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Abstract

In this paper we present an algorithm to synthesize a fi-
nite place/transition Petri net (p/t-net) from a finite set of la-
beled partial orders (a finite partial language). This p/t-net
has minimal non-sequential behavior including the speci-
fied partial language. Consequently, either this net has ex-
actly the non-sequential behavior specified by the partial
language, or there is no such p/t-net. We finally develop an
algorithm to test whether the synthesized net has exactly the
non-sequential behavior specified by the partial language.

The algorithms are based on the theory of regions for
partial languages developed by Lorenz and Juhds. Thus,
this paper shows the applicability of this concept and, for
the first time, provides an effective algorithm for the synthe-
sis of system models from partial languages.

1 Introduction

Synthesis of Petri nets from behavioral descriptions has
been a successful line of research since the 1990s. There
is a rich body of nontrivial theoretical results, and there are
important applications in industry, in particular in hardware
system design [3, 9], and recently also in workflow design
[16]. Moreover, there are several synthesis tools that are
based on the theoretical results [2].

Originally, synthesis means algorithmic construction of
a Petri net from sequential observations. It can be applied
to various classes of Petri nets, including elementary nets
[6, 7] and place/transition nets (p/t-nets) [1]. Synthesis can
start with a transition system representing the sequential be-
havior of a system or with a step transition system which
additionally represents steps of concurrent events [1]. Syn-
thesis can also be based on a language (a set of occurrence
sequences or step sequences [4]). The synthesis problem is
the problem to decide whether, for a given behavioral spec-
ification (transition system, language), there exists a Petri
net of the respective class such that the behavior of this net
coincides with the specified behavior. The aim of this pa-

per is to solve the synthesis problem for p/t-nets where the
behavior is given in terms of a finite partial language, i.e.,
as a finite set of labeled partial orders (LPOs — also known
as partial words [8] or pomsets [15]). Moreover, we pro-
vide a synthesis algorithm. In contrast to previous work on
the synthesis problem, we consider partial order behavior
of Petri nets, truly representing the concurrency of events,
which is often considered the most appropriate representa-
tion of behavior of Petri net models of concurrent systems.

As mentioned, we start with a finite set of partially or-
dered sets of events together with a labeling function asso-
ciating a transition to each event. Thus, a single possible
run (of the unknown p/t-net) is represented by an LPO of
events. The ordering relation defines a possible ordering of
the transition occurrences, i.e., if events e and €’ are ordered
(e < €'), and if moreover e is labeled by ¢ and €’ is labeled
by t', then in this run ¢’ can occur after the occurrence of
t. If two events e and €’ are not ordered (neither e < ¢’
nor €/ < e), then the respective transitions can occur con-
currently. This interpretation of a partial order semantics is
different to the so-called process semantics, where ¢ < ¢’
means that the respective occurrences of the labels, ¢ and
t', have to be causally ordered (and cannot be concurrent)
whereas in our semantics e < ¢’ means that the respective
transitions ¢ and ¢’ can either occur concurrently (and thus
in any order) or in the order ¢ earlier than ¢'. LPOs repre-
senting an order between specified transition occurrences,
which is in the above described sense possible in a p/t-net,
we formally call enabled w.r.t. this net.

Like previous results, our approach is based on the no-
tion of regions. All approaches to Petri net synthesis based
on regions roughly follow the same idea:

e Instead of solving the synthesis problem first (is there a
net with the specified behavior?) and then — in the pos-
itive case — synthesizing the net, a net is synthesized
for any specification.

e The construction starts with the transitions taken from
the behavioral specification. In our case, transitions



are the labels of the events of the LPOs. So we start
with a net with many transitions and without places.

e Since this net has too much concurrency in general, its
behavior will be restricted by the addition of places.
In particular, a place constitutes a dependency relation
between the occurrences of the transitions in its pre-set
and the occurrences of the transitions in its post-set.

e A single region identifies a dependency between two
sets of transitions. Regions are defined for the behav-
ioral description (in our case, for a partial language).
Each region yields a corresponding place, together
with its initial marking, in the constructed net. A re-
gion is defined in such a way that the behavior of the
net with its corresponding place still includes the spec-
ified behavior. The same holds for any net with many
places corresponding to regions.

e When all, or sufficiently many, regions are identified,
all places of the synthesized net are constructed. The
crucial point for this step is that the set of all regions
can be very large or even infinite whereas in most cases
finite, smaller sets of regions suffice to represent all
relevant dependencies.

o If the behavior of the synthesized net coincides with
the specified behavior (where coincide is defined by an
appropriate notion of isomorphism), then the synthesis
problem has a positive solution; otherwise there is no
Petri net with the specified behavior and therefore the
synthesis problem has a negative solution.

The notion of region employed in this work was already
introduced in our previous work [12]. We showed that each
region defines a place and that addition of all such places
yields a net such that the behavior of this net includes the
specified behavior. Moreover, there is no p/t-net with this
property which enables fewer LPOs. If we could effectively
check whether the behavior of the constructed net coincides
with the specified behavior, we would be finished. However,
this simple approach is infeasible for two reasons:

First, the set of regions defined previously is infinite, and
so is the set of places of the synthesized net. In other words,
this net can be defined mathematically, but it can never be
constructed effectively. The first main result of this paper
provides a solution to this problem. It shows that a finite
subset of regions (places) suffices for generating the same
behavior as all regions (places). It is based on a linear al-
gebraic representation of regions and employs finiteness re-
sults from convex geometry.

The second problem addressed in this paper is concerned
with the problem to check whether the behavior of this finite
net coincides with the specified behavior. One possibility is
to compute the (complete) behavior of the finite net (which

itself turns out to be finite) and to compare it with the spec-
ified behavior. The behavior of the synthesized net can be
computed through the set of its process nets (implemented
in our tool VipTool [5]) considering the LPOs underlying
process nets. Another possibility is to check for all LPOs
not specified whether they do not belong to the behavior of
the net. Since the set of not specified LPOs is infinite, we
construct a finite representation of it. This way, the problem
reduces to the problem of checking whether these finitely
many LPOs are runs of the synthesized net. This can be
solved using the verification result from [10].

The rest of the paper is organized as follows: We start
with brief introduction to LPOs, partial languages, p/t-nets
and enabled LPOs in Section 2. In Section 3 we recall def-
initions and main results from [12] on the theory of regions
for partial languages. In the subsequent sections we develop
the new results of this paper: In Section 4 we show how to
compute regions as integer solutions of an homogenous lin-
ear inequation system (Subsection 4.1), and we prove that
a finite set of basis solutions generating the set of all solu-
tions already appropriately represents the set of all regions
(Subsection 4.2). Finally, in Section 5 we present methods
to test whether the synthesized finite p/t-net has exactly the
specified non-sequential behavior.

2 Preliminaries

In this Section we recall the definitions of labeled par-
tial orders (LPOs), partial languages, place/transition nets
(p/t-nets) and LPOs enabled w.rt. p/t-nets. We start with
basic mathematical notations: By N we denote the nonneg-
ative integers. NT denotes the positive integers. Given a
function f from A to B and a subset C' of A, we write f|¢
to denote the restriction of f to the set C'. Given a finite
set A, the symbol |A| denotes the cardinality of A. The
set of all multi-sets over a set A is the set N4 of all func-
tions f : A — N. Addition + on multi-sets is defined as
usual by (m + m/)(a) = m(a) + m/(a). We also write
> aca™(a)a to denote a multi-set m over A and a € m
to denote m(a) > 0. Given a binary relation R C A x A
over a set A, the symbol R denotes the transitive closure
of R. We write aRb to denote (a,b) € R. A directed
graph is a pair (V, —), where V is a finite ser of vertices
and —C V x V is a binary relation over V, called the set of
edges. All graphs considered in this paper are finite.

Definition 1 (Partial order). A partial order is a directed
graph po = (V,<), where < is a binary relation on V
which is irreflexive (Vv € V : v £ v) and transitive
(<=<T).

Two nodes v,v’ € V of a partial order (V, <) are called
independent if v £ v and v’ £ v. By co CV x V we



denote the set of all pairs of independent nodes of V. A co-
set is a subset C' C V fulfilling: Vz,y € C : xcoy. A cut
is a maximal co-set. For a co-set C' of a partial order (V, <)
and anode v € V \ C we write v < C, if v < s for an
element s € C and vco C, if v co s for all elements s € C.
A partial order (V’, <’) is a prefix of another partial order
(V,<)if V! C Vwith (v/ € V' Av <) = (v € V') and
<'=< NV’ x V'. Given partial orders po; = (V, <;) and
poy = (V, <2), po, is a sequentialization of po, if <;C<s.
We use partial orders with nodes labeled by action names to
specify scenarios describing the behavior of systems.

Definition 2 (Labeled partial order). A labeled partial order
(LPO) is a triple Ipo = (V, <, 1), where (V, <) is a partial
order, and | : 'V — T is a labeling function with set of
labels 7.

We use the above notations defined for partial orders also
for LPOs. We will often consider LPOs only up to isomor-
phism. Two LPOs (V, <,1) and (V’, <',l’) are called iso-
morphic, if there is a bijective mapping ¢ : V' — V' such
that {(v) = l'(¢(v)) forv € V, and v < w <= 9 (v) <’
(w) for v,w € V. By [Ipo] we will denote the set of all
LPOs isomorphic to Ipo. The LPO lpo is said to represent
the isomorphism class [Ipo]. The behavior of systems is for-
mally specified by sets of (isomorphism classes of) LPOs.
Such sets are also called partial languages.

Definition 3 (Partial language). Let T be a set. A set L C
{[lpo] | Ipo is an LPO with set of labels T'} is called partial
language over 7.

Usually, partial languages are given by sets of concrete
LPOs representing isomorphism classes. We always as-
sume that each label from T occurs in a partial language
over T'. Figure 1 shows a partial language represented by
the set of LPOs L = {Ipo;,lpo, }, which we will use as a
running example.

@ Ipo,
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Figure 1. A partial language.
Anetisatriple (P, T, F'), where P is a (possibly infinite)
set of places, T is a finite set of transitions satisfying P N
T=0,and F C (P x T)U(T x P)is aflow relation.

Definition 4 (Place/transition net). A place/transition-net
(p/t-net) N is a quadruple (P,T,F,W), where (P,T,F)
is a net, and W : F' — N7 is a weight function.

We extend the weight function W to pairs of net ele-
ments (z,y) € (P xT)U (T x P) with (z,y) ¢ F by

W(z,y) = 0. A marking of anet N = (P,T,F,W) is
a function m : P — N assigning m(p) tokens to a place
p € P, ie. a multi-set over P. A marked p/t-net is a
pair (IV,mg), where N is a p/t-net, and m is a marking of
N, called initial marking. Figure 2 shows a marked p/t-net
(N, mg). As usual, places are drawn as circles including to-
kens representing the initial marking, transitions as rectan-
gles and the flow relation as arcs which have annotated the
values of the weight function (the weight 1 is not shown).
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Figure 2. A marked p/t-net (V,my).

A multi-set of transitions 7 € N7 is called a step of N.
A step T is enabled to occur (concurrently) in a marking
m if and only if m(p) > >, 7(t)W(p,t) for each place
p € P. In this case, its occurrence leads to the marking
m(p) = m(p) + Yye, TO)(W(t.p) — W(p,1)). In the
marked p/t-net (N, mq) from Figure 2 only the steps a and
b are enabled to occur in the initial marking. In the mark-
ing reached after the occurrence of a the step a + b is en-
abled to occur. There are two equivalent formal notions of
runs of p/t-nets defining non-sequential semantics based on
[11, 17]. We only introduce the notion of enabled LPOs
here: An LPO is enabled w.r.t. a marked p/t-net, if for each
cut of the LPO the marking reached by firing all transitions
corresponding to events smaller than the cut enables the step
(of transitions) given by the cut.

Definition 5 (Enabled LPO). Ler (N, mg) be a marked
p/t-net, N = (P, T,F,\W). An LPO lpo = (V,<,l)
with | : V. — T is called enabled (to occur) in (N, mg)
i mop) + X per e WA©).D) — W(pI() >
Y wec W(p,l(v)) for every cut C of Ipo and every p &
P. Its occurrence leads to the final marking m' given by
m'(p) = mo(p) + Xpev (W(l(v),p) = W(p,l(v))).

The set of all isomorphism classes of LPOs enabled in
(N, myg) is denoted by Lpo(N, mg). £po(N,my) is called
the partial language of runs of (N, mg). Enabled LPOs are
also called runs.

Observe that £po(N,mg) is always sequentialization
and prefix closed, i.e. every sequentialization and every
prefix of an enabled LPO is again enabled w.r.t. (IV,my).
Moreover, the set of labels of £po(N,mg) is always fi-
nite. Therefore, when specifying the non-sequential behav-
ior of a searched p/t-net by a partial language, this partial
language must be necessarily sequentialization and prefix
closed and must have a finite set of labels. We assume that
such a partial language L is given by a set of concrete LPOs
L representing £ in the sense that [Ipo] € £ <= Jlpo’ €



L : [lpo] = [Ipo’]. Usually, we specify the non-sequential
behavior by a set of concrete LPOs L which is not sequen-
tialization and prefix closed and then consider the partial
language which emerges by adding all prefixes of sequen-
tializations of LPOs in L. In this sense, the partial language
L given in Figure 1 specifies the non-sequential behavior of
a searched p/t-net. Both LPOs shown in this Figure are en-
abled w.r.t. the marked p/t-net (N, mg) shown in Figure 2.
It even holds {[lpo] | Ipo is a prefix of a sequentialization of
an LPO in L} = £po (N, mg). That means, (N, mg) solves
the synthesis problem w.r.t. L.

3 Region-based Synthesis

We consider the problem of synthesizing a p/t-net from a
partial language specifying its non-sequential behavior. As
mentioned, such a partial language L is represented by a
set of concrete LPOs L (which is not necessarily prefix or
sequentialization closed). That means we develop an algo-
rithm to compute a marked p/t-net (N, mg) from a given set
of LPOs L such that the partial language £ emerging from
L satisfies £ = £po(NN,my) (if such a net exists). In this
section we recall the definitions and main results on region
based synthesis from [12] in a consolidated version, which
is better structured and easier to understand: We explain the
ideas of region based synthesis in two independent parts,
first defining axiomatically the so called saturated feasible
net as the best upper approximation to a p/t-net having the
specified behavior and second introducing the notion of re-
gions for the computation of this net.

3.1 Saturated Feasible Net

The idea to construct a net (IV, mg) solving the synthesis
problem is as follows: The set of transitions of the searched
net is the finite set of labels of L. Then each LPO in L is
enabled w.r.t. the marked p/t-net consisting only of these
transitions (having an empty set of places), because there
are no causal dependencies between transitions. This net in
general has many runs not specified by L. Thus, one re-
stricts the behavior of this net by creating causal dependen-
cies between the transitions through adding places. Such
places are defined by their initial marking and the weights
on the arcs connecting them to each transition (Figure 3).

Figure 3. An unknown place of a p/t-net.

Two kinds of such places can be distinguished. In the
case that there is an LPO in L which is not a run of the cor-

responding “one place”-net, this place restricts the behavior
too much. Such a place is non-feasible. In the other case,
the considered place is feasible.

Definition 6 (Feasible place). Let L be a partial language
over the finite set of labels T and let (N,m,), N =
({p}, T, F,,W,) be a marked p/t-net with only one place
p (Fy,, W)y, my, are defined according to the definition of p).
The place p is called feasible (w.r.t. L), if L C £po(N,m,),
otherwise non-feasible (w.r.t. £).

Figure 4 shows on the left side a place which is feasible
w.r.t. the partial language specified by L in Figure 1. This
is because, after the occurrence of a, the place is marked by
2 tokens. In this marking the step a + b is enabled to occur
(as specified by 1po,). The place shown on the right side is
non-feasible because, after the occurrence of «, the place is
again marked by only 1 token (in this marking the step a+b
is not enabled to occur). Thus Ipo, is not enabled w.r.t. the
one-place-net shown on the right side.

1) O | O

Figure 4. left part: a feasible place; right part:
a place which is not feasible.

If we add all feasible places to the searched net, then the
partial language of runs of the resulting net includes £, and
it is minimal with this property. We call this net the satu-
rated feasible net (w.r.t. L£). In general, the partial language
of runs of the saturated feasible net is not necessarily equal
to L. If it is not equal to L, there does not exist a marked
p/t-net whose partial language of runs equals £. That means
the synthesis problem has a solution if and only if the partial
language of runs of the saturated feasible net equals L.

Definition 7 (Saturated feasible p/t-net). Let L be a partial
language over the finite set of labels T. The marked p/t-net
(N,mg), N = (P,T,F,W), such that P is the set of all
places feasible w.r.t. L is called saturated feasible (w.r.t. L)
(F, W, mg are defined according to the definitions of the
feasible places).

Theorem 8. Ler (N, myg) be saturated feasible w.r.t. a par-
tial language L. Then it holds:

(i) £ C £po(N,mp).

(ii) The behavior of (N, mg) is minimal with property (i):
V(N'mg) : (Epo(N',mg) & Lpo(N,mg)) = (L £
Lpo(N', mj)).



(iii) Either £po(N,mo) =
a negative answer.

L or the synthesis problem has

Altogether, the saturated feasible net is a solution of
the synthesis problem or there is no solution. Note that
there are always infinitely many feasible places. For ex-
ample, each place p,, with W (a, p,) = 2n, W(pn,a) = n,
W(pn,b) = n, W(b,p,) = 0 and mg(p,) = n is feasible
w.r.t. the partial language given by L in Figure 1. Therefore,
in particular the problem of representing the infinite set of
feasible places by a finite subset (restricting the behavior in
the same way) must be solved.

3.2 Regions

By so called regions of partial languages it is possible to
define the set of all feasible places structurally on the level
of the partial language given by L. The idea of defining re-
gions of L is as follows: If two events x and y are ordered
in an LPO Ipo = (V, <,l) € L — that means = < y — this
specifies that the corresponding transitions {(x) and {(y) are
causally dependent. Such a causal dependency arises ex-
actly if the occurrence of transition /(z) produces tokens
in a place, and some of these tokens are consumed by the
occurrence of the other transition {(y). Such a place can be
defined as follows: Assign to every edge («, y) of an LPO in
L anatural number representing the number of tokens which
are produced by the occurrence of () and consumed by the
occurrence of I(y) in the place to be defined. Then the num-
ber of tokens consumed overall by a transition /(y) in this
place is given as the sum of the natural numbers assigned
to ingoing edges (z,y) of y. This number can then be in-
terpreted as the weight of the arc connecting the new place
with the transition [(y). Similarly, the number of tokens
produced overall by a transition [ () in this place is given as
the sum of the natural numbers assigned to outgoing edges
(z,y) of z, and this number can then be interpreted as the
weight of the arc connecting the transition /() with the new
place. Moreover, transitions can also

e consume tokens from the initial marking of the new
place (tokens which are not produced by another tran-
sition): In order to specify the number of such tokens,
we extend an LPO by an initial event vy representing a
transition producing the initial marking.

e produce tokens in the new place which remain in the
final marking after the occurrence of all transitions
(tokens which are not consumed by some subsequent
transition): In order to specify the number of such to-
kens, we extend an LPO by a final event v, repre-
senting a transition consuming the final marking.

The sum of the natural numbers assigned to outgoing
edges (vp,y) of the initial event vy can be interpreted as
the initial marking of the new place.

Figure 5. x-extensions of LPOs.

Figure 5 shows the LPOs Ipo; and lpo, from Figure 1
extended by an initial and a final event. Such extensions we
call x-extensions of LPOs.

Definition 9 (x-extension). For a set of LPOs L we de-
note W = Uy cper Ve BL = Upcper < and
I = Uw < per ! A*-extension Ipo” = (V*, <*,1*) of
Ipo = (V, <, 1) is defined by

(i) V* = (VU {vg° vl }) with o’ vlbo, ¢ V,

max ) Hl ax

max Y max

(iii) 1*(vg), 1*(vlBS) & V), 1*(vF°) # 1*(v22,) and
I*ly =1

(i) <*=< U({'Uépo}XV)U(VX{’UZPO )U{(Uépo \Ipo ),

vl¥° is called initial event of 1po and v2°_ maximal event

max
of Ipo. Let Ipo* = (V*,<*,1*) be a -extension of each
Ipo € L such that:

(iv) For each two LPOs (V,<,]),(V',<,l') € L:
1) = ) 6.

(v) For each two distinct LPOs (V,<,1), (V',<',l') € L:
(vike) # () (k) (¢ 1(Wi)).

Then the set L* = {lpo* | Ipo € L} is called x-extension

of L. We denote W} = Wip«, Ef = Er« andl} = l+.

According to the above explanation, we can define a new
place p, by assigning in each LPO lpo = (V,<,l) € L a
natural number 7(z, y) to each edge (z, y) of a x-extension
of Ipo through a function r : £} — Ny:

e The sum of the natural numbers Ini,o(y,r) =
> w<ry T(x,y) assigned to ingoing edges (z,y) of a
node y € Wy, defines W (p,,{(y)) = Inipo(y,r). We
call Inipo(y, ) the intoken flow of y.

e The sum of the natural numbers Outipo(z,r) =
> z<+y T(T,y) assigned to outgoing edges (z,y) of a
node x € Wi, defines W(l(z),p,) = Outipo(z,7).
We call Outipo(x, 1) the outtoken flow of x.

e the sum of the natural numbers assigned to outgoing
edges (vg,y) of an initial node vlpo (the outtoken flow

lpo) defines mo(p,) = Outlpo(vo ,7). We call

Outlpo(vo ,7) the initial token flow of Ipo.

of v,



The value 7(z,y) we call the foken flow between x and y.
Since equally labeled nodes formalize occurrences of the
same transition, this is well-defined only if equally labeled
events have equal intoken flow and equal outtoken flow. In
particular all LPOs must have the same initial token flow.
We say that r : &7 — Ny fulfills the properties (IN) and
(OUT) on L if for all Ipo = (V, <,1),1po’ = (V', </, 1I') €
L and for all v € V*, 0" € (V')* holds

(IN) I(v) =1'(v") = Inipo(v,7) = Inpper (V7).
(OUT) I(v) =1'(v') = Outipo(v,7) = Outypy (V', 7).

Observe that (OUT) in particular ensures that all LPOs have
the same initial token flow. Altogether, each such function
r fulfilling (IN) and (OUT) on L defines a place p,.. We call
Py corresponding place of r.

Definition 10 (Region). Let L be a set of LPOs which is se-
quentialization and prefix closed. Let further L be the par-

tial language represented by L. A region of L is a function
r: Bf — N fulfilling (IN) and (OUT) on L.

If we define a function r fulfilling (IN) and (OUT) on
a set of LPOs L which is not sequentialization and prefix
closed, then this function is easily extended to a region of
the partial language defined by the set of all prefixes of se-
quentializations of LPOs in L as follows:

e Assign the value 0 to each additional edge within a
sequentialization of an LPO in L and keep the values
of r on all other edges.

e Define 7 on a prefix of an LPO in L by gluing all nodes
subsequent to the prefix to a maximal node of the pre-
fix. If several edges are glued to one edge, then sum
up the values of - on the glued edges. Keep the values
of r on all remaining edges.

Thus, it is enough to specify a function fulfilling (IN) and
(OUT) on some set of LPOs L to define a region of the
partial language £ defined by L. Figure 6 shows a function
r fulfilling (IN) and (OUT) on the set L of LPOs given in
Figure 1, which in this sense can be extended to a region of
the partial language defined by L. The corresponding place
p, is defined by W (p,,a) = 1, W(a,p,) = 2, W(p,,b) =
1, W(b,p,) = 0 and mq(p,) = 1 (p, is the middle place of
the p/t-net in Figure 2).

As the main result we showed in [12] that the set of
places corresponding to regions of a partial language equals
the set of feasible places w.r.t. this partial language.'

'In [12] we assumed that the set of LPOs L representing £ fulfills
some technical requirements. These will be automatically fulfilled for all
such sets L we consider in the following. Thus, we omit their detailed
presentation here.

Figure 6. Region of a partial language.

Theorem 11 ([12]). Let L be a partial language. Then it
holds (i) that each place corresponding to a region of L is
feasible w.r.t. L and (ii) that each place feasible w.r.t. to L
corresponds to a region of L.

Thus the saturated feasible net can be given by the set of
places corresponding to regions:

Corollary 12. Let L be a partial language represented by
the set of LPOs L. Denote P = {p, | ris a region of L},
T the set of labels of L, W (py,lr(v)) = Inipo(v,r) and
W(lg(v),pr) = Outipo(v,r) for p, € P and some lpo =
(V,<,l) € Lwithv e V, F ={(x,y) | W(x,y) > 0} and
Msat(pr) = Outlpo(vépo,r)for p, € P (and some lpo €
L). Then the p/t-net (Ngar, Msat )y Nsar = (P, T, F, W), is
the saturated feasible p/t-net (w.r.t. £).

Remember that the saturated feasible net has infinitely
many places, i.e. there are infinite many regions of L.
Moreover, even the description of one region may be in-
finite, since there may exist infinitely many edges in £7.
Therefore we restrict ourselves in the following to finite
partial languages, i.e. to partial languages which are rep-
resented by a finite set of LPOs L.

4 Computing a Finite Representation of all
Regions

For finite partial languages we show in this section, that
the set of regions can be computed as the set of non-negative
integer solutions of a homogenous linear equation system
A - x = 0 (Subsection 4.1). It is well known that there is a
finite set of basis-solutions, such that every solution is gen-
erated as a non-negative linear sum of basis-solutions. In
Subsection 4.2 we prove that the set of places correspond-
ing to basis-solutions already restricts the behavior of the
searched net in the same way as the set of all feasible places.
That means there is a representation of the saturated feasi-
ble net by a net with finitely many places having the same
partial language of runs. For this finite net it can be tested
effectively if it has £ as its partial language of runs (Section
5).



4.1 Computing Regions

In this subsection we show how to compute regions (and
thus feasible places) of a partial language £ represented by
a finite set of LPOs L. For this, we rewrite the properties
(IN) and (OUT) as a homogenous linear equation system
A -x = 0. The LPOs in L are assumed to have pairwise
disjoint node sets.”> To compute a region r, we need to as-
sign a value 7(z, y) to every edge e = (x,y) in the finite set
of edges E}. We interpret  as a | E} |-dimensional vector
X, = (21,...,2,), n = |E}|. Considering a fixed num-
bering of the edges in E7 = {ey,...,e,}, a value r(e;)
equals x;. Figure 7 shows a numbering of the edges of the
*-extension of the set of LPOs L given in Figure 1.

Figure 7. A numbering of edges.

Now, we encode the properties (IN) and (OUT) by a ho-
mogenous linear equation system Ay - x = 0 in the sense
that r : £7 — Ny fulfills (IN) and (OUT) on L if and only
if Az - x, = 0. This can be done by, loosely speaking,
defining for pairs of equally labeled nodes a row a of A,
counting the token flow on ingoing edges of one node pos-
itively and of the other node negatively. Similarly, a row
b of A} counting the token flow on outgoing edges of one
node positively and of the other node negatively can be de-
fined. It is enough for each label ¢ to ensure, that the intoken
(outtoken) flow of the first and second node with label ¢ are
equal, that the intoken (outtoken) flow of the second and
third node with label ¢ are equal, and so on.

Formally, we denote W, = {v € W} | I}.(v) =t} =
{vi,vh, ...} for all labels ¢ € T and denote

Similarly, we set

t ¢ t
bm = (bm,lv e bm,n)
1 if e; is an outgoing edge of v},
bl . = —1 if e; is an outgoing edge of v}, ,
0 else.

for 1 < m < |W| — 1. Clearly, b¢

o - Xp = 0 if and

only if Outipe(vl,, 1) = Outipe (vl 1. 7) for the LPOs

Ipo = (V,<,l) and Ipo’ = (V', <',l") with !
vl €V,

€ V and

m

Finally, to ensure that all LPOs have the same initial to-
ken flow, we denote L = {lpo;,lpo,, ...} and add rows

t t t
a, = (am,l7' "7am,n)
. 1 if ¢; is an ingoing edge of v;,,,
_ B o Lo 7
a,,; = 1 if e; is an ingoing edge of v,
0 else.

for1 < m < [W,| — 1. Clearly, a!, - x,, = 0 if and only if
Inipo(vE,, 1) = Imiper (V5 1, 7) for the LPOs Ipo = (V, <
,)and Ipo’ = (V/, </, l') with v}, € V and !, , € V.

2This ensures that L requires all technical requirements used in [12] to

prove Theorem 11.

Cm = (Cm,h s 7cm,n)
1 if e; is an outgoing edge of 'U(}po'" ,
Cmj = —1 if ¢; is an outgoing edge of 'uopo"”+1
0 else.
for 1 < m < |L| — 1. Clearly, ¢,, - X, = 0 if and only if
Ipo,,, Ipo,),
OUtlpom(UO ’ ,7“) = OUtlva71,+1 (7“‘0 o ) T)'

r®ﬂ r 9
PO ®®®@ |g| |°
®
1 1 1 -1 -1 - @
1 1 ®
1 1 1 108:
1 -1 1
1 1 @
®
@] o
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Figure 8. Equation system defining regions.

Figure 8 shows the described homogenous linear equa-
tion system Ay - x = O for the numbering of edges given
in Figure 7. The first row of the matrix ensures that both
LPOs have the same initial token flow. Therefore, the sum
of the values on all outgoing edges of v’ (namely e,
and e5) must equal the sum of the values on all outgoing
edges of vépoz (namely ey, e5, e and e7). We get the cor-
responding equation £y + o — x4 — x5 — 2 — 7 = 0
(this equation corresponds to the first row c; of A ). More-
over, there exist two pairs of equally labeled nodes, and we
need to ensure that each pair has the same intoken and out-
token flow. Row number two a{ ensures for every func-
tion r given by a solution z,. that both a-labeled nodes have
the same intoken flow, row number three b§ guarantees
equal outtoken flow of the a-labeled nodes. Rows num-
ber four a% and five b% do the same for both nodes labeled
by b. A possible non-negative integer solution would be
x, = (0,1,0,0,1,0,0,1,1,0,0,2) corresponding to the re-
gion drawn in Figure 6 (and to the middle place shown in
Figure 2).



By the above considerations the set of regions 7 is in one-
to-one-correspondence to the set of non-negative integer so-
lutions x = (z1,...,2,) of A - x = 0 viar(e;) = ;.
That means, every feasible place can be computed by such
a solution. The place corresponding to a solution x we de-
note by px. Note that the number of rows [NV of A, linearly
depends on the number of nodes |W,| and the number of
LPOs |L|.

4.2 Finite Representation

The homogenous linear equation system developed in
the last section is in fact an inequation system, since we
search for non-negative solutions, i.e. we require x > 0 for
solutions x. Thus we compute regions of a finite partial lan-
guage L and subsequently places of the searched saturated
feasible p/t-net by solving the finite homogenous linear in-
equation system Ay -x < 0, —A; - x < 0,—x <0
with n 4+ 2N rows (NN is the number of rows, n the num-
ber of columns of A ). The set of solutions of such a sys-
tem is called a polyhedral cone. According to a theorem
of Minkowski [13] polyhedral cones are finitely generated,
i.e. there are finitely many vectors y1, ...,y (also called
basis solutions) such that each element x of the polyhedral
cone is a non-negative linear sum x = Zle Ay for some
Al,...y A = 0. Such basis solutions yi,...,y; can be
effectively computed from A (see for example [14]). If
all entries of A, are integral, then also the entries of all y;
can be chosen to be integral. The time complexity of the
computation essentially depends on the number £ of basis
solution which is bounded by k < (":_21\7 ). That means,
in the worst case the time complexity is exponential in the
number of nodes, whereas in most practical examples of
polyhedral cones there are only few basis solutions. It is a
topic of further research to evaluate k& for typical instances
of polyhedral cones in our setting.

We finally claim that all places which do not corre-
spond to basis solutions can be deleted from the saturated
feasible p/t-net without changing its partial language of
runs. Thus, the saturated feasible p/t-net has a finite rep-
resentation. Consider places p, p1, ..., pxr of some marked
p/t-net (N,mg), N = (P,7,F,W), and non-negative
real numbers Aq, ..., \p (k € N) such that (i) mo(p) =
S Nimo(p), Gi) W(p,t) = Y5 AW (p;,t) for all
transitions ¢ and (iii) W (¢,p) = Zle W (t, p;) for all
transitions ¢. In such a case we write p = Zle Aip;. Fig-
ure 9 shows the p/t-net N from Figure 2 extended to a net
N’ by adding the two places p,y and ps. Neither py nor ps
restrict the behavior of N’ more then {p;,p2.p3}. In other
words each LPO enabled in N is also enabled in N'. That
is because the places p4 and ps are positive linear combi-
nations of the other three places. It holds p; = 2ps and

P4 = %Pl + %P2 + %P?,-

Figure 9. Summing places.

Lemma 13. Let (N, mg), N = (P, T,F,W), be a marked
p/t-net with P = {p1,...,pk,p} and p = Zle \ipi
for non-negative real numbers \1,..., \; (kK € N). De-
note P = {p1,...,pr}, my{ = molpr and N' =
(P/>TaF|(P’><T)U(T><P’)aW'(P'XT)U(TXP’))- Then each
LPO enabled w.r.t. (N',m{,) is enabled w.r.t. (N, my).

Proof. Let lpo be enabled w.r.t. (N, m(), Ipo = (V, <,1).
According to Definition 5, for a cut C' of lpo and
i€ {1,... k}itholds mo(pi)+)_,cvrpec (W (V) pi)—
W(pil(0) > Yoee W(pni(v)):  This implies
for an arbitrary cut C' of lpo and the place p:
m(;(p) + Yevavee W), p) — W(p,i(v)) =
iz Ai(mo(pi)  + ;vevAKc(W(l(v),pi) -
W) > S Ao Wnlv) =
> vec W(p,1(v)). Thus, Ipois enabled w.r.t. (N, mg). O

If x = Zle A;y; for basis solutions yi,...,y. of
Ap -x = 0, then py = Zle AiDy,. Thus, the fi-
nite net (IV,m) having the places py,,...,py, satisfies
Lpo(Nsars Msar) = £po(N, m). That means, (N, m) gen-
erates the smallest partial language of runs including L. To
compute (N,m), we compute such a finite set of integer
basis solutions y1, ...,y (Algorithm 1).

A — EmptyMatrix
forallt € T do
Wy —{voeWy|l5(v) =t}
form =1to |[W;|—1do
A.addRow(al,)
A.addRow(b,)
end for
end for
form=1to|L|—1do
A.addRow(cy,)
: end for
: Solutions — A.get BasisSolutions
. (Nom) — (8,7,0,0,0)
14: for all » € Solutions do
15 (N, m).addCorrespondingPlace(r)
16: end for

R RS A R o

—_
W N = O

Algorithm 1: Calculates a net (INV,m) from a partial lan-
guage over 1" given by L, such that (N, m) generates the
smallest partial language of runs including L.




5 Equality Test

Up to now, we have shown how to compute from a finite
set of LPOs L a finite marked p/t-net (N, m) which has the
smallest partial language of runs £po(NN,m) including the
specified partial language £ = {[lpo] | Ipo is a prefix of a
sequentialization of an LPO in L}. This net either solves the
synthesis problem (£po (N, m) = L) or there is no solution.
In this section we develop two possibilities to test whether
£po(N,m) = L.

Let L), be the set of all sequentilizations of prefixes of
LPOs in L. Since we already know Lpo(N,m) O L, in
order to test £po(N,m) = L, we (1) either have to check
if each enabled lpo of (N, m) is isomorphic to an LPO in
Ly, (optimistic equality test), or (2) to test that no LPO Ipo
which is not isomorphic to an LPO in Ly, is enabled w.r.t.
(N, m) (pessimistic equality test).

5.1 Optimistic Equality Test

In the first case (1), we calculate all enabled LPOs of
(N,m). The set of (pairwise non-isomorphic) enabled
LPOs of a p/t-net in general can be infinite, but Lpo(N,m)
is always finite. This can be proven for £po(Nsar, Msaz)
(= £po(N,m)) as follows: For every transition ¢ and every
LPO lpo = (V. <,1) € L there is a finite number njpe ¢ Of
nodes v € V labeled by ¢. Since L is finite we get a finite
upper bound 1y = max({nipo,+ | Ipo € L}) for the maxi-
mal number of occurrences of ¢ in an LPO lpo € L. Conse-
quently the place p; with the initial marking mq(p;) = ny,
an empty pre-set and ¢ as the only transition in its post-set
with W(p;,t) = 1 is feasible w.rt. £. That means, that
each transition ¢ can maximally occur n;-times, and thus
every LPO in £po(Nsqt, Msqt) has at most ) -, . n; nodes.

Since £po(N,m) is finite, it can be calculated. In prin-
ciple, we have to check if each run lpo € £po(N,m) is
isomorphic to an LPO in L. But for a run Ipo” which is a
sequentialization of a prefix of another run lpo, it is enough
to consider only lpo, because if lpo’ is not isomorphic to
an LPO in Lg,, then the same holds for Ipo. Therefore,
we only regard runs which are not sequentializations of pre-
fixes of other runs. The set of all such runs can be computed
through the (finite) set of process nets with maximal length
of (N, m) [17]: Omitting conditions in a process net and
only keeping the ordering between events yields an LPO,
and it is well known that each such LPO underlying a pro-
cess net is a run. Moreover, each run is a sequentialization
of a prefix of an LPO underlying a process net with max-
imal length. Thus, it is enough to regard the LPOs under-
lying such process nets of (N, m). The synthesis problem
has a solution if and only if each such LPO is isomorphic
to some LPO in Lg,. For example, the runs of the p/t-net
shown in Figure 2, which are not sequentializations of pre-

fixes of other runs, are exactly the LPOs shown in Figure
1.

An algorithm that calculates the set of maximal process
nets of a p/t-net is for example implemented in our tool Vip-
Tool [5]. In general, the number of process nets is exponen-
tial in the size of the p/t-net, and the calculation of the pro-
cess nets requires an exponential runtime. But in our spe-
cial situation we expect that the number of process nets of
(N, m) roughly coincides with the size of L, because in the
case that there is a positive solution of the synthesis prob-
lem there holds £po(N,m) = L, and in the negative case
£po(N,m) is the best upper approximation to £. There can
easily be developed heuristics to find (in the negative case)
enabled LPOs not in L, before the whole set of process
nets of (IV,my) is constructed.

5.2 Pessimistic Equality Test

The alternative possibility (2) to test £po(N,m) = L is
to check if no LPO Ipo not isomorphic to some LPO in L,
is in £po(N,m). For one such LPO Ipo this can be tested
in polynomial time in the number of nodes of Ipo using the
algorithm we presented in [10]. The problem is, that there
are infinite many such LPOs. Therefore, we define a finite
set L%;,, of LPOs representing the set of all LPOs L not
specified by L in the following sense: if no LPO in L,
is enabled in (N, m) then also no LPO in L€ is enabled in
(N, m). The idea for the construction of L, is to extend
each Ipo € L, in all possible ways by one event, such that
the resulting LPO Ipo’ is not isomorphic to an LPO in Ly,
That means, L§,,, consists of all LPOs Ipo’ not isomorphic
to an LPO in Ly, defined by Ipo’ = (V U {v;},< U <4
LU (vg,t)), where (V,<,l) € Lgp, t € T, vy ¢ V and
<= {v' | v e Vv < V'} x {t} for a co-set V' of
(V,<,1) (V' may be empty, which means that v; becomes
an additional minimal event). Figure 10 shows some of the
LPOs in L%, for the set of LPOs L shown in Figure 1. The
most left LPO is constructed from the empty co-set V.

@@...

Figure 10. Some LPOs in LS.

If there exists an LPO Ipo’ € L$,, which is enabled
in (V,m), then obviously £ # £po(NN,m). On the other
hand, if every such LPO Ipo’ is not enabled in (N, m), we
conclude that £ = £po(N,m). This can be proven as fol-
lows by contradiction: Assume that there exists an lpo € L¢



which is enabled in (N, m). Then, there is a maximal pre-
fix Ipoy,,., of Ipo (possibly empty) isomorphic to an LPO
in Lg,. Let lpO;Te be a further prefix of Ipo having one
additional node (such lpo;,n6 exists because 1po is not iso-
morphic to an LPO in Ly). The maximality of Ipo,,,.. im-
plies that lpo;m is not isomorphic to an LPO in L,,. By
construction of L%, , we conclude that lpo;m
phic to an LPO in L%, .. Since lpo;r . 1s a prefix of an LPO
enabled in (N, m), it is also enabled in (N, m). This is a
contradiction. Note that the set L%, in general can have
exponentially many LPOs in the size of L. We are currently

working on methods to reduce the set L.

is isomor-

6 Conclusion

In this paper we presented, given a finite set of LPOs
representing a partial language, how to compute a (finite)
marked p/t-net with minimal set of runs, such that each
specified LPO is a run of the net. Finally, we presented
two effective methods to test, whether the computed net has
more runs than specified or not. This decides the synthe-
sis problem, since the synthesis problem has a solution if
and only if the computed net does not have more runs than
specified.

The restriction to finite partial languages need not be a
problem in practise. An application field of synthesis meth-
ods is the discovery of workflow processes (given as Petri
nets) from finite event logs [16]. A finite event log is a finite
set of finite sequences of observed actions, thus a special
type of a finite partial language (without concurrency). Cur-
rently there is research effort to deduce information about
concurrency from event logs. Another natural application
field is the specification of system behavior via message se-
quence charts, which are special types of LPOs. In both
cases, the synthesized net can be used for analysis purposes.

The next steps of research are the implementation of Al-
gorithm 1 into VipTool [5] extended by different versions of
the equality test, evaluation of its performance and exami-
nation of the special instances of polyhedral cones used in
the algorithm in view of a better upper bound for the num-
ber of basis solutions. We also work on a generalization
of the presented results to infinite partial languages which
allow a finite representation (for example a term-based rep-
resentation).
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