<"). We observe the following:

LCE (PN) =) Lq()'rnqef(PN) =) L?Vfree(PN) Lpo*mqef(PN) =) L(’auqal(PN)

tomset

Asa consequence:
T
causal(PN)mm =L

pomset(PN)min

Observe, that the total order of a tomset token flow can be an extension of DAGs of
several dicausal token flows with different DAGs. On the other hand, there can be sev-
eral tomset token flows with different total orders, which are extensions of the DAG
of a dicausal token flow. Therefore we introduce an equivalence on L7, (PN) as the
symmetric and transitive closure of the relation ”being an extension”. The equivalence

is called the extension equivalence on L%, (PN).

Definition 12 (Extension Equivalence) Let © € {io,nio}. Let (V,<,1),(V,<'.1) €
1 (PN). Define (V,—,1) o< (V,=".1) if (V.,—) is an extension of (V,—'). The
symmetric and transitive closure = of « is called extension equivalence on L%, (PN).

15

3.3 Direct Causal Token Flows and Processes

In this subsection we discuss the relationship between dicausal token flows and pro-
cesses of [7,8].

Definition 13 (Occurrence Net). An occurrence net is a directed acyclic graph O =
(B U E,G), with two partitions of nodes denoted by B and E (called conditions and
events) s. t. (BU2B) N E = 0, and flow relation G C (B x E) U (E x B), s. t.
| e b, [be| <1 foreveryb e B and no node from E is an entry or an exit.

The set of conditions of an occurrence net O = (BU, G) which are entries and exits are
denoted by Min(O) Maz(O), respectively.

Definition 14 (Process). Let PN = (P, T, consume, produce,initial, final) be a
Petri net. A process of PN is a pair K = (O,p), where O = (B U E,G) is an
occurrence netand p : BU E — P UT is a labelling function, satisfying

(i) p(B) C Pandp(E) CT.
(ii) Ve € E,Vp € P: |{b < ee| p(b) = p}| = consume(p(e))(p) and
Veec E,Vpe P: |{bcee|p) =p} = produce(p(e)), (p).
(iii) Vp € P: |{b € Min(O) | p(b) = p}| = initial(p)
(iv) 3fin € final such that¥p € P : |{b € Maz(O) | p(b) = p}| = fin(p).

Definition 15 (Canonical LDAG, Canonical Token Flow). Let K = (O, p) be a
process of a Petri net PN. Define

entryarc(K) = (Min(O),e) | 3b € Min(O) : (b,e) € G,
exitarc(K) = (e, Max(0)) | 3b € Max(O) : (e,b) € G.

The canonical LDAG of process K is the LDAG ldagx = (V, —,1), where

V=EU{Min(O), Max(0O)},
— = G?|pxr Uentryarc(K) U exitarc(K),
1y = plis, {Min(0)) = Yy ninon P(5) and H(Maz(0)) = Snenrasion P

The canonical token flow function flowg of process K is the token flow function of
ldagx over P given by flowk (v,v") = 3 Zyc (o ey P(D) for eachv — v'. The canon-

ical token flow of process K is the pair (ldagk, flowy). The language of canonical
token flows of all processes of PN is denoted by C L(PN).

We have proven the following result in [10].

Theorem 1. Let PN be a Petri net. Then CL(PN) = L}

dicausal

(PN).
In [3] so called swapping equivalence on processes is defined.

Definition 16 (Swapping). Let PN be a Petri net. Let K = (O, p), be a process of
PN with O = (BU E,G). Let by,by € B, bycoby wrt. G and p(by) = p(ba).
Define G1 = {(b1,€) | (ba,e) € G} and G2 = {(ba,e) | (bi,e) € G}. Define
G'=G UG U(GN(E x B)U(GN((B\{b1,b2}) x E)). G' is obtained from G by
interchanging arcs from by and bs. Finally, define swap(K,b1,b2) = (B, E,G"), p).

16

Definition 17 (Swapping Relation). Let K1 = ((B U E. G), p) and K be processes
of PN. Let us define K1 =1 K, if there are conditions by,bs € B satisfying by co by
wrt. G, p(b1) = p(be) and K is (isomorphic to) swap(K1, by, b).

—x%

It is easy to see that =; is symmetric. Thus, =7 is an equivalence relation on processes
of PN.

Definition 18 (Swapping Equivalence). The equivalence relation =] on processes of
PN is called swapping equivalence. The equivalence classes of processes w.rt. the
swapping equivalence are called commutative processes of PN.

We extend the swapping equivalence to canonical LDAGs: Given two processes K1, Ko
of a Petri net PN, we define ldagrx, =] ldagk, whenever K; =] K. Based on
the results in [10] we state that the extension equivalence restricted to L7 . . and
swapping equivalence coincide:

Theorem 2. For each ldagi,ldags € LY. : ldagi =5 ldags < ldagy = ldago.

3.4 Pomset Token Flows and Enabled Pomsets

In this subsection we recall the definition of enabled pomsets, also known as partial
words [9,12,19] and discuss their relationship to pomset token flows.

Definition 19 (Enabled Pomset). Let PN = (P,T,consume,produce,initial,
final) be a Petri net. A pomset lpo = (V,<,l) withl : V — T is enabled to oc-
cur in PN if the following statements hold:

(a) For each co-set S of (V,<):

initial + Z (produce(l(v)) — consume(l(v))) > Zconsume(l(v)).
veVAvLS veES

(b) m = initial + Y .\ (produce(l(v)) — consume(l(v))) € final.

We say that occurrence of [po leads from initial to m and m is the final marking of the
Ipo. The enabled pomsets are also called partial words of PN and the language of all
enabled pomsets is called the partial language of PN and denoted by PL(PN).

Actually, the definition of enabledness can be reformulated considering only slices of
labelled partial orders (for the proof see e.g. [19]). In [10] we have proven the following
result.

Theorem 3. Let PN be a Petri net. Then PL(PN) = L7 (PN).

3.5 N-Free Token Flows and Rewrite Terms

In this subsection we establish the relationship between N-free token flows and rewrit-

ing semantics originally introduced in [15]. In this subsection we write ¢ : m — m/’ to

denote that t € T, consume(t) = m and produce(t) = m/.

17

Definition 20 (Rewrite Term Semantics). Ler PN = (P, T, consume, produce,
initial, final) be a Petri net. The set of general rewrite terms GT (PN) of PN is
defined inductively by the following production rules:

m € NP
m:m —m € GT(PN)

te’l
t : consume(t) — produce(t) € GT (PN)

ay:my —my € GT(PN)Aag:mg —m) € GT(PN)
(o1 || 2) : g +mo — m) +mb € GT(PN)

ar:m—m' € GT(PN)ANay:m' — m"” € GT(PN)
(a1;a2) :m —m"” € GT(PN)

These rules define binary operations, called concurrent composition (||) and sequential
composition (;) of rewrite terms. The set of rewrite terms of PN denoted by T (PN)
is the subset of GT (PN) given by T(PN) = {« : initial — m € GT(PN) | m €
final}.

Given a rewrite term o : m — m/, we shortly say that o is a term and we denote by
pre(a) = m the initial marking and by post(«) = m/ the final marking of o

Definition 21 (Pomset of a Rewrite Term). Define inductively the pomset lpo,, of a
term o

- Given a marking m, lpo,, = (0,0, 0).

— Given a transition t € T, lpoy = ({v},0,1), where l(v) = t.

— Given terms oy and oy with lpo,, = (Vi,<i1,l1) and lpoy, = (Va,<a,ls),
Ipog,jja, = (V1 U Vo, <1 U <g,l1 Ula), where V1 and V3 are assumed to be
disjoint (what can be achieved by appropriate renaming of nodes).

— Given terms ay and ag with lpo,, = (Vi,<1,l1) and lpo,, = (Va,<a,l3),
Ipoay:an = (ViU Vo, <1 U <g U{(a,b) |a € Vi, be Va}, 11 Uls), where Vi and
Vo are assumed to be disjoint (what can be achieved by appropriate renaming of
nodes).

The language of pomsets associated to all rewrite terms of PN is denoted by T'L(PN).
The elements of 1T'L(PN) are called term pomsets of PN.

The previous definition is sound in the sense, that the structures attached to terms are
pomsets. Pomsets of rewrite terms of Petri nets coincide with so called finite series-
parallel pomsets, i.e. with pomsets generated from single element pomsets by con-
current composition (disjoint union side by side) and sequential composition. A finite
pomset is series-parallel iff it is N-free (for a proof see e.g. [6]). As a consequence we
get the following result based on [10]:

Theorem 4. Let PN be a Petri net. Then TL(PN) = L9, (PN).

Rewrite terms are identified by an equivalence relation ~ which preserves the opera-
tions || and ; (i.e. by a congruence w.r.t. the operations || and ;), given by the following
axioms: Let m, m’ € N and a1, aa, a3, s be rewrite terms.

18

(D) (aq || 2) ~ (2 || a1).

(2) ((a1;a2);a3) ~ (a1; (ag; as)), whenever these terms are defined.
(
(

3) ((a1 || @2) [[az) ~ (on || (a2 || a3)).

4) ((a1 || @2); (a3 || aq)) ~ ((a1;a3) || (ag; ay)), whenever these terms are defined.
(5) (au;post(ar)) ~ ar ~ (pre(ai);on).

6) m+m' ~ (m | m)

(7) ay + 0 ~ a; for the empty multiset (.

Observe that for any two equivalent terms a; ~ s, we have pre(a;1) = pre(as) and
post(ay) = post(a).

We extend the equivalence ~ to the set T'L(PN): Given two terms «7, as of a Petri
net PN, we define lpo,, ~ lpo,, whenever ar; ~ ao. Based on the results in [10] we
state that the extension equivalence restricted to 7"L(PN) and ~-equivalence coincide:

Theorem 5. For each ldagy,ldags € TL(PN) : ldagy ~ ldags < ldagy = ldags.

3.6 Somset Token Flows and Step Sequences
We briefly mention the relationship between step sequences and somset token flows.

Definition 22 (Step Sequence). Let PN be a Petri net. A finite sequence of steps of

PN o =s1...58, (n € N) is called a step sequence of PN if there exists a sequence
S92) Sn

of markings my, ..., my such that initial L my my, and m,, is a legal

final marking of PN.

Definition 23. Let PN be a Petri net. Let 0 = s1...sy be a step sequence of PN.
Then the somset lso, = (V,<,1) withl : V. — T and with cuts S1, ... S, satisfying
|Si| = siandi < j = S; < Sj for every i,5 € {1,...n} is associated to o. The
language of somsets associated to all step sequences of PN is denoted by SL(PN).

Theorem 6. Let PN be a Petri net. Then SL(PN) = L%

somset*

3.7 Tomset Token Flows and Occurrence Sequences

Finally, we discuss the relationship between occurrence sequences and tomset token
flows.

Definition 24 (Occurrence sequence). Let PN be a Petri net. A finite sequence of

transitions of PN o = t; ...t, (n € N) is called occurrence sequence of PN if there
lo 2%

: : C ot
exists a sequence of markings m1, . . ., my, such that initial — m;
and m,, is a legal final marking of PN.

n

Definition 25. Let PN be a Petri net. Let 0 = [(vy)...l(v,) is an occurrence se-
quence of PN. Then the tomset lto = ({v1,...,vn}, <, 1) satisfying i < j = v; < v;
for every i,j € {1,...n} is associated to occurrence sequence o. The language of
tomsets associated to all occurrence sequences of PN is denoted by OL(PN).

Theorem 7. Let PN be a Petri net. Then OL(PN) = L\©

tomset*

In [3] the exchange equivalence on occurrence sequences is defined.

19

Definition 26 (Exchange Relation). Let PN be a Petri net.

Let g1 = tl e ti_ltjti+1t7;+2 e tn, 09 = tl e ti_1t7‘,+1t7jt7‘,+2 . .tn be occurrence
sequences of PN. Then o1 =¢ oz iff o = {t1} ... {tic1 }{ti, tiv1 }{tix2} .. {tn} isa
step sequence of PN.

It is easy to see that = is symmetric and therefore = is an equivalence relation.

Definition 27 (Exchange Equivalence). The equivalence relation = on occurrence
sequences of PN is called exchange equivalence.

Based on the results in [10] we state that the extension equivalence restricted to O L(PN)
and exchange equivalence coincide:

Theorem 8. For each ltoy,ltos € OL(PN) : ltoy = ltos < lto; = lto,.

4 Results and Related Works

As we mentioned in Introduction, motivation for introducing token flows was to have
not only a unifying framework for different flavours of Petri net semantics, but to have
also a simple formalism and effective technique to solve problems. In this section we
briefly discuss the results achieved using token flows during the last four years, in-
cluding the first polynomial test for the acceptance of a partial word by a Petri net,
the first algorithm for synthesis of Petri nets from partial languages and token flow
unfolding.

Testing Pomsets of Petri Nets: The important question arise: Given a pomset [po an
a Petri net PN, is [po enabled in PN ? The definition of enabledness of pomsets is
inherently exponential, since a pomset can have exponentially many cuts in the num-
ber of nodes. That means, the definition is not appropriate to develop a test for partial
words.

Using the fact that partial language PL(PN) equals L7% ., of PN, which is ob-
tained by forgetting token flow function and the entry and the exit in token flows from
L;’gmset, the problem is reduced to answer the question : Given a SESE pomset, can
we label its arcs by a token flow function to get a token flow of PN? The answer is
positive, if and only if the token flow system of the pomset is solvable in nonnegative
integers. Unfortunately, the solvability of a system of linear equations in nonnegative
integers is in general NP-complete [20]. That means, to use a general algorithm for
solving linear equations in nonnegative integers is not appropriate to develop a test for
partial words.

In [11,14] we present algorithms to test a partial word in polynomial time, i.e we an-
swer the question whether a pomset [po belongs to L, (PN), where x € {io, nio},
in a polynomial time. In [11,14] we have shown that decision whether a pomset is a
minimal causal pomset, i.e. whether a pomset [po belongs to L* (PN)pin, where

causal
x € {io,nio}, can be obtained in a polynomial time.

Synthesis of Petri Nets from Pomset Languages: In papers [13,2] token flows are used to
synthetize a Petri net PN (with all markings beeing final) from a pomset language P L

20

(closed w.r.t. extension and prefixes) in such a way that either PL = L7 (PN) or

' ppmset
PL C Ly, (PN) and there is no Petri net PN satistying PL C L322 . (PN') C

ng?nset(PN)). Obviously, the labels of the pomsets give transitions 7". The synthe-
sis reduces to finding places, the values of consume and produce functions as well
as the initial marking in such a way, that still all pomsets are accepted. In the syn-
thesis procedure, the pomsets are extended by adding a single entry and a single exit.
The entry is labelled in all pomsets by the same unique symbol, not used as a label
of other nodes. The exit in each pomset is labelled by a different symbol, not used
in the labels of other nodes. The main idea is to consider simple token flow func-
tions, which attach a nonnegative integer to each arc in each pomset. If such a sim-
ple token flow function fulfils that equally labelled nodes in all pomsets have equal
ingoing token flows and equal outgoing token flows, then it is called a token flow
region and defines a place p. In the token flow region, we can speak about ingoing
token flows and outgoing token flows of labels: the ingoing token flow of a label
t € T defines the consume(t)(p), the outgoing token flow of a label t € 1" de-
fines produce(t)(p), and the ingoing token flow of the entry label defines the ini-
tial marking of the place p. Adding a place determined by a token flow region still
all pomsets will be accepted by the net. Adding places given by all regions, we get
the seeked Petri net PN. Similarly to token flow systems of an LDAG, the token
flow regions are nonnegative integer solutions of a system of linear equations, where
the single equations just states that the equally labelled nodes in pomsets have equal
ingoing and outgoing token flow. If the number of pomsets is finite, then the num-
ber of nodes is finite and the system have finite number of equations. The number
of solutions, and therefore places, can still be infinite. Fortunatelly, it is enouhg to
take places derived from the Hilbert basis of the system, which is finite. Namely, the
net with the places derived from the Hilbert basis accept the same pomsets as the
net PN.

Token flow unfolding: The idea of token flow unfolding presented in [1] is a straightfor-
ward extension of token flows. Instead of attaching a token flow function to pomsets,
obtaining causal token flows, the idea is to attach a token flow function to prime event
structures, to get token flow event structures, which are actually unions of causal token
flows.

Token flow Hasse diagrams: Another idea to extend token flows can be found in the
paper [17] in this volume. Instead of considering pomsets, authors consider Hasse dia-
grams, which are actually skeletons of LDAGs. It is shown in [17], that the token flow
function of a pomset can be reconstructed from the extended token flow function of its
skeleton, called interlaced flow. The interlaced flow attaches four multisets of tokens to
each arc v — v of the skeleton: the first multiset says how many tokens produced by
v are consumed by v’, the second says how many tokens produced by v are consumed
in the future of v’, the third counts how many tokens produced in the past of v and
consumed by v’; and the last multiset says how many tokens produced in the past of v
and consumed in the future of v'.

21

References

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Bergenthum, R., Lorenz, R., Mauser, S.: Faster Unfolding of General Petri Nets Based on

Token Flows. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp.
13-32. Springer, Heidelberg (2008)

. Bergenthum, D.J., Lorenz, R., Mauser, S.: Synthesis of Petri Nets from Finite Partial Lan-

guages. Fundamenta Informaticae 88(4), 437-468 (2008)

. Best, E., Devillers, R.: Sequential and Concurrent Behaviour in Petri Net Theory. Theoretical

Computer Science 55(1), 87-136 (1987)
Degano, E., Meseguer, J., Montanari, U.: Axiomatizing the Algebra of Net Computations
and Processes. Acta Informatica 33(7), 641-667 (1996)

. Desel, J., Juhds, G.: What is a Petri Net? In: Ehrig, H., Juhds, G., Padberg, J., Rozenberg, G.

(eds.) APN 2001. LNCS, vol. 2128, pp. 1-25. Springer, Heidelberg (2001)
Gischer, J.L.: The equational theory of pomsets. Theoretical Computer Science 61(2-3), 199—
224 (1988)

. Goltz, U., Reisig, W.: The Non-Sequential Behaviour of Petri Nets. Information and Con-

trol 57(2-3), 125-147 (1983)

. Goltz, U., Reisig, W.: Processes of Place/Transition Nets. In: Diaz, J. (ed.) ICALP 1983.

LNCS, vol. 154, pp. 264-277. Springer, Heidelberg (1983)

. Grabowski, J.: On Partial Languages. Fundamenta Informaticae 4(2), 428-498 (1981)
. Juhas, G.: Are these events independent? It depends! Habilitation thesis, Katholic University

Eichstitt-Ingolstadt (2005)

Juhéds, G., Lorenz, R., Desel, J.: Can I Execute my Scenario in Your Net? In: Ciardo, G.,
Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 289-308. Springer, Heidelberg
(2005)

Kiehn, A.: On the Interrelationship between Synchronized and Non-Synchronized Behavior
of Petri Nets. Journal Inf. Process. Cybern. EIK 24(1-2), 3—-18 (1988)

Lorenz, R., Juhds, G.: Toward Synthesis of Petri Nets from Scenarios. In: Donatelli, S., Thi-
agarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 302-321. Springer, Heidelberg
(2006)

Lorenz, R., Juhds, G., Bergenthum, R., Desel, J., Mauser, S.: Executability of scenarios in
Petri nets. Theoretical Computer Science 410(12-13), 1190-1216 (2009)

Meseguer, J., Montanari, U.: Petri nets are monoids. Information and Computation 88(2),
105-155 (1990)

Priese, L.: Semi-rational sets of dags. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS,
vol. 3572, pp. 385-396. Springer, Heidelberg (2005)

Oliveira, M.: Hasse Diagram Generators and Petri Nets. In: Petri Nets 2009. LNCS. Springer,
Heidelberg (to appear, 2009)

Pratt, V.: Modelling Concurrency with Partial Orders. Int. Journal of Parallel Program-
ming 15(1), 33-71 (1986)

Vogler, W.: Partial words versus processes: a short comparison. In: Rozenberg, G. (ed.) APN
1992. LNCS, vol. 609, pp. 292-303. Springer, Heidelberg (1992)

Schrijver, A.: Theory of linear and integer programming. Wiley, Chichester (1986)

