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Abstract�We present results for the formalism of Extended 
Fuzzy Petri Nets by enriching the enabling and firing rule by 
introducing the so-called weights and thresholds in order to filter 
the propagated knowledge. It is shown that knowledge 
propagation described using such extended Fuzzy Petri nets still 
terminates in a unique stable state. Based on this result, the 
paper introduces an algorithm for knowledge propagation in 
medical decision support systems. We also discuss the general 
properties of knowledge propagation functions terminating in a 
unique stable state leading to the final recommendation of 
diagnose or treatment. 

I. INTRODUCTION 

There are many different formalisms used for encoding the 
expert�s knowledge, such as neural networks, semantic 
networks, machine learning or Petri nets;  see [3] for a more 
complete list. They are used in decision support systems 
(DSS), designed to provide assessments or recommendations 
to aid in medical decision making. 

Logical and Fuzzy Petri Nets are directed bipartite graphs 
with a significant degree of structural parallelism and 
pipelining; they seem to be a good choice for knowledge 
representation and reasoning in DSS. In this paper we provide 
results on why Petri nets represent strong and sound formalism 
for knowledge representation. For clarity we also briefly 
introduce the results from ref. [1] aimed at basic concepts of 
Logical and Fuzzy Petri Nets and continue with extended 
Fuzzy Petri Nets utilizing rule thresholds and weights. Several 
dialects of Logical and Fuzzy Petri Nets are used in the 
literature [2, 6, 9-11, 13, 15]. In this paper, we extend the 
approach presented in [1], which follows the approach given 
in [11]. Our approach assumes that if a transition produces a 
token to a place which is already marked by a token, the both 
tokens in that place are merged to one token. Transitions 
represent the production rules, and marked places represent 
valid propositions. Adding a token to an already marked place 
represents just a different proof of validity of an already valid 
proposition. Another assumption of [1] is that once a 
proposition is valid, it stays valid after application of a 
production rule, i.e. once a place of the net is marked by a 
token, firing of a transition does not consume the token from 
the place.  A natural requirement on DSS is to provide a 
unique recommendation for any fixed values of inputs in finite 
time. Using Logical and Fuzzy Petri Nets, these requirements 

translate as the reachability of a unique stable marking from 
the given initial marking by application of a finite sequence of 
production rules. In [1] we have proved that this requirement 
is satisfied. 

DSS do not always result in improved domain practice, for 
reasons that are not always clear. Based on experiences from 
[7] the most likely failures appear in a DSS knowledge base 
which is inaccurate or out of date. Another reason is the 
occurrence of problems with availability of input data from 
authentic sources or the incompleteness of data or knowledge. 
All this can result in appearance of inconsistent data elements 
in the reasoning space [8]. Mapping all those forms of 
inexactness onto a structured parallel distributed architecture 
such as Petri nets may result in increasing of the reasoning 
efficiency. 

II. KNOWLEDGE REPRESENTATION AND PROPAGATION 

Following the paper [1], in this section we informally 
introduce the idea of knowledge representation used through 
this paper. As a formal model of knowledge base and 
knowledge propagation we will use logical and fuzzy Petri 
nets defined in [1] and briefly described in Section 3, and their 
extended version defined in Section 4. Knowledge is 
represented by a set of propositions (which can have, in the 
simplest case, the values true or false). Knowledge 
propagation is described by a set of production rules. A 
production rule describes the relation between two sets of 
propositions. A set A of propositions represents the antecedent 
of the production rule and a set B of propositions represent the 
consequent of the production rule. The knowledge is 
propagated by firing of a production rule interpreted as 
follows: IF all propositions in the antecedent A have value 
true THEN the propositions in the consequent B are true. 

We consider a simple knowledge base given by a set of 
propositions and a set of production rules of the following 
form: logical product of the propositions in the antecedent A 
implies the logical product of the propositions in the 
consequent B. The knowledge is propagated by firing of a 
sequence of rules, where the consequent of one rule is used as 
the antecedent of the next rule. 

For cases with uncertain validity of propositions, it is 
suitable to use fuzzy values, typically from the closed interval 
of real values 0.0,1.0 , where value 0 represents the case in 
which the proposition is false and the value 1 represents the 



case in which the proposition is true. Values between 0 and 1 
represent the measure of validity for the proposition. For 
example consider the following proposition: �The temperature 
of a patient is high.� Obviously the validity of this proposition 
is uncertain. We know that this proposition is more valid if a 
patient has temperature 40 C than if he has temperature 38 C. 
If the validity of propositions is expressed by fuzzy values 
then also the relation between propositions of the antecedent 
and propositions of the consequent is fuzzy. A production rule 
with fuzzy relation is called fuzzy production rule. The 
mechanism of firing the fuzzy production rule and the 
knowledge propagation in a fuzzy knowledge base will be 
explained in the Section 3. 

III. LOGICAL AND FUZZY PETRI NETS 

In this section we define logical Petri nets and their 
application in modelling of logical knowledge bases and 
knowledge propagation as given in [1]. 

Definition 1: A logical Petri Net (LPN) is a triple  N = 
(P,T,F), where P ={p1,p2, � pr} is a finite, nonempty set of 
places, T ={t1,t2, �tn} is a finite set of transitions and F  (P  
T)  (T  P) is a flow relation, i.e. a finite set of ordered pairs 
of the form (pi,tj) and (tj,pi). 

Given an element x  P T we denote by x the set of all 
input elements of x, i.e. x={y  P T  (y,x)  F}, and by x  
we denote the set of all output elements of x i.e. x ={y  P  T 
 (x,y)  F}. The state of an LPN N = (P,T,F) is given by a 

mapping m: P  {0, 1} associating with each place the value 0 
or the value 1, called marking. 

Definition 2: A marked LPN is a pair (N,m0), where N = 
(P,T,F) is a Logical Petri Net and and m0 : P  {0, 1} is a 
marking of LPN, called the initial marking. 

In LPNs places represent propositions. The value 0 in the 
initial marking of a place means, that the initial value of the 
respective proposition is not true (logical false). The value 1 in 
the initial marking of a place represents, that the initial value 
of the respective proposition is true (logical truth). 

Transitions together with their input and output places 
correspond to the production rules. Namely, given a transition 
t T, the set t of input places represents the antecedent of the 
respective production rule and the set t  of output places 
represents the consequent of the respective production rule. 
Firing of a production rule is represented by firing of the 
respective transition. 

Definition 3: Given an LPN N=(P,T,F), a transition t  T 
and a marking m of N, transition t is enabled to fire in m if 
m(p) = 1 for each p  t. The firing of such a transition t 
changes the marking m to the marking m� called the follower 
marking of m (w.r.t. the transition t) given as follows: m�(p) = 
1 for each p  t  and m�(p) = m(p) else. We denote the fact 
that a transition t is enabled to fire in a marking m by m[t> and 
that its firing leads to the follower m� by m[t>m�. Given a 
marking m, we denote by Xm the set of all transitions enabled 

to fire in m. 
We extend the enabledness and firing rule to sequences of 

transitions as follows: 
Definition 4: Let N=(P,T,F) be an LPN, m be a marking m 

of N and s = t1 �tn be a finite sequence of transitions of N. 
Then s is said to be enabled to fire in m if there exists a finite 
sequence of markings m1 � mn such that m[t1>m1 �. mn-

1[tn>mn. The firing of such a sequence s changes the marking 
m to the marking mn called the follower marking of m (w.r.t. 
the sequence s). We denote the fact that a firing sequence s is 
enabled to fire in m and its firing leads to the follower m� by 
m[s>m�. 

Given a marking m of an LPN, we can define reachability of 
markings as follows. 

Definition 5: Let m be a marking of an LPN N=(P,T,F). 
Then a marking m� of N is said to be reachable from the 
marking m if there exists a firing sequence s such that m[s>m�. 

Since firing a transition does not change the marking of 
input places and does not decrease the marking of out places, 
as a fundamental consequence of the firing rule of LPNs we 
have that all markings which are reachable from a given 
marking m have the value 1 in all the places p with m(p)=1. 

In [1] we have proved that firing transitions in a marked 
LPN always leads to a stable marking, i.e. a marking which 
stays unchanged by firing any further transitions. 

Theorem 1: Let (N,m0), N=(P,T,F), be a MLPN. Then there 
exists a firing sequence s and a marking m such that m0[s>m 
and m[t>m for each transition t enabled in m. 

In [1] we show that the firing rule has even a stronger 
consequence, namely that the marking m from Theorem 1 is 
unique, i.e. its value does not depend on the sequence leading 
to it. 

Theorem 2: Let (N,m0), N=(P,T,F), be a MLPN. Let s1 and 
s2 be two firing sequences with m0[s1>m1 and m0[s2>m2 such 
that m1[t>m1 and m2[t>m2 for each transition t enabled in m1 
resp. m2. Then m1 = m2. 

According to the previous result, we can uniquely define the 
stable marking of a MLPN. 

Definition 6: Let (N,m0), N=(P,T,F), be a MLPN. Le s be a 
firing sequence s with m0[s>m and m[t>m for each transition t 
enabled in m. Then marking m is said to be the stable marking 
of (N,m0) and s is said to be a stabilizing firing sequence of 
(N,m0). 

Because LPNs cannot deal with vague or fuzzy information 
such as �very good� and �healthy� several kinds of Fuzzy 
Petri Nets (FPN) have been introduced [11]. They are used for 
fuzzy knowledge representation and reasoning. A FPN differs 
from a LPN only in markings and the firing rule. A marking of 
a FPN is a mapping m: P  0, 1 , which assigns a real value 
between zero and one to each place. In this paper we use the 



Fuzzy Petri Nets defined in [1]. 
Definition 7: A marked FPN is a tuple (N,m0), where 

N=(P,T,F) is a LPN and m0 is a marking of a FPN, called the 
initial marking. 

Definition 8: Given a FPN N=(P,T,F), a transition t  T and 
a marking m of N, transition t is enabled to fire in m if m(p) > 
0 for each p  t. The firing of such a transition t changes the 
marking m to the marking m� called the follower marking of m 
(w.r.t. the transition t) given by m�(p) = max(m(p),min{m(q) | q 

 t }) for each p  t  and m�(p) = m(p) else. 

We denote the fact that a transition t is enabled to fire in a 
marking m by m[t> and that its firing leads to the follower m� 
by m[t>m�. Given a marking m, we denote by Xm the set of all 
transitions enabled to fire in m. Given the firing rule for 
transitions, the firing rule for finite sequences of transitions 
and the notion of reachable marking is given analogously as 
for LPNs. Note that this firing rule can be expressed as a fuzzy 
norm Tn [12]; in our case we use T3. In [1] we have proved: 

Theorem 3: Let (N,m0), N=(P,T,F), be a marked FPN. Then 
there exists a firing sequence s and a marking m such that 
m0[s>m and m[t>m for each transition t enabled in m. 

If s1 and s2 are two firing sequences with m0[s1>m1, 
m0[s2>m2 and m1[t>m1 and m2[t>m2  for each transition t 
enabled in m1 resp. m2, then m1 = m2. 

That means in particular that the stable marking is unique. 
Definition 9: Let (N,m0), N=(P,T,F), be a marked FPN. Let 

s be a firing sequence with m0[s>m and m[t>m for each 
transition t enabled in m. Then marking m is said to be the 
stable marking of (N,m0) and s is said to be a stabilizing firing 
sequence of (N,m0). 

As we have shown in [1], it is possible to compute the 
stable marking of a marked FPN through calculating maximal 
concurrent steps by linear algebra. 

Definition 10: Let m be a marking of a FPN N=(P,T,F). 
Then Xm is called maximal concurrent step w.r.t. m and firing 
of Xm in the marking m leads to the follower marking m� 
given by m�(p) = max(m(p) , max{min{m(q) | q  t } | t  
p Xm }) for each p  t Xm t  and m�(p) = m(p) else. Firing 

of Xm in m is denoted by m[Xm>m�. 

There is a firing sequence of maximal concurrent steps 
leading to the stable marking [1]. 

Theorem 4: Let (N,m0), N=(P,T,F), be a marked FPN. Then 
there is a sequence of markings m1,...,mk with k  (|P|  |P-
1|)/2, such that m0[Xm0>m1[Xm1>�>mk and mk is the stable 
marking of (N,m0). 

For the purposes of the computation of the stable marking 
we introduced in [1] the following matrix operations. For 
vectors a=(a1 , a2, �, an) and b=(b1 ,b2, �,bn) and an (r x n)-
dimensional matrix Y  having rows y1,...,yk with elements from 

the closed interval 0,1  we denote: 
a or b = (max(a1, b1),max( a2,b2),...,max( an,bn)). 
a and b = max(min(a1, b1),min (a2,b2),..., min (an,bn)) 
neg a = (1-a1, �, 1-an) 
Y and a = (y1 and a,..., yr and a). 

Given an LPN, we define (r x n)-dimensional matrices I and 
O. I is called input matrix and describes the flow relation 
between input places and transitions: For each row a  {1,..,r} 
and each column b  {1,..,n}, if pa  tb then iab = 1, else iab = 
0. O is called output matrix and describes the flow relation 
between output places and transitions: For each row a  
{1,..,r} and each column b  {1,..,n}, if pa  tb  then oab = 1, 
else oab = 0. We also define for a marking m of an LPN r-
dimensional vector M=(m(p1),...,m(pr)). In the case of m(p)=0 
we say that the place p is not marked. We define an n-
dimensional vector V representing the transitions not enabled 
in a marking m by the value 1, an n-dimensional vector X 
representing the transitions enabled in a marking m, i.e. the set 
Xm, by non-zero values and a vector M� representing the 
follower marking when firing m, using the following 
definitions of the operators or, and and neg. 

Definition 11: Let N = (P,T,F) be a FPN and m be a 
marking. We denote: 

V = IT  and  (neg M). 
X= neg V. 
M  = M or (O and X). 

The central result of [1] is the following theorem: 
Theorem 5:  Let N = (P,T,F) be a FPN with P = {p1, �pr} 

and T = {t1, .., tn} and m be a marking of N. Let V, X and M� 
be as in Definition 11. Then V = (v1,�,vn) represents which 
transitions in the marking m are not enabled, i.e. vb = 1 if and 
only if tb is not enabled to fire in m. Moreover if vb < 1, then 
vb= 1 - min{m(q) | q  tb}. X= (x1,�,xn) represents which 
transitions are enabled in the marking m, i.e. xb > 0 if and only 
if tb  Xm. In this case xb = min{m(q) | q  tb}. M  represents 
the marking reached after firing maximal concurrent step Xm 
in m, i.e. M  = (m�(p1),...,m�(pr)), where m[Xm>m�. 

Based on these results, in [1] we presented the following 
algorithm for computation of the stable marking of a marked 
FPN, which terminates by Theorems 4 and 5: 

Algorithm 1 
Step 1:   Arrange matrices I ; O 
Step 2: Set k=0 and arrange vector M0 representing the 

initial marking 
Step 3: Calculate vector Vk = IT  and  (neg Mk) 
Step 4:  Calculate vector Xk= neg Vk 
Step 5:  Calculate vector Mk+1= Mk or (O and Xk) 
Step 6: Go to Step 3 until Mk+1 =  Mk 

IV. EXTENDED FUZZY PETRI NETS 

In this section we discuss a possible extension of FPNs by 
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rule weights (also called certainty factors) and threshold 
values [11] together with a simple example. 

Threshold values represent a lower bound for the 
propagation of values. If a propagation value of a rule 
(minimum of markings of input places) is smaller than the 
threshold value of the rule, then the information represented 
by the propagation value is not certain enough and the rule is 
not enabled.  Threshold values allow for requiring a minimum 
quality of information to be propagated. Threshold values are 
given by a mapping tr:T  0, 1 . 

Rule weights represent an upper bound for the propagation 
of values. If a propagation value of a rule is bigger than the 
rule weight, then only the rule weight is propagated.   Rule 
weights allow for restricting the influence of rules.  Rule 
weights are given by a mapping w:T  0, 1 . In figures, 
threshold values are given in brackets of the form [tr] and rule 
weights are given in brackets of the form (w) (see Fig. 1). 

A transition t is enabled to fire in a marking m if m(p)  tr(t) 
for each p  t. For a transition t we denote val(t)=min{m(q) | 
q  t}. The firing of such a transition t changes the marking 
m to the marking m� called the follower marking of m (w.r.t. 
the transition t) given by m�(p) = max(m(p),min(val(t),w(t))) 
for each p  t  and m�(p) = m(p) else. 

Obviously, as for FPNs, the firing of transitions increases 
markings and sets of enabled transitions. The only difference 
is that threshold values additionally prevent some rules to be 
enabled and rule weights restrict the possibility to strictly 
increase markings by firing of transitions. Therefore also an 
analogous result to Theorem 3 holds, i.e. there is a unique 
stable marking which can be reached by firing sequences 
which are long enough. The set of possible markings of places 
is now given by {m | p: m0(p)=m>0} {n | t: w(t)=n>0}, i.e. 
by the initial marking and the rule weights. The cardinality of 
this set determines an upper bound for the length of firing 
sequences leading to stable markings. Maximal concurrent 
steps and their firing rule can be defined as for FPNs, taking 
additionally the rule weights into account, i.e. Xm is the set of 
transitions enabled in m (w.r.t. threshold values) and the firing 
of Xm in a marking m leads to the follower marking m� given 
by m�(p) = max(m(p), max{min(val(t),w(t)) | t  p Xm }) for 
each p  t Xm t  and m�(p) = m(p) else.  In an analogous way 
as for FPNs a firing sequence of maximal concurrent steps 
leading to the stable marking can be constructed. For the 
computation of the stable marking by a firing sequence of 
maximal concurrent steps, it is necessary to make some 

changes to the algorithm introduced to FPNs. The definitions 
of the operations and, or and neg are the same. Also the matrix 
I and the vector M do not change. To account for the rule 
weights, the matrix O is changed as follows: If pa  tb , then 
oab = w(tb) and oab = 0 else. This restricts the propagated value 
to the rule weight. Negation of V results in information about 
rules which are enabled without considering thresholds (here: 
pr2, pr3). Considering the rule thresholds we set those values 
in V to 0 which are smaller than the threshold in order to 
represent enabledness for FPNs. We introduce a new operation 
top defined for a=(a1,a2, �,an) and b=(b1,b2, �,bn) by a top b 
= (c1,...,cn), ci = ai if ai  bi and ci = 0 else. If W = 
(w(t1),...,w(tn)), then  X = (neg V) top W defines the transitions 
which are enabled by non-zero values. In our example W = 
(0,0.8,0.2,0,0,0) and  X = (0,0,0.7,0,0,0). The non-zero values 
represent the propagation values of enabled transitions as for 
FPNs, i.e. xb = val(tb) for tb enabled. 

Now M� is computed as for FPNs, i.e. M� = M or (O and 
X) using the new matrix O. Indeed M� defines the follower 
marking. Let M� = (m1�,...,mr�). By definition ma� = 
max(ma,max(min(oa1, x1),...,min (oan ,xn))). Since xb = val(tb) 
for tb enabled, xb = 0 else and oab = w(tb) for each place pa  
tb , we get m�(pa) = (max(m(pa) , max{min(val(tb),w(tb)) | tb  
pa Xm}) as required. We get the following algorithm for 

computation of the stable marking of a marked extended FPN: 

Algorithm 2 
Step 1:  Arrange matrices I ; O and vector W 
Step 2: Set k=0 and arrange vector M0 representing the 

initial marking 
Step 3:  Calculate vector Vk = IT  and  (neg Mk) 
Step 4:  Calculate vector Xk  = (neg Vk ) top W 
Step 5:  Calculate vector Mk+1= Mk or (O and Xk) 
Step 6: Go to Step 3 until Mk+1 =  Mk 
In our example, after three iterations (k = 3) we reach the 

stable state M3 = (0.4,0.7,0,0.7,0,0,0.7,0) (Fig. 2). 

V. OTHER KNOWLEDGE PROPAGATION FUNCTIONS 

Up to now, in this paper we considered three particular 
methods of knowledge propagation encoded in the firing rule 
of Petri nets, each extending the previous one. Of course, the 
presented methods are only examples and they are not the only 
possible choices.  The crucial result was, that for each method 
the behavior of the net always reaches a unique stable state 

Fig. 1.  Initial marking M0 of an extended FPN. 

0 0 0

0 

0 0

Fig. 2.  Stable marking M3 of an extended FPN. 



which can be used as information for decision support, and 
that there is an efficient computation (having linear runtime in 
the size of the net) of  this stable state. In this section we 
intend to define a Petri net defining knowledge propagation in 
a very general way using quite arbitrary knowledge 
propagation functions determining the firing rule of 
transitions. We then focus on the identification of properties of 
such knowledge propagation functions which may support that 
a unique stable state is always reached. 

Definition 15: Let (P,T,F) be defined as for LPNs and 
FPNs and let K be an arbitrary set. For each transition t, let 
there be a fixed ordering among the input places of t, i.e. t = 
{pt1,...,ptnt}. For each place p in t  let ft,p : K

nt  K be a partial 
mapping. Let gp : 2

K  K be a total mapping (2K denotes the 
set of all subsets of K) for each place p. Let Map be the family 
of all those mappings. Then (P,T,F,Map) is called a 
Knowledge Propagation Petri Net (KPPN). A marking of a 
KPPN is a mapping m: P  K. A transition t is enabled to fire 
in a marking m, if for each p in t , ft,p(m(pt1),...,m(ptnt)) is 
defined. Its firing leads to the follower marking m� given by 
m�(p) = gp({ft,p(m(pt1),...,m(ptnt)),m(p)}) for output places p of 
t. Markings of other places remain unchanged. The set of 
transitions enabled in a marking m is denoted by Xm.  Then 
the firing of the concurrent step Xm leads to the follower 
marking m�(p)=gp({ft,p(m(pt1),...,m(ptnt)) | t  Xm} {m(p)}). 

It is easy to see how to instantiate LPNs and FPNs as 
KPPNs. For example, for FPNs, K= 0,1 , ft,p is the minimum 
mapping and gp the maximum mapping.  For extended FPNs, 
the functions ft,p are only defined partially according to the 
thresholds and the rule weights are encoded in the functions 
gp. 

These mappings for FPNs satisfy the following general 
properties: 

 The firing of transitions increases the marking. 
 The set of reachable markings is finite for arbitrary 

initial marking. 
It is easy to see, considering the presented proofs in [1], that 

these two properties are actually enough to establish the 
existence of a unique stable state. Instead of considering 
functions which always increase markings, of course also 
functions which always decrease markings can be considered 
with the same result. On the other side, none of these 
properties alone is enough. If the firing of transitions increases 
the marking but the set of reachable markings is infinite for a 
certain initial marking then, in general, not each infinite firing 
sequence leads to a stable state. Consider for example 
mappings which always propagate the double marking of 
some input place to output places (for K = 0, )). If the firing 
of transitions neither always increases nor always decreases 
the marking but the set of reachable markings is finite for all 
initial markings then also in general not each infinite firing 
sequence leads to a stable state. Consider for example two 
transitions which both have exactly one input and one output 

place and can be fired alternatively, where one transition just 
propagates the marking of its input place and the other 
transition propagates the difference between 1 and the 
marking of its input place (for K= 0,1 ). 

VI. CONCLUSIONS 

It is a topic of a further research to identify other suitable 
knowledge propagation functions obtaining other Petri net 
dialects for DSS as well as other necessary and/or sufficient 
conditions for the existence of a unique stable state in the used 
dialects. The perspective of future research can be targeted to 
adaptive estimations and change of rule weights and 
thresholds resulting in more dynamic reasoning in DSS 
compared to the static estimation of those values by 
knowledge engineer as presented in the paper. 
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