
Extended Fuzzy Petri Nets for Decision Support

Fedor Lehocki, Gabriel Juhás
Slovak University of Technology

Faculty of Electrical Engineering and
Information Technology

Bratislava, Slovakia
{fedor.lehocki,gabriel.juhas}@stuba.sk

Robert Lorenz
University of Augsburg

Faculty of Applied Computer Science
Augsburg, Germany

robert.lorenz@informatik.uni-augsburg.de

Martin Drozda
Leibniz University of Hannover

Dept. of Computer Science
Hannover, Germany

drozda@sim.uni-hannover.de

Abstract�We present results for the formalism of Extended
Fuzzy Petri Nets by enriching the enabling and firing rule by
introducing the so-called weights and thresholds in order to filter
the propagated knowledge. It is shown that knowledge
propagation described using such extended Fuzzy Petri nets still
terminates in a unique stable state. Based on this result, the
paper introduces an algorithm for knowledge propagation in
medical decision support systems. We also discuss the general
properties of knowledge propagation functions terminating in a
unique stable state leading to the final recommendation of
diagnose or treatment.

I. INTRODUCTION

There are many different formalisms used for encoding the
expert�s knowledge, such as neural networks, semantic
networks, machine learning or Petri nets; see [3] for a more
complete list. They are used in decision support systems
(DSS), designed to provide assessments or recommendations
to aid in medical decision making.

Logical and Fuzzy Petri Nets are directed bipartite graphs
with a significant degree of structural parallelism and
pipelining; they seem to be a good choice for knowledge
representation and reasoning in DSS. In this paper we provide
results on why Petri nets represent strong and sound formalism
for knowledge representation. For clarity we also briefly
introduce the results from ref. [1] aimed at basic concepts of
Logical and Fuzzy Petri Nets and continue with extended
Fuzzy Petri Nets utilizing rule thresholds and weights. Several
dialects of Logical and Fuzzy Petri Nets are used in the
literature [2, 6, 9-11, 13, 15]. In this paper, we extend the
approach presented in [1], which follows the approach given
in [11]. Our approach assumes that if a transition produces a
token to a place which is already marked by a token, the both
tokens in that place are merged to one token. Transitions
represent the production rules, and marked places represent
valid propositions. Adding a token to an already marked place
represents just a different proof of validity of an already valid
proposition. Another assumption of [1] is that once a
proposition is valid, it stays valid after application of a
production rule, i.e. once a place of the net is marked by a
token, firing of a transition does not consume the token from
the place. A natural requirement on DSS is to provide a
unique recommendation for any fixed values of inputs in finite
time. Using Logical and Fuzzy Petri Nets, these requirements

translate as the reachability of a unique stable marking from
the given initial marking by application of a finite sequence of
production rules. In [1] we have proved that this requirement
is satisfied.

DSS do not always result in improved domain practice, for
reasons that are not always clear. Based on experiences from
[7] the most likely failures appear in a DSS knowledge base
which is inaccurate or out of date. Another reason is the
occurrence of problems with availability of input data from
authentic sources or the incompleteness of data or knowledge.
All this can result in appearance of inconsistent data elements
in the reasoning space [8]. Mapping all those forms of
inexactness onto a structured parallel distributed architecture
such as Petri nets may result in increasing of the reasoning
efficiency.

II. KNOWLEDGE REPRESENTATION AND PROPAGATION

Following the paper [1], in this section we informally
introduce the idea of knowledge representation used through
this paper. As a formal model of knowledge base and
knowledge propagation we will use logical and fuzzy Petri
nets defined in [1] and briefly described in Section 3, and their
extended version defined in Section 4. Knowledge is
represented by a set of propositions (which can have, in the
simplest case, the values true or false). Knowledge
propagation is described by a set of production rules. A
production rule describes the relation between two sets of
propositions. A set A of propositions represents the antecedent
of the production rule and a set B of propositions represent the
consequent of the production rule. The knowledge is
propagated by firing of a production rule interpreted as
follows: IF all propositions in the antecedent A have value
true THEN the propositions in the consequent B are true.

We consider a simple knowledge base given by a set of
propositions and a set of production rules of the following
form: logical product of the propositions in the antecedent A
implies the logical product of the propositions in the
consequent B. The knowledge is propagated by firing of a
sequence of rules, where the consequent of one rule is used as
the antecedent of the next rule.

For cases with uncertain validity of propositions, it is
suitable to use fuzzy values, typically from the closed interval
of real values 0.0,1.0 , where value 0 represents the case in
which the proposition is false and the value 1 represents the

case in which the proposition is true. Values between 0 and 1
represent the measure of validity for the proposition. For
example consider the following proposition: �The temperature
of a patient is high.� Obviously the validity of this proposition
is uncertain. We know that this proposition is more valid if a
patient has temperature 40 C than if he has temperature 38 C.
If the validity of propositions is expressed by fuzzy values
then also the relation between propositions of the antecedent
and propositions of the consequent is fuzzy. A production rule
with fuzzy relation is called fuzzy production rule. The
mechanism of firing the fuzzy production rule and the
knowledge propagation in a fuzzy knowledge base will be
explained in the Section 3.

III. LOGICAL AND FUZZY PETRI NETS

In this section we define logical Petri nets and their
application in modelling of logical knowledge bases and
knowledge propagation as given in [1].

Definition 1: A logical Petri Net (LPN) is a triple N =
(P,T,F), where P ={p1,p2, � pr} is a finite, nonempty set of
places, T ={t1,t2, �tn} is a finite set of transitions and F (P
T) (T P) is a flow relation, i.e. a finite set of ordered pairs
of the form (pi,tj) and (tj,pi).

Given an element x P T we denote by x the set of all
input elements of x, i.e. x={y P T (y,x) F}, and by x
we denote the set of all output elements of x i.e. x ={y P T
 (x,y) F}. The state of an LPN N = (P,T,F) is given by a

mapping m: P {0, 1} associating with each place the value 0
or the value 1, called marking.

Definition 2: A marked LPN is a pair (N,m0), where N =
(P,T,F) is a Logical Petri Net and and m0 : P {0, 1} is a
marking of LPN, called the initial marking.

In LPNs places represent propositions. The value 0 in the
initial marking of a place means, that the initial value of the
respective proposition is not true (logical false). The value 1 in
the initial marking of a place represents, that the initial value
of the respective proposition is true (logical truth).

Transitions together with their input and output places
correspond to the production rules. Namely, given a transition
t T, the set t of input places represents the antecedent of the
respective production rule and the set t of output places
represents the consequent of the respective production rule.
Firing of a production rule is represented by firing of the
respective transition.

Definition 3: Given an LPN N=(P,T,F), a transition t T
and a marking m of N, transition t is enabled to fire in m if
m(p) = 1 for each p t. The firing of such a transition t
changes the marking m to the marking m� called the follower
marking of m (w.r.t. the transition t) given as follows: m�(p) =
1 for each p t and m�(p) = m(p) else. We denote the fact
that a transition t is enabled to fire in a marking m by m[t> and
that its firing leads to the follower m� by m[t>m�. Given a
marking m, we denote by Xm the set of all transitions enabled

to fire in m.
We extend the enabledness and firing rule to sequences of

transitions as follows:
Definition 4: Let N=(P,T,F) be an LPN, m be a marking m

of N and s = t1 �tn be a finite sequence of transitions of N.
Then s is said to be enabled to fire in m if there exists a finite
sequence of markings m1 � mn such that m[t1>m1 �. mn-

1[tn>mn. The firing of such a sequence s changes the marking
m to the marking mn called the follower marking of m (w.r.t.
the sequence s). We denote the fact that a firing sequence s is
enabled to fire in m and its firing leads to the follower m� by
m[s>m�.

Given a marking m of an LPN, we can define reachability of
markings as follows.

Definition 5: Let m be a marking of an LPN N=(P,T,F).
Then a marking m� of N is said to be reachable from the
marking m if there exists a firing sequence s such that m[s>m�.

Since firing a transition does not change the marking of
input places and does not decrease the marking of out places,
as a fundamental consequence of the firing rule of LPNs we
have that all markings which are reachable from a given
marking m have the value 1 in all the places p with m(p)=1.

In [1] we have proved that firing transitions in a marked
LPN always leads to a stable marking, i.e. a marking which
stays unchanged by firing any further transitions.

Theorem 1: Let (N,m0), N=(P,T,F), be a MLPN. Then there
exists a firing sequence s and a marking m such that m0[s>m
and m[t>m for each transition t enabled in m.

In [1] we show that the firing rule has even a stronger
consequence, namely that the marking m from Theorem 1 is
unique, i.e. its value does not depend on the sequence leading
to it.

Theorem 2: Let (N,m0), N=(P,T,F), be a MLPN. Let s1 and
s2 be two firing sequences with m0[s1>m1 and m0[s2>m2 such
that m1[t>m1 and m2[t>m2 for each transition t enabled in m1
resp. m2. Then m1 = m2.

According to the previous result, we can uniquely define the
stable marking of a MLPN.

Definition 6: Let (N,m0), N=(P,T,F), be a MLPN. Le s be a
firing sequence s with m0[s>m and m[t>m for each transition t
enabled in m. Then marking m is said to be the stable marking
of (N,m0) and s is said to be a stabilizing firing sequence of
(N,m0).

Because LPNs cannot deal with vague or fuzzy information
such as �very good� and �healthy� several kinds of Fuzzy
Petri Nets (FPN) have been introduced [11]. They are used for
fuzzy knowledge representation and reasoning. A FPN differs
from a LPN only in markings and the firing rule. A marking of
a FPN is a mapping m: P 0, 1 , which assigns a real value
between zero and one to each place. In this paper we use the

Fuzzy Petri Nets defined in [1].
Definition 7: A marked FPN is a tuple (N,m0), where

N=(P,T,F) is a LPN and m0 is a marking of a FPN, called the
initial marking.

Definition 8: Given a FPN N=(P,T,F), a transition t T and
a marking m of N, transition t is enabled to fire in m if m(p) >
0 for each p t. The firing of such a transition t changes the
marking m to the marking m� called the follower marking of m
(w.r.t. the transition t) given by m�(p) = max(m(p),min{m(q) | q

 t }) for each p t and m�(p) = m(p) else.

We denote the fact that a transition t is enabled to fire in a
marking m by m[t> and that its firing leads to the follower m�
by m[t>m�. Given a marking m, we denote by Xm the set of all
transitions enabled to fire in m. Given the firing rule for
transitions, the firing rule for finite sequences of transitions
and the notion of reachable marking is given analogously as
for LPNs. Note that this firing rule can be expressed as a fuzzy
norm Tn [12]; in our case we use T3. In [1] we have proved:

Theorem 3: Let (N,m0), N=(P,T,F), be a marked FPN. Then
there exists a firing sequence s and a marking m such that
m0[s>m and m[t>m for each transition t enabled in m.

If s1 and s2 are two firing sequences with m0[s1>m1,
m0[s2>m2 and m1[t>m1 and m2[t>m2 for each transition t
enabled in m1 resp. m2, then m1 = m2.

That means in particular that the stable marking is unique.
Definition 9: Let (N,m0), N=(P,T,F), be a marked FPN. Let

s be a firing sequence with m0[s>m and m[t>m for each
transition t enabled in m. Then marking m is said to be the
stable marking of (N,m0) and s is said to be a stabilizing firing
sequence of (N,m0).

As we have shown in [1], it is possible to compute the
stable marking of a marked FPN through calculating maximal
concurrent steps by linear algebra.

Definition 10: Let m be a marking of a FPN N=(P,T,F).
Then Xm is called maximal concurrent step w.r.t. m and firing
of Xm in the marking m leads to the follower marking m�
given by m�(p) = max(m(p) , max{min{m(q) | q t } | t
p Xm }) for each p t Xm t and m�(p) = m(p) else. Firing

of Xm in m is denoted by m[Xm>m�.

There is a firing sequence of maximal concurrent steps
leading to the stable marking [1].

Theorem 4: Let (N,m0), N=(P,T,F), be a marked FPN. Then
there is a sequence of markings m1,...,mk with k (|P| |P-
1|)/2, such that m0[Xm0>m1[Xm1>�>mk and mk is the stable
marking of (N,m0).

For the purposes of the computation of the stable marking
we introduced in [1] the following matrix operations. For
vectors a=(a1 , a2, �, an) and b=(b1 ,b2, �,bn) and an (r x n)-
dimensional matrix Y having rows y1,...,yk with elements from

the closed interval 0,1 we denote:
a or b = (max(a1, b1),max(a2,b2),...,max(an,bn)).
a and b = max(min(a1, b1),min (a2,b2),..., min (an,bn))
neg a = (1-a1, �, 1-an)
Y and a = (y1 and a,..., yr and a).

Given an LPN, we define (r x n)-dimensional matrices I and
O. I is called input matrix and describes the flow relation
between input places and transitions: For each row a {1,..,r}
and each column b {1,..,n}, if pa tb then iab = 1, else iab =
0. O is called output matrix and describes the flow relation
between output places and transitions: For each row a
{1,..,r} and each column b {1,..,n}, if pa tb then oab = 1,
else oab = 0. We also define for a marking m of an LPN r-
dimensional vector M=(m(p1),...,m(pr)). In the case of m(p)=0
we say that the place p is not marked. We define an n-
dimensional vector V representing the transitions not enabled
in a marking m by the value 1, an n-dimensional vector X
representing the transitions enabled in a marking m, i.e. the set
Xm, by non-zero values and a vector M� representing the
follower marking when firing m, using the following
definitions of the operators or, and and neg.

Definition 11: Let N = (P,T,F) be a FPN and m be a
marking. We denote:

V = IT and (neg M).
X= neg V.
M = M or (O and X).

The central result of [1] is the following theorem:
Theorem 5: Let N = (P,T,F) be a FPN with P = {p1, �pr}

and T = {t1, .., tn} and m be a marking of N. Let V, X and M�
be as in Definition 11. Then V = (v1,�,vn) represents which
transitions in the marking m are not enabled, i.e. vb = 1 if and
only if tb is not enabled to fire in m. Moreover if vb < 1, then
vb= 1 - min{m(q) | q tb}. X= (x1,�,xn) represents which
transitions are enabled in the marking m, i.e. xb > 0 if and only
if tb Xm. In this case xb = min{m(q) | q tb}. M represents
the marking reached after firing maximal concurrent step Xm
in m, i.e. M = (m�(p1),...,m�(pr)), where m[Xm>m�.

Based on these results, in [1] we presented the following
algorithm for computation of the stable marking of a marked
FPN, which terminates by Theorems 4 and 5:

Algorithm 1
Step 1: Arrange matrices I ; O
Step 2: Set k=0 and arrange vector M0 representing the

initial marking
Step 3: Calculate vector Vk = IT and (neg Mk)
Step 4: Calculate vector Xk= neg Vk
Step 5: Calculate vector Mk+1= Mk or (O and Xk)
Step 6: Go to Step 3 until Mk+1 = Mk

IV. EXTENDED FUZZY PETRI NETS

In this section we discuss a possible extension of FPNs by

0 0 0

0

0 0

rule weights (also called certainty factors) and threshold
values [11] together with a simple example.

Threshold values represent a lower bound for the
propagation of values. If a propagation value of a rule
(minimum of markings of input places) is smaller than the
threshold value of the rule, then the information represented
by the propagation value is not certain enough and the rule is
not enabled. Threshold values allow for requiring a minimum
quality of information to be propagated. Threshold values are
given by a mapping tr:T 0, 1 .

Rule weights represent an upper bound for the propagation
of values. If a propagation value of a rule is bigger than the
rule weight, then only the rule weight is propagated. Rule
weights allow for restricting the influence of rules. Rule
weights are given by a mapping w:T 0, 1 . In figures,
threshold values are given in brackets of the form [tr] and rule
weights are given in brackets of the form (w) (see Fig. 1).

A transition t is enabled to fire in a marking m if m(p) tr(t)
for each p t. For a transition t we denote val(t)=min{m(q) |
q t}. The firing of such a transition t changes the marking
m to the marking m� called the follower marking of m (w.r.t.
the transition t) given by m�(p) = max(m(p),min(val(t),w(t)))
for each p t and m�(p) = m(p) else.

Obviously, as for FPNs, the firing of transitions increases
markings and sets of enabled transitions. The only difference
is that threshold values additionally prevent some rules to be
enabled and rule weights restrict the possibility to strictly
increase markings by firing of transitions. Therefore also an
analogous result to Theorem 3 holds, i.e. there is a unique
stable marking which can be reached by firing sequences
which are long enough. The set of possible markings of places
is now given by {m | p: m0(p)=m>0} {n | t: w(t)=n>0}, i.e.
by the initial marking and the rule weights. The cardinality of
this set determines an upper bound for the length of firing
sequences leading to stable markings. Maximal concurrent
steps and their firing rule can be defined as for FPNs, taking
additionally the rule weights into account, i.e. Xm is the set of
transitions enabled in m (w.r.t. threshold values) and the firing
of Xm in a marking m leads to the follower marking m� given
by m�(p) = max(m(p), max{min(val(t),w(t)) | t p Xm }) for
each p t Xm t and m�(p) = m(p) else. In an analogous way
as for FPNs a firing sequence of maximal concurrent steps
leading to the stable marking can be constructed. For the
computation of the stable marking by a firing sequence of
maximal concurrent steps, it is necessary to make some

changes to the algorithm introduced to FPNs. The definitions
of the operations and, or and neg are the same. Also the matrix
I and the vector M do not change. To account for the rule
weights, the matrix O is changed as follows: If pa tb , then
oab = w(tb) and oab = 0 else. This restricts the propagated value
to the rule weight. Negation of V results in information about
rules which are enabled without considering thresholds (here:
pr2, pr3). Considering the rule thresholds we set those values
in V to 0 which are smaller than the threshold in order to
represent enabledness for FPNs. We introduce a new operation
top defined for a=(a1,a2, �,an) and b=(b1,b2, �,bn) by a top b
= (c1,...,cn), ci = ai if ai bi and ci = 0 else. If W =
(w(t1),...,w(tn)), then X = (neg V) top W defines the transitions
which are enabled by non-zero values. In our example W =
(0,0.8,0.2,0,0,0) and X = (0,0,0.7,0,0,0). The non-zero values
represent the propagation values of enabled transitions as for
FPNs, i.e. xb = val(tb) for tb enabled.

Now M� is computed as for FPNs, i.e. M� = M or (O and
X) using the new matrix O. Indeed M� defines the follower
marking. Let M� = (m1�,...,mr�). By definition ma� =
max(ma,max(min(oa1, x1),...,min (oan ,xn))). Since xb = val(tb)
for tb enabled, xb = 0 else and oab = w(tb) for each place pa
tb , we get m�(pa) = (max(m(pa) , max{min(val(tb),w(tb)) | tb
pa Xm}) as required. We get the following algorithm for

computation of the stable marking of a marked extended FPN:

Algorithm 2
Step 1: Arrange matrices I ; O and vector W
Step 2: Set k=0 and arrange vector M0 representing the

initial marking
Step 3: Calculate vector Vk = IT and (neg Mk)
Step 4: Calculate vector Xk = (neg Vk) top W
Step 5: Calculate vector Mk+1= Mk or (O and Xk)
Step 6: Go to Step 3 until Mk+1 = Mk
In our example, after three iterations (k = 3) we reach the

stable state M3 = (0.4,0.7,0,0.7,0,0,0.7,0) (Fig. 2).

V. OTHER KNOWLEDGE PROPAGATION FUNCTIONS

Up to now, in this paper we considered three particular
methods of knowledge propagation encoded in the firing rule
of Petri nets, each extending the previous one. Of course, the
presented methods are only examples and they are not the only
possible choices. The crucial result was, that for each method
the behavior of the net always reaches a unique stable state

Fig. 1. Initial marking M0 of an extended FPN.

0 0 0

0

0 0

Fig. 2. Stable marking M3 of an extended FPN.

which can be used as information for decision support, and
that there is an efficient computation (having linear runtime in
the size of the net) of this stable state. In this section we
intend to define a Petri net defining knowledge propagation in
a very general way using quite arbitrary knowledge
propagation functions determining the firing rule of
transitions. We then focus on the identification of properties of
such knowledge propagation functions which may support that
a unique stable state is always reached.

Definition 15: Let (P,T,F) be defined as for LPNs and
FPNs and let K be an arbitrary set. For each transition t, let
there be a fixed ordering among the input places of t, i.e. t =
{pt1,...,ptnt}. For each place p in t let ft,p : K

nt K be a partial
mapping. Let gp : 2

K K be a total mapping (2K denotes the
set of all subsets of K) for each place p. Let Map be the family
of all those mappings. Then (P,T,F,Map) is called a
Knowledge Propagation Petri Net (KPPN). A marking of a
KPPN is a mapping m: P K. A transition t is enabled to fire
in a marking m, if for each p in t , ft,p(m(pt1),...,m(ptnt)) is
defined. Its firing leads to the follower marking m� given by
m�(p) = gp({ft,p(m(pt1),...,m(ptnt)),m(p)}) for output places p of
t. Markings of other places remain unchanged. The set of
transitions enabled in a marking m is denoted by Xm. Then
the firing of the concurrent step Xm leads to the follower
marking m�(p)=gp({ft,p(m(pt1),...,m(ptnt)) | t Xm} {m(p)}).

It is easy to see how to instantiate LPNs and FPNs as
KPPNs. For example, for FPNs, K= 0,1 , ft,p is the minimum
mapping and gp the maximum mapping. For extended FPNs,
the functions ft,p are only defined partially according to the
thresholds and the rule weights are encoded in the functions
gp.

These mappings for FPNs satisfy the following general
properties:

 The firing of transitions increases the marking.
 The set of reachable markings is finite for arbitrary

initial marking.
It is easy to see, considering the presented proofs in [1], that

these two properties are actually enough to establish the
existence of a unique stable state. Instead of considering
functions which always increase markings, of course also
functions which always decrease markings can be considered
with the same result. On the other side, none of these
properties alone is enough. If the firing of transitions increases
the marking but the set of reachable markings is infinite for a
certain initial marking then, in general, not each infinite firing
sequence leads to a stable state. Consider for example
mappings which always propagate the double marking of
some input place to output places (for K = 0,)). If the firing
of transitions neither always increases nor always decreases
the marking but the set of reachable markings is finite for all
initial markings then also in general not each infinite firing
sequence leads to a stable state. Consider for example two
transitions which both have exactly one input and one output

place and can be fired alternatively, where one transition just
propagates the marking of its input place and the other
transition propagates the difference between 1 and the
marking of its input place (for K= 0,1).

VI. CONCLUSIONS

It is a topic of a further research to identify other suitable
knowledge propagation functions obtaining other Petri net
dialects for DSS as well as other necessary and/or sufficient
conditions for the existence of a unique stable state in the used
dialects. The perspective of future research can be targeted to
adaptive estimations and change of rule weights and
thresholds resulting in more dynamic reasoning in DSS
compared to the static estimation of those values by
knowledge engineer as presented in the paper.

ACKNOWLEDGMENTS

This work was supported in part by the Slovak Ministry of
Education under Grants AV 1019, AV 103, DAAD
SAMANET 07/2006, VEGA 1/0872/08, APVV-0618-07
TAWOP and by the German Academic Exchange Service
within the SAMANET project. Martin Drozda was also
supported by the German Research Foundation (SZ 51/24-2).

REFERENCES
[1] F. Lehocki, G. Juhás, R. Lorenz, H. Szczerbicka, M. Drozda. Decision

Support with Logical and Fuzzy Petri Nets. Cybernetics and Systems: An
International Journal, 39: 587�610, 2008.

[2] T. Murata, V.S. Subrahmanian, T. Wakayana. A Petri Net Model for
Reasoning in the Presence of Inconsistency. IEEE Transactions on
Knowledge and Data Engineering, vol. 3, no. 3, pp.281-292, 1991.

[3] E. Coiera. Guide to health informatics. Hodder Arnold, London, 2003.
[4] K. Gurney. Introduction to Neural Networks. CRC PRESS, London,

1997.
[5] A. Keles. ESTDD: Expert System for Thyroid Disease Diagnostics.

Expert Systems with Applications, vol. 34, pp. 242-246, 2008.
[6] X. Li, F. Lara-Rosano. Adaptive Fuzzy Petri Nets for Dynamic

Knowledge Representation and Inference. Expert Systems with
Applications, vol. 19, pp. 235-241, 2000.

[7] E. Coiera, J.I. Westbrook, J.C. Wyatt. The Safety and Quality of
Decision Support Systems, In Haux R, Kulikowski C (eds): IMIA
Yearbook of Medical Informatics, pp. 20-25, Schattauer
Verlagsgesellschaft GmbH, Stuttgart, 2006.

[8] N.A. Shebl, B.D. Franklin, N. Barber. Clinical decision
support systems and antibiotic use. Pharmacy World & Science, vol. 29,
pp. 342-349, 2007.

[9] F. Girault, B. Pradin-Chézalviel, R. Valette. A logic for Petri
Nets. Journal européen des systèmes automatisés, vol. 31, n. 3, pp. 525-
542, 1997.

[10] J. Cardoso, R. Valette, B. Pradin-Chezalviel. Fuzzy Petri nets and linear
logic. In Proceedings of IEEE International Conference on Systems,
Man and Cybernetics, vol. 2, pp. 258-263, 1993.

[11] S.M. Chen, J. Ke, J. Chang. Knowledge Representation Using Fuzzy
Petri Nets. IEEE Transactions on Knowledge and Data Engineering,
vol. 2, no. 3, pp. 311-319, 1990.

[12] H.J. Zimmermann. Fuzzy Set Theory and its Applications. Kluwer
Academic Publishers, Dordrecht, pp. 23-39, 1991.

[13] A. Konar, A.K. Mandal. Uncertainty Management in Expert Systems
Using Fuzzy Petri Nets. IEEE Transactions on Knowledge and Data
Engineering, vol. 8, no. 1, pp. 96-105, 1996.

[14] G.P. Purcell. What makes a good clinical decision support system.
British Medical Journal, vol. 330, no. 7494, pp.740-741, 2005.

[15] C.G. Looney. Fuzzy Petri Nets for rule-based decision making. IEEE
Transactions on Systems, Man and Cybernetics, vol. 18, no. 1, pp. 178-
183., 1998.

