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With this work we investigate the stationary nonequilibrium density matrix of current carrying nonequilibrium
steady states of in-between quantum systems that are connected to reservoirs. We describe the analytical procedure
to obtain the explicit result for the reduced density matrix of quantum transport when the system, the connecting
reservoirs, and the system-reservoir interactions are described by quadratic Hamiltonians. Our procedure is
detailed for both electronic transport described by the tight-binding Hamiltonian and for phonon transport
described by harmonic Hamiltonians. For the special case of weak system-reservoir couplings, a more detailed
description of the steady-state density matrix is obtained. Several paradigm transport setups for interelectrode
electron transport and low-dimensional phonon heat flux are elucidated.
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I. INTRODUCTION

The theory of equilibrium statistical mechanics, as pio-
neered by Boltzmann and Gibbs, provides the prescription for
the appropriate density-matrix (or density-operator) descrip-
tion of a system that is kept under various external constraints.
Thus, for systems kept in isolation the microcanonical distri-
bution yields the appropriate density matrix, while for systems
in weak contact with a thermal and particle reservoir the
grand-canonical density matrix describes the statistical state
of the system. For classical systems, equilibrium statistical
physics is governed by the phase space distribution of the
system. A knowledge of the density matrix or the phase space
distribution then enables one to find various equilibrium and
also close to equilibrium properties of a system, as exemplified,
for example, via linear response theory.

For systems taken far away from equilibrium there exists no
general procedure in obtaining its density matrix. Particularly,
this holds true for systems that have reached steady states.
For classical Hamiltonian systems described by a Markovian
stochastic dynamics, the steady state is determined by the
stationary solution of the corresponding master equation;
e.g., it is given by the stationary probability density of the
Fokker-Planck generator for continuous Markovian processes
[1]. Apart from specific situations, however, for example,
(i) in the presence of symmetries such as (strict) detailed
balance, or (ii) a single variable state space dynamics [1],
the task of finding the closed form solution of such master
equations presents a profound challenge which typically can be
obtained only by the usage of extensive numerical simulations
or algorithms.

In this context we remind the reader that even for the case
of a system being in contact with a single bath the corre-
sponding canonical equilibrium is typically not of the common
Boltzmann-Gibbs structure, as encoded with the exponen-
tial of the (negative) bare system Hamiltonian and inverse
temperature. The latter structure holds rigorously true for weak
coupling. In the presence of strong coupling, however, the cor-
responding thermal (generalized canonical) density operator

then typically involves a temperature-dependent “Hamiltonian
of mean force” [2] which includes entropic contributions that
explicitly depend on the system-bath coupling strength.

Regrettably, no such general concept as the canonical
Boltzmann-Gibbs density-matrix structure in terms of the bare
(or even modified Hamiltonian of mean force) is available
when the open system is subjected to steady state transport. Put
differently, there are no generic results known for stationary
nonequilibrium statistics. This latter situation, in fact, is
not only substantially more complex but currently also less
researched. It is thus of the utmost importance to gain further
insight into this objective of obtaining the underlying nonequi-
librium density matrices that govern quantum and/or classical
transport. For example, the explicit form of a corresponding
nonequilibrium density matrix not only determines the linear
response due to an additional external perturbation of such a
nonequilibrium steady state (NESS), but also its higher-order
response functions.

A particular, exactly solvable case is that of heat conduction
occurring in a one-dimensional ordered harmonic chain when
connected to two baths at different temperatures. If the two
baths are modeled therein as being stochastic with correspond-
ing stochastic forces acting on the system of interest, the exact
nonequilibrium steady-state phase space distribution for this
problem was evaluated by Rieder, Lebowitz, and Lieb [3]. An
extension to the case of higher dimensions was later obtained
by Nakazawa [4]. Heat conduction in quantum harmonic
oscillator chains has been studied by several authors [5–8],
but thus far no explicit results are known for the precise
form of the quantum mechanical steady state density matrix.
Some formal results for the NESS density matrix of general
quantum mechanical systems have been obtained in the works
of Zubarev [9] and McLennan [10] and have more recently
been discussed in specific models [11–13].

The problem of obtaining the NESS in explicit form
presents a formidable challenge already for classical open
systems (see above discussion). This objective, therefore, is
typically even more intricate for a quantum NESS. Indeed,
in the presence of general nonlinear interactions this task
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is simply inaccessible without invoking also extensive and
cumbersome numerical means and methods. To obtain general
analytic insight over whole-parameter ranges thus necessitates
confining the objective to stylized situations only, which allow
for explicit closed form calculations.

With this work, we consider generic setups for steady-state
quantum transport described by a bilinear Hamiltonian. The
aim is to find a systematic procedure for obtaining explicit
results for the NESS density matrix for this class of systems.
We demonstrate that it is possible to obtain the complete NESS
density matrix explicitly. We also show that when the coupling
strength between the system and reservoirs is extremely weak,
the NESS density matrix is given by an effective Gibbs state
where each mode is formally only in equilibrum with a mode-
dependent effective temperature that depends, however, in a
complex manner on both bath temperatures.

We consider two generic setups for stationary nonequilib-
rium quantum transport, a first one involving fermions and
the other one bosons as carriers. The first setup consists of
electron and heat transport in a fermion setup of noninteracting
particles that are connected to fermionic baths at different
temperatures and chemical potentials. The second scenario
consists of heat conduction occurring in harmonic crystals
connected to oscillator baths kept at different temperatures.
For both of these problems it is known from prior studies—
using various approaches such as the nonequilibrium Green
function formalism [14,15], the quantum Langevin equations
approach [16–18], and the C� algebra approach [19]—that
it is possible to express all two-point correlations in the
NESS in terms of appropriate Green functions. Because these
systems are noninteracting it is evident that the two-point
correlations contain necessary information on all higher-point
correlations and hence should completely specify the NESS.
With this study we give the procedure for finding the explicit
NESS density matrices from a knowledge of the two-point
correlations in these systems.

For the case of a weak coupling among system and the baths
we are able to obtain explicit results. We further present explicit
examples in simple one-dimensional models that illustrate our
general procedure and also demonstrate the accuracy of the
weak-coupling approximation.

The outline of the paper is as follows. In Sec. II we present
the general procedure for construction of the NESS for the
electron and phonon transport problems. The special case
of weak coupling between system and bath is discussed in
Sec. III. In Sec. IV we discuss some illustrative examples
of models where both system and reservoirs are taken to be
one-dimensional chains. Finally, we end with a discussion in
Sec. V.

II. CONSTRUCTION OF STEADY-STATE
DENSITY MATRIX

In this section, we outline the general procedure to obtain
the steady-state density matrix in quantum transport described
by a bilinear Hamiltonian. We focus on electric conduction
as an example of fermionic transport, and phononic heat
conduction as bosonic transport. Because the resulting NESS
density matrix becomes Gaussian, the pertinent procedure first
is in finding the explicit form of the two-point correlation

functions of physical quantities and next relating these to the
Gaussian distribution.

A. Steady-state density matrix for noninteracting
electron transport

We consider the typical setup of transport in the Landauer
approach wherein a system is connected to two reservoirs
initially kept at different temperatures and chemical potentials.
At long times the system reaches a nonequilibrium steady
state with a mean rate of flow of charge and energy current.
One starts out by writing the full Hamiltonian of the system
plus reservoirs, and here we consider a tight-binding approach
of noninteracting electrons. We use the following notation:
for sites on the system (S) we shall use the integer indices
l,m,n, . . .; for sites on the left reservoir (L) we employ the
Greek indices α,ν; and finally, for sites on the right reservoir
(R) we use the primed Greek indices α′,ν ′. We consider
quantum transport with the following overall Hamiltonian
reading:

H = HS + HL + HR + HLS + HRS, (2.1)

where

HS =
∑
lm

H lmc
†
l cm, HL =

∑
αν

HL
ανc

†
αcν,

HR =
∑
α′ν ′

HR
α′ν ′c

†
α′cν ′ , HLS =

∑
lα

HLS
lα [c†l cα + c†αcl],

HRS =
∑
lα′

HRS
lα′ [c

†
l cα′ + c

†
α′cl],

where c†,c denote creation and annihilation operators satisfy-
ing the usual fermionic anticommutation rules and we assume
that the matrices H,HL,HR are symmetric and real-valued
while HLS,HRS are real-valued. In the above setup we assume
that the system possesses a finite number of lattice sites N

while the left and right reservoirs have NL and NR sites,
which will eventually be made infinite. The parts HS , HL,
and HR denote the Hamiltonians of the isolated system, left,
and right reservoirs, respectively, while HL and HR describe
the coupling of the left and right reservoirs to the system,
which have been taken to be real. To obtain a NESS for the
system we consider an initial state at time t = t0 given by the
following product density matrix:

ρ(t0) = ρ0
S ⊗ ρ0

L ⊗ ρ0
R, (2.2)

where ρ0
L ∼ e−(HL−μLNL)/TL (ρ0

R ∼ e−(HR−μRNR )/TR ) is the
equilibrium grand-canonical density matrix of the left (right)
reservoir, corresponding to temperature TL (TR) and chemical
potential μL (μR) with NL,NR the total number operators,
while ρ0

S denotes an arbitrary initial density matrix for the
system. We then time-evolve the whole system with the full
Hamiltonian given in Eq. (2.1) so that at time t the full density
matrix is given by

ρ(t) = eiH(t−t0)/h̄ρ(t0)e−iH(t−t0)/h̄. (2.3)

Our principal objective is the long time limit of the steady-state
reduced density matrix for the system under consideration, i.e.,

ρS = lim
t0→−∞ lim

baths→∞
TrL,Rρ(t), (2.4)
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where the trace, TrL,R , is over all the degrees of freedom of the
two baths. In doing so we implicitly assume that the quantum
transport setup is so that (i) it possesses a long time limit in
the limit of infinite many bath degrees of freedom and (ii) that
the interactions within the quantum system and the interaction
with the bath degrees of freedom are such that the emerging
asymptotic nonequilibrium steady-state density matrix indeed
is time-independent.

Let us introduce the two-point correlation function

〈 c†mcl 〉 = TrS[c†mcl ρS] = Tr[c†mcl ρ], (2.5)

where the first trace, TrS , is over system degrees of freedom
and the second trace is over all degrees of freedom. Because
of the quadratic form of the total Hamiltonian, the two-point
correlations in the NESS can be exactly calculated using
various methods [16,20,21].

The correlations can be expressed in terms of the following
Green function:

G±(ω) = 1

h̄ω − H − �±
L (ω) − �±

R (ω)
, (2.6)

where �±
L and �±

R are self-energy terms that model the effect
of the infinite reservoirs on the isolated system Hamiltonian.
The self-energies can be written in terms of the isolated reser-
voir Green functions g±

L (ω) = [h̄ω ± iε − HL]−1, g±
R (ω) =

[h̄ω ± iε − HR]−1 and the coupling matrices HLS and HRS ,
reading

�±
L (ω) = HLS g±

L (ω)HLS†,
(2.7)

�±
R (ω) = HRS g±

R (ω)HRS†.

Let us next define �L(ω) = [�−
L − �+

L ]/(2i),�R(ω) = [�−
R −

�+
R ]/(2i). With these definitions one finds the following

expressions for the steady-state correlation matrix:

Cml = 〈c†mcl〉
=

∫ ∞

−∞
dω

h̄

π
[(G+�LG−)lmf (ω,μL,TL)

+ (G+�R G−)lmf (ω,μR,TR)], (2.8)

where f (ω,μ,T ) = 1/[eβ(h̄ω−μ) + 1] denotes the Fermi func-
tion.

We demonstrate next how the NESS density matrix ρS can
be fully expressed in terms of these correlations. Note that
the matrix C is Hermitian, since at any time Tr[c†l cmρ(t)] =
Tr[c†mclρ(t)]∗, where (*) indicates complex conjugation. This
result can also be directly verified from the form in Eq. (2.8).
Consequently the matrix C can be diagonalized with a unitary
matrix U to read

U †CU = D = diag(d1,d2, . . . ,dN−1,dN ), (2.9)

where the matrix D is the diagonal matrix. Using the unitary
transformation, we define new fermionic operators as

c′
s =

∑
l

U l,scl, s = 1, . . . ,N. (2.10)

Obviously, these new fermionic operators preserve the anti-
commutation relations, {c′

s,c
′†
s ′ } = δs,s ′ . The steady-state den-

sity matrix is a diagonal matrix in terms of these new

fermion operators. Note that the two-point correlation of new
fermionic operators reads 〈c′†

s c′
s ′〉 = δs,s ′ds . From this we find

the corresponding effective Fermi-Dirac distribution for each
fermion s. Consequently, the steady-state matrix ρS is formally
given by

ρS =
N∏

s=1

exp[−asc
′†
s c′

s]

[1 + exp(−as)]
(2.11)

= exp
[ − ∑

l,m c
†
l Al,mcm

]
∏N

s=1[1 + exp(−as)]
, (2.12)

A = U∗ diag(a1,a2, . . . ,aN−1,aN ) UT , (2.13)

as = ln
(
d−1

s − 1
)
. (2.14)

To obtain Eq. (2.14) we used the relation 〈c′†
s c′

s〉 = ds = 1/

[exp(as) + 1]. This completes our derivation of the expression
for the steady-state density matrix for noninteracting electron
transport.

B. Steady-state density matrix for noninteracting
phonon transport

We next consider heat conduction in general harmonic
networks. Examples of such a system are dielectric crystals
for which the harmonic crystal provides a very good descrip-
tion. We again consider the usual Landauer-like framework
of a system connected to two reservoirs kept at different
temperatures [7,8]. The reservoirs are themselves modeled
as collections of harmonic oscillators. Let us assume that
the system has N Cartesian positional degrees of freedom
{xl}, l = 1,2 . . . ,N with corresponding momenta {pl}. These
satisfy the usual commutation relations [xl,pm] = ih̄δl,m and
[xl,xm] = [pl,pm] = 0. Similarly, the left reservoir degrees of
freedom are denoted by {xL

α ,pL
α }, α = 1, . . . ,NL and the right

reservoirs by {xR
α′ ,p

R
α′}, α′ = 1, . . . ,NR . We will use the vector

notation XT = (x1,x2, . . . ,xN ), P T = (p1,p2, . . . ,pN ), and
similarly XL,XR,P L,P R . The general Hamiltonian for the
system coupled to harmonic reservoirs is then given by

H = HS + HL + HR + HLS + HRS, (2.15)

where

HS = 1
2P T M−1P + 1

2XT KX,

HL = 1
2 [P L]T [ML]−1P L + 1

2 [XL]T KLXL,

HR = 1
2 [P R]T [MR]−1P R + 1

2 [XR]T KRXR,

HLS = XT KLSXL, HRS = XT KRSXR,

where M,ML,MR and K ,KL,KR denote, respectively, the
mass matrix and the force-constant matrix of the system, left
reservoir, and right reservoir, while KLS and KRS denote the
linear coupling coefficients between the two reservoirs and the
system.

Again we consider the time evolution of the coupled system
plus reservoirs starting from an initial product density matrix
of the form Eq. (2.2) with ρ0

L ∼ exp(−HL/kBTL) and ρ0
R ∼

exp(−HR/kBTR) and the system being in an arbitrary initial
state. At long times the system reaches a NESS described by
the reduced density matrix ρS = TrL,Rρ(t → ∞). In order to
construct ρS , we start with defining the appropriate correlation
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matrix as in the previous section for electron transport. In doing
so, we consider the 2N × 2N covariance matrix defined with
the column vector ϕ = (x1, . . . ,xN ,p1, . . . ,pN )T ,

C = 〈ϕϕT 〉 = TrS[ϕϕT ρS]. (2.16)

For this covariance matrix, we write the symmetric and
antisymmetric parts as

CS = 1
2 (C + CT ), (2.17)

CA = 1
2 (C − CT ) = ih̄

2
J, (2.18)

J =
(

0 1
−1 0

)
, (2.19)

where 1 and 0 are, respectively, N × N identity and zero
matrices. The matrix expression of antisymmetric part CA is
automatically determined by commutation relations between
coordinate and momentum variables.

The symmetric part of covariance matrix CS is given by

CS =
( 〈XXT 〉 1

2 〈XP T + [PXT ]T 〉
1
2 〈XP T + [PXT ]T 〉 〈PP T 〉

)
. (2.20)

As for the electron case these correlations are known in terms
of the following phonon Green function:

G± = 1

−Mω2 + K − �±
L − �±

R

, (2.21)

where the self-energies can be expressed in terms of the iso-
lated reservoir Green functions g±

L (ω) = [−ML(ω ± iε)2 +
KL]−1, g±

R (ω) = [−MR(ω ± iε)2 + KR]−1, and the coupling
elements KLS,KRS . These self-energies thus read

�±
L (ω) = KLS g±

L (ω)[KLS]T , �±
R (ω) = KRS g±

R (ω)[KRS]T .

(2.22)

Defining �L(ω) = Im[�+
L ],�R(ω) = Im[�+

R ], we find
[17,22,23]

〈XXT 〉 =
∫ ∞

−∞
dω

h̄

2π

∑
a=L,R

G+�a G−g(ω,Ta),

〈PP T 〉 =
∫ ∞

−∞
dω

h̄ω2

2π

∑
a=L,R

MG+�a G−Mg(ω,Ta),

1

2
〈XP T +[PXT ]T 〉=

∫ ∞

−∞
dω

ih̄ω

π

∑
a=L,R

G+�a G− Mg(ω,Ta),

(2.23)

where g(ω,T ) = coth(h̄ω/2kBT ).
We next show how the steady-state density matrix can be

expressed in terms of the correlation matrix. For this it is
necessary to consider symplectic transformations [24]. We first
introduce the symplectic matrix S, satisfying

S J ST = J, (2.24)

SCS ST = D = diag(d1, . . . ,dN ,d1, . . . ,dN ). (2.25)

The procedure to find S is detailed in the Appendix.

By using the symplectic transformation with the matrix S,
the new operators ϕ′ = (x ′

1, . . . ,x
′
N ,p′

1, . . . ,p
′
N )T are defined

as

ϕ′
s =

N∑
l=1

Ss,lϕl, s = 1, . . . ,N. (2.26)

The most important property of the symplectic transfor-
mation, following from Eq. (2.24), is that it preserves the
commutation relations, and we have [xs,ps ′ ] = ih̄δs,s ′ and
[xs,xs ′ ] = [ps,ps ′ ] = 0. The steady-state density matrix can
then be written in terms of these new operators, and we end up
with the general main result:

ρS =
N∏

s=1

exp
[ − as

(
x ′

s
2 + p′

s
2
)]

Zs

(2.27)

= exp[−ϕT Aϕ]∏N
s=1 Zs

, (2.28)

A = ST diag(a1, . . . ,aN ,a1, . . . ,aN )S, (2.29)

Zs = [2 sinh(h̄as)]
−1 , (2.30)

as = h̄−1 coth−1(2ds/h̄). (2.31)

In computing the normalization factor Zs , we have used the

second quantization representation x ′
s =

√
h̄
2 (b†s + bs),p′

s =
i

√
h̄
2 (b†s − bs), where bs and b

†
s satisfy [bs,b

†
s ′ ] = δs,s ′ . Then

we obtain the expression as(x ′
s

2 + p′
s

2) = 2h̄as(b
†
sbs + 1/2).

The relation between ds and as is then found by looking at the
averages 〈x ′

s
2〉 and 〈p′

s
2〉:

〈
x ′

s
2〉 = 〈

p′
s

2〉 = h̄

2
coth(h̄as) = ds . (2.32)

Finally, we also consider here the classical limit h̄ → 0. In
this limit, we have the simple relation ds = 1/(2as). Then, the
matrix A is given by

A = 1
2 ST D−1 S (h̄ → 0). (2.33)

Hence, from the relation D−1 = (SC ST )−1 = (ST )−1C−1 S−1,
we find the following expression of the matrix A in the classical
limit:

A = 1
2 C−1 (h̄ → 0). (2.34)

Thus we recover the form that is expected for a general
Gaussian probability measure. We note that in the classical
case, for Gaussian white noise reservoirs, the correlation
matrix C can be explicitly determined for ordered harmonic
lattices [3,4]. For arbitrary harmonic networks, they are given
by the high temperature limit of Eq. (2.23), with appropriate
choices of the bath spectral functions. Finding the inverse of
the correlation matrix, however, presents a more difficult task.

III. WEAK-COUPLING LIMIT

In this section, we consider the special case of a weak
coupling between the system and reservoirs. We note that it
is essential that the weak-coupling limit is taken after the
coupled system-reservoirs have evolved for an infinite time
and thus reached the NESS. Generally, when the coupling
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strength is weak, the density matrix can be expanded in terms
of the coupling strength. In this case, the zeroth-order term in
the coupling strength determines the overall structure of the
electron density profile in the electron conduction case and
the temperature profile in the case of phonon heat conduction.
The higher-order terms of the expansion determine the amount
of current flowing in the system. Therefore, although the
coupling strengths must be finite for finite current, even the
zeroth-order contribution in the expansion of the density
matrix carries important information on the steady state.
In this section, we focus on the zeroth-order contribution
in the weak-coupling expansion of the steady-state density
matrix, which we here refer to as the density matrix in the
weak-coupling limit. We emphasize that at no instant do we
switch off the coupling strength, which is always kept finite
but small.

On decreasing the coupling strength, the current decreases;
however, even in the limit of zero current, the steady-state
density matrix is nontrivial and different from the equilibrium
density matrix. In fact, we will find that the NESS is
nonunique in the sense that it depends on the way the system-
coupling strengths are made to vanish. For the case where
the temperatures and chemical potentials of the two reservoirs
are chosen equal one obtains, in the weak-coupling limit, the
expected equilibrium grand-canonical (for the electron case)
and canonical (for the phonon case) distributions.

A. Electron transport

We first note that the system’s Hermitian Hamiltonian
matrix H has the eigenvalue equation

∑
m H l,mV m(s) =

λs V l(s), hence can be diagonalized by the unitary transfor-
mation V as

V †HV = λ, V †V = I . (3.35)

Next we use the spectral decomposition:

G+ = V V −1[h̄ω − H − �+
L − �+

R ]−1[V †]−1V †

= V [h̄ω − λ − V †(�+
L + �+

R )V ]−1V †. (3.36)

From this it follows that in the weak-coupling limit �+
L ,�+

R →
0, the matrix element G+

l,m is effectively given by

G+
l,m =

∑
s

V l(s)V ∗
m(s)

h̄ω + λs − i〈s|�|s〉 , (3.37)

where 〈s|�|s ′〉= ∑
l,m V ∗

l (s)(�)l,mV m(s ′) and � = �L + �R .
It can be shown that the off-diagonal terms of the inverse matrix
in Eq. (3.36) are of the order of the coupling strength. This
contribution disappears, however, in the following calculation
of the correlation function, given this weak-coupling limit. The
real part of �+

L,R is negligible compared to the remaining real
parts and thus can be dropped. Hence we obtain

〈c†mcl〉 =
∫ ∞

−∞
dω

h̄

π

∑
a=L,R

∑
j,k

G+
l,k(�a)k,j G−

j,mf (ω,μa,Ta)

=
∫ ∞

−∞
dω

h̄

π

∑
a=L,R

∑
s,s ′,j,k

V l(s)V ∗
k(s)

h̄ω − λs − i〈s|�|s〉 [�a]k,j

× V j (s ′)V ∗
m(s ′)

h̄ω − λs ′ + i〈s ′|�|s ′〉f (ω,μa,Ta).

A careful examination of the limit 〈s|�a|s〉 → 0 exhibits that
only the terms s = s ′ survive in the above summation, yielding

〈c†mcl〉 =
∫ ∞

−∞
dω

h̄

π

∑
a=L,R

×
∑

s

V l(s)〈s|�a(ω)|s〉V ∗
m(s)

(h̄ω − λs)2 + 〈s|�(ω)|s〉2
f (ω,μa,Ta).

Next, making use of the identity

lim
ε→0

ε

(x − a)2 + ε2
= πδ(x − a),

we find

〈c†mcl〉 =
∑

s

V l(s)V ∗
m(s)es,

where

es =
∑

a=L,R

〈s|�a|s〉
〈s|�|s〉 f (λs/h̄,μa,Ta)

= γLf (λs/h̄,μL,TL) + γRf (λs/h̄,μR,TR),

where

γL = 〈s|�L|s〉
〈s|�|s〉 , γR = 〈s|�R|s〉

〈s|�|s〉 = 1 − γL.

Note that in the above expression, the limit 〈s|�a|s〉 → 0 is
always implied, and it is then evident that the ratios γL,γR

depend on the way the couplings → 0. From the form above
we can interpret es as an effective occupation probability of
the energy level λs of the isolated system, and this probability
depends on the temperatures and chemical potentials of the
two reservoirs. Defining the diagonal matrix E with elements
es , we have V †CV = E. Comparing with Eq. (2.9), we
see that the same unitary transformation that diagonalizes
H also diagonalizes the correlation matrix C, and we have
U = V ,D = E.

Using the results in Eqs. (2.13) and (2.14), we then find as =
ln(e−1

s − 1) and A = V ∗diag(a1,a2, . . . ,aN )V T , which in turn
yields the steady-state density matrix in Eq. (2.13). For the
equilibrium case μL = μR = μ, TL = TR = T , we have ds =
es = f (λs,μ,T ), hence as = (λs − μ)/(kBT ) and A = [H −
μI]/(kBT ), as expected. Thus we obtain the nontrivial result
that the density matrix of a system, weakly coupled to two
reservoirs at the same temperatures and chemical potentials,
is given by the grand-canonical distribution of the isolated
system. Note that this is not the case for the case of strong
coupling.

B. Phonon transport

For the harmonic model we first note that there exists a real
normal mode transformation matrix V , with elements V l(s),
which satisfies

V T MV = 1, V T K V = �2,

where � is the diagonal matrix with elements as normal mode
frequencies. It is easily verified that the matrix

S =
(

0 −�−1/2V T

�1/2V T M 0

)
(3.38)
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is symplectic, i.e., SST = J and further has the following
property:

S
(

K−1 0
0 M

)
ST =

(
�−1 0

0 �−1

)
. (3.39)

We now show that the correlations for the harmonic system
in the weak-coupling limit are given by

〈XXT 〉 = V�−1/2 E�−1/2V T , (3.40)

〈XP T + [PXT ]T 〉 = 0, (3.41)

〈PP T 〉 = MV�1/2 E�1/2V T M, (3.42)

where we have defined the diagonal matrix E whose elements
are given by

es = h̄

2

∑
a=L,R

〈s|�a|s〉
〈s|�|s〉 coth

[
h̄�s

2kBTa

]
s = 1,2, . . . ,N

= γL

h̄

2
coth

[
h̄�s

2kBTL

]
+ γR

h̄

2
coth

[
h̄�s

2kBTR

]
, (3.43)

where

γL = 〈s|�L|s〉
〈s|�|s〉 , γR = 〈s|�R|s〉

〈s|�|s〉 = 1 − γL.

Let us define the effective temperature T̃ s for each normal
mode through the relation, reading

es = h̄

2
coth

[
h̄�s

2kB T̃ s

]
, (3.44)

giving

1

T̃ s

= 2kB

h̄�s

coth−1

[
γL coth

(
h̄�s

2kBTL

)
+ γR coth

(
h̄�s

2kBTR

)]
,

which notably depends on both temperatures TL and TR . We
remark here again that in the above expressions the limit
〈s|�a|s〉 → 0 is implied; it is then clear that the ratios γL,
γR depend on the way the couplings → 0.

To prove the above results, Eqs. (3.40)–(3.43), we first
introduce the following spectral decomposition:

G+(ω) = V V −1[−Mω2 + K − �+
L − �+

R ]−1[V T ]−1V T

= V [V T (−Mω2 + K − �+
L − �+

R )V ]−1V T

= V [−ω2 + �2 − V T �+
L V − V T �+

R V ]−1V T .

From this it follows that in the weak-coupling limit �+
L ,�+

R →
0, the matrix element G+

l,m is effectively given by

G+
l,m =

∑
s

V l(s)V m(s)

−ω2 + �2
s − i〈s|�|s〉 , (3.45)

where 〈s|�|s ′〉 = ∑
l,m V l(s)�l,mV m(s ′) and � = �L + �R .

It can be shown that the off-diagonal terms 〈s|�|s ′〉 for s 
= s ′,
as well as the real part of �+

L,R , give lower-order contributions
in the weak-coupling limit and can be dropped. Hence

we find

〈xlxm〉 =
∫ ∞

−∞

h̄

2π

∑
a=L,R

∑
j,k

G+
l,k[�a]k,j G−

j,mg(ω,Ta)

=
∫ ∞

−∞

h̄

2π

∑
a=L,R

∑
s,s ′,j,k

V l(s)V k(s)

−ω2 + �2
s − i〈s|�|s〉 [�a]k,j

× V j (s ′)V m(s ′)
−ω2 + �2

s ′ + i〈s ′|�|s ′〉g(ω,Ta).

A careful examination of the limit 〈s|�a|s〉 → 0 shows that
only the terms s = s ′ in the above summation survive, and we
then obtain

〈xlxm〉 =
∫ ∞

−∞

h̄

2π

∑
a=L,R

×
∑

s

V l(s)〈s|�a(ω)|s〉V m(s)( − ω2 + �2
s

)2 + 〈s|�(ω)|s〉2
g(ω,Ta).

Now we note the following identity:

lim
ε→0

ε

(x2 − a2)2 + ε2
= π

2a
[δ(x − a) + δ(x + a)]. (3.46)

Using this and the fact that �a(ω) and g(ω) are both odd
functions of ω, one arrives at

〈xlxm〉 =
∑

s

h̄

2
V l(s)V m(s)

∑
a=L,R

〈s|�a|s〉
〈s|�|s〉

g(�s,Ta)

�s

,

(3.47)

which proves Eq. (3.40). Similarly, we can evaluate other
correlations and obtain Eqs. (3.41) and (3.42).

From the form of the correlations in Eqs. (3.40), (3.41),
and (3.42), we deduce that the matrix S given in Eq. (3.38)
provides the required symplectic transformation in Eq. (2.25)
with D = E. Therefore, using Eq. (2.31) and the definition in
Eq. (3.44), we get as = �s/(2kB T̃ s). Finally, Eq. (2.29) gives
A = ST �T̃

−1
S/(2kB), and then from Eq. (2.28) we obtain

ρS . This density matrix corresponds to each of the normal
modes of the harmonic system being in equilibrium at an
effective temperature T̃ s . For the equilibrium case TL = TR =
T , we find, using Eq. (3.39), ϕT Aϕ = HS/(kBT ). This result
is expected but nontrivial, and it is valid only in the weak-
coupling limit.

IV. APPLICATION TO GENERIC SETUPS

A. Electron transport in a one-dimensional wire

1. System with single site

We consider the system plus reservoir to consist of a single
site, such as, e.g., realized with a single-level quantum dot,
that is connected to two one-dimensional reservoirs. The full
Hamiltonian then reads

H = HS + HL + HR + HLS + HRS,

where

HS = εc
†
0c0,

HL = −
∞∑

α=1

t[c†αcα+1 + c
†
α+1cα],
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HR = −
∞∑

α′=1

t[c†α′cα′+1 + c
†
α′+1cα′ ], (4.48)

HLS = −t ′L[c†α=1c0 + c
†
0cα=1],

HRS = −t ′R[c†α′=1c0 + c
†
0cα′=1].

The self-energies can be expressed in terms of the Green
functions of the uncoupled reservoir Hamiltonian g+

L,R and
the coupling elements t ′L,R . Defining ω = −2t cos q, where
0 � q � π , we find that for |ω| � 2t :

�+
L (ω) = − t ′2L

t
eiq , �+

R (ω) = − t ′2R
t

eiq ,

(4.49)

�+
L (ω) = t ′2L

t
sin q, �+

R (ω) = t ′2R
t

sin q.

Hence the system’s Green function emerges to read

G+(ω) = 1

h̄ω − ε − �+
L (ω) − �+

R (ω)
. (4.50)

The correlation matrix element for the single-site problem is
then readily obtained, given by:

d = 〈c†0c0〉 =
∫ 2t

−2t

dω
h̄

π
|G+(ω)|2[�L(ω)f (ω,μL,TL)

+�R(ω)f (ω,μR,TR)]. (4.51)

Consequently, we find for the steady-state nonequilibrium
density matrix for this case the explicit result

ρS = exp(−ac0
†c0)

1 + exp(−a)
, (4.52)

where

a = ln(d−1 − 1).

2. System composed of two sites

We next consider a system where the reservoirs are identical
to those in the previous section, while the system Hamiltonian
and system-bath couplings are as follows:

HS = ε1c
†
1c1 + ε2c

†
2c2 − t(c†1c2 + c

†
2c1),

HLS = −t ′L[c†α=1c1 + c
†
1cα=1], (4.53)

HRS = −t ′R[c†α′=1c2 + c
†
2cα′=1].

The self-energies are again given by Eq. (4.49) and the system’s
Green function is then

G+(ω) =
(

h̄ω − ε1 − �+
L (ω) t

t h̄ω − ε2 − �+
R (ω)

)−1

.

(4.54)

In this case it is difficult to construct explicitly the required
unitary matrix U though it is straightforward to evaluate it
numerically and from that find the steady-state density matrix
given by Eq. (2.11).

In what follows we present numerical precise results for
this setup. In our numerics we use the following set of param-
eter values: t = 1.0,t ′L = t ′R = 0.05,ε1 = 0.2,ε2 = 0.4,TL =
0.25,TR = 0.25. The right reservoir chemical potential is fixed
at μR = 0.0 and we study the NESS for different values of
�μ = μL − μR .

The Green function in Eq. (4.54) is first obtained and then
all the elements of the correlation matrix given by Eqs. (2.8)
are evaluated by numerical integration. As examples we give
below the correlation matrices for the equilibrium case �μ =
0 and for �μ = 2.0:

CS =
(

0.519 0.465
0.465 0.427

)
for �μ = 0,

CS =
(

0.726 0.271 + i0.000473
0.271 − i0.000473 0.672

)
for �μ = 2.0.

The electron current in the chain is given by je = 2tIm[〈c†1c2〉],
and in the above example je = 0.000946.

As discussed in Sec. II A, the NESS density matrix assumes
the form

ρS = exp(−c† Ac)

[1 + exp(−a1)][1 + exp(−a2)]
, (4.55)

where c = (c1,c2)T and we numerically determined the coef-
ficients a1,a2 and the matrix A. Finding the eigenvalues and
eigenvectors of C yields the matrix D and the unitary matrix U ,
respectively. We evaluate a1 = ln(d−1

1 − 1),a2 = ln(d−1
2 − 1)

and numerically obtain the steady-state matrix

A = U�diag(a1,a2)UT .

Note that for �μ = 0 (μL = μR = 0) and with a weak
coupling to reservoirs, we expect the result ρS = ρeq ∼
e−β(HS−μN ), and hence

Aeq =
(

0.8 −4.0
−4.0 1.6

)
.

In Fig. 1 we depict the matrix elements A11,A22, and
Re[A12] as functions of the chemical potential difference
�μ. In the inset we also evaluated the electron current; i.e.,
je = 2Im[C12] and show as well Im[A12].

0 0.5 1 1.5 2
Δμ

-4

-3

-2

-1

0

1

2

3

A
11

A
22

Re[A
12

]

0 0.5 1 1.5 2
Δμ

0

0.001

0.002

0.003

j e

j
e

-Im[A
12

]

FIG. 1. (Color online) Plot of the NESS matrix elements A as a
function of the chemical potential difference �μ = μL − μR with
fixed μR = 0.0 and with the remaining parameters as given in the
text. The dashed lines depict results obtained from the weak-coupling
approximation. The inset shows the electron current je = 2Im[C12]
together with Im[A12].
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The matrix elements A11,A22 and the real part of A12

can be obtained from our analytical weak-coupling results
in Sec. III A. First we obtain the eigenvalues λs and
eigenfunctions V l(s),s = 1,2, corresponding to the isolated
system Hamiltonian HS . This provides the required unitary
transformation that diagonalizes the matrix C . For the present
two-site setup the corresponding eigenvalues, which determine
the matrix elements of D, generally given by Eqs. (3.38), take
on the following form:

ds = t ′L
2|V 1(s)|2

t ′L
2|V 1(s)|2 + t ′R

2|V 2(s)|2
1

e(λs−μL)/TL + 1

+ t ′R
2|V 2(s)|2

t ′L
2|V 1(s)|2 + t ′R

2|V 2(s)|2
1

e(λs−μR)/TR + 1

for s = 1,2. The weak-coupling results for A11,A22, and
Re[A12] are depicted in Fig. 1 with dashed lines. We notice
that these are in excellent agreement with the values obtained
from exact numerics.

B. Phonon transport in one-dimensional oscillator chain

1. System consisting of a single oscillator

We consider our system plus reservoir to be described by
the full Hamiltonian

H = p2

2M
+ kox

2

2

+
N∑

α=1

p2
α

2m
+ k(xα − xα+1)2

2
+ k′

L(xα=1 − x)2

2

+
N∑

α′=1

p2
α′

2m
+ k(xα′ − xα′+1)2

2
+ k′

R(xα′=1 − x)2

2
,

where we assume xα=N+1 = xα′=N+1 = 0. The above Hamil-
tonian can be written in the canonical form:

H = HS + HL + HR + HLS + HRS, (4.56)

where

HS = p2

2M
+ (ko + k′

L + k′
R)x2

2
,

HL =
N∑

α=1

p2
α

2m
+ k(xα − xα+1)2

2
+ k′

Lx2
α=1

2
,

(4.57)

HR =
N∑

α′=1

p2
α′

2m
+ k(xα′ − xα′+1)2

2
+ k′

Rx2
α′=1

2
,

HLS = −k′
Lxα=1x, HRS = −k′

Rxα′=1x.

The self-energies can be expressed in terms of the Green
functions of the uncoupled reservoir Hamiltonian g+

L,R(ω)
and the coupling elements k′

L,R . We define ω2 = (2k/m)(1 −
cos q), where 0 � q � π . Then, we find that for |ω| < ωm =
2(k/m)1/2,

�+
L (ω) = k′

L
2

k

cos q − (1 − uL) + i sin q

2(1 − uL)(1 − cos q) + u2
L

,

�+
R (ω) = k′

R
2

k

cos q − (1 − uR) + i sin q

2(1 − uR)(1 − cos q) + u2
R

,

�L(ω) = k′
L

2

k

sin q

2(1 − uL)(1 − cos q) + u2
L

, (4.58)

�R(ω) = k′
R

2

k

sin q

2(1 − uR)(1 − cos q) + u2
R

,

where uL = k′
L/k and uR = k′

R/k. Hence the Green function
is given by

G+(ω) = 1

−Mω2 + ko + k′
L + k′

R − �+
L (ω) − �+

R (ω)
.

(4.59)

It is not difficult to verify that T (ω) = 4�L(ω)�R(ω)|G+(ω)|2
gives the correct transmission coefficient as can be indepen-
dently obtained by evaluating the transmission of plane waves
from the left reservoir to the right one, across the intermediate
system.

The correlation matrix elements for the single-particle
problem are obtained as

c1 = 〈x2〉 =
∫ ωm

0
dω

h̄

π
|G+(ω)|2[�L(ω)g(ω,TL)

+�R(ω)g(ω,TR)],

c2 = 〈p2〉 =
∫ ωm

0
dω

h̄M2ω2

π
|G+(ω)|2[�L(ω)g(ω,TL)

+�R(ω)g(ω,TR)],

〈xp + px〉 = 0,

where ωm = 2(k/m)1/2 and g(ω,T ) = coth(βh̄ω/2). Using
the prescription in Sec. II B, we find that d1 = (c1c2)1/2 and

S =
(

0 −(c1/c2)1/4

(c2/c1)1/4 0

)
, (4.60)

yielding the explicit NESS density matrix

ρS = e−[A11x
2+A22p

2]

Z
,

where

A11 =
(

c2

c1

)1/2

a, A22 =
(

c1

c2

)1/2

a,

a = h̄−1 coth−1[2h̄−1(c1c2)1/2],

Z = [2 sinh(h̄a)]−1.

2. System composed of two coupled oscillators

In this case the baths have the same Hamiltonians as in the
previous section while the system Hamiltonian and system-
bath couplings are given by

HS = p2
1

2m1
+ p2

2

2m2
+ (k1 + k′

L)x2
1

2

+ k(x1 − x2)2

2
+ (k2 + k′

R)x2
2

2
, (4.61)

HLS = −k′
Lxα=1x1,HRS = −k′

Rxα′=1x2.
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The self-energies are again given by Eq. (4.58) and the system’s Green function is

G+(ω) =
(−m1ω

2 + (k + k1 + k′
L) − �+

L (ω) −k

−k −m2ω
2 + (k + k2 + k′

R) − �+
R (ω)

)−1

. (4.62)

For this setup it again becomes difficult to evaluate
explicitly the symplectic matrix S for the general case though
it is straightforward to evaluate it numerically to yield the
steady-state density matrix given by Eq. (2.28).

We present some numerical results for this case. In our nu-
merics we fix the following parameter values: m1 = 1.0,m2 =
1.5,k = k1 = k2 = 1.0,k′

L = k′
R = 0.1. Moreover, we keep

the temperature of the right reservoir fixed at TR = 1.0
and study the NESS for different values of �T = TL − TR .
We work in dimensionless units where h̄ = kB = 1. The
temperatures TL,TR are of the order of the normal mode
frequencies, meaning that the system indeed operates in the
quantum-mechanical regime.

The Green function in Eq. (4.62) is first obtained and then
all the elements of the correlation matrix given by Eqs. (2.23)
are evaluated by numerical integration. As examples, we detail
below the symmetric parts of the correlation matrices for the
equilibrium case �T = 0 and for �T = 4.0:

CS =

⎛
⎜⎝

0.696 0.294 0 0
0.294 0.670 0 0

0 0 1.168 −0.0788
0 0 −0.0788 1.67

⎞
⎟⎠ for �T = 0,

CS =

⎛
⎜⎝

1.851 1.331 0 −0.0294
1.331 2.241 0.0196 0

0 0.0196 2.491 0.781
−0.0294 0 0.781 4.558

⎞
⎟⎠ for �T = 4.

Note that the heat current across the chain is given by j = k

〈x1p2〉/m2 = −k〈x2p1〉/m1 = (k/m2)C14 = −(k/m1)C23.
For the above example we obtain j = 0.0196.

As shown in Sec. II B, the NESS density matrix assumes
the form

ρS = exp(−ϕT Aϕ)

4 sinh(a1) sinh(a2)
, (4.63)

where ϕT = (x1,x2,p1,p2). We next numerically determine
a1,a2, and the matrix A. To this end we need to construct the
diagonal matrix D and the symplectic matrix S. The way of
constructing these are described in the Appendix: It requires
the following four numerical procedures:

(i) Find the eigenvalues and eigenfunctions of CS . Then
construct the matrix C1/2

S .
(ii) Find the eigenvalues and eigenvectors of the matrix

iC1/2
S J C1/2

S . There are four eigenvectors that occur as complex
conjugate pairs, (ω+

1 ,ω−
1 ,ω+

2 ,ω−
2 ), with corresponding eigen-

values (−d1,d1, − d2,d2).
(iii) Evaluate the vectors v±

1 = C1/2
S ω±

1 ,v±
2 = C1/2

S ω±
2 and

use Eqs. (A4) and (A20) to obtain the matrix V . The required
symplectic transformation is then S = ( JV)T .

(iv) Evaluate a1 = coth−1(2d1),a2 = coth−1(2d2) and the
steady-state matrix

A = ST diag(a1,a2,a1,a2)S.

Note that for �T = 0 (TL = TR = 1) and for weak-
coupling with reservoirs, we expect ρS = ρeq ∼ e−βHS ; hence

Aeq =

⎛
⎜⎝

1 0.5 0 0
0.5 1 0 0
0 0 0.5 0
0 0 0 0.33

⎞
⎟⎠ .

In Fig. 2 we depict the matrix elements A33,A44, and A34

as functions of the temperature difference �T . In the inset we
have plotted the element A14 and the heat current j = C14/m2.

The 2 × 2 diagonal blocks of the matrix A, i.e.,
A11,A12,A21,A22 and A33,A34,A43,A44, can be obtained
from the weak-coupling results in Sec. III B. First we obtain
the normal mode eigenvalues �s and eigenfunctions V l(s),
s = 1,2, corresponding to the isolated system HamiltonianHS .
The symplectic transformation is constructed using Eq. (3.38).
The matrix elements of D, given generally by Eqs. (3.43) and
(3.44), take the following form:

ds = 12
k2
L′ V 2

1(s)

k2
L′ V 2

1(s) + k′
R

2V 2
2(s)

coth

(
h̄�s

2kBTL

)

+ 1

2

k′
R

2V 2
2(s)

k′
L

2V 2
1(s) + k′

R
2V 2

2(s)
coth

(
h̄�s

2kBTR

)
,

0 1 2 3 4
ΔΤ

0

0.1

0.2

0.3

0.4

0.5 A
33

A
44

A
34

0 1 2 3 4
ΔΤ

0

0.005

0.01

0.015 j
-A

14

FIG. 2. (Color online) Plot of some relevant elements of the
matrix A as a function of the temperature difference �T = TL − TR

with constant TR = 1.0 while the other parameters are given in the
text. The dashed lines depict results obtained from the analytical
weak-coupling approximation. The inset shows both the matrix
element −A14 and the linearly growing heat current j .
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for s = 1,2. The weak-coupling results for A33,A44, and A34

have been plotted in Fig. 2 (dashed lines), and we detect an
excellent agreement with the values obtained from precise
numerics.

V. CONCLUSIONS AND OUTLOOK

In summary, we have detailed the explicit construction
of the reduced density matrix of the nonequilibrium steady
states for two quantum transport problems: one involving
noninteracting fermionic degrees of freedom and the other
noninteracting bosonic degrees. The first setup concerns
electron transport in a tight-binding lattice model composed of
noninteracting electrons that are connected to noninteracting
baths, while our second setup focuses on heat transport
across an arbitrary harmonic oscillator network connected to
harmonic oscillator baths. For both of these models the steady-
state correlations are known exactly from various approaches
and are usually expressed in terms of nonequilibrium Green
functions. We have demonstrated that for the fermionic
problem, the construction of the emerging time-independent
steady-state density matrix requires that one evaluates a
particular unitary matrix, while likewise, for the bosonic case,
it requires finding an appropriate symplectic transformation.

For the limiting case of vanishingly weak coupling between
intermediate system and reservoirs, we show that the required
unitary and symplectic transformations can be explicitly found
and the resulting density matrices assume simple forms whose
explicit expressions depend on the way the coupling strengths
are made to vanish. For the case where the two baths possess
the same temperatures (and chemical potentials for electron
case), the weak-coupling case yields a unique answer, which
is the expected equilibrium canonical (grand canonical for
electrons) distribution. This requires the assumption that
the connecting reservoirs have sufficiently broad bandwidths
[16,17].

The construction of the steady-state density matrices
required one to use “diagonal” representations Eqs. (2.11) and
(2.27), and these are analogous to the eigenmode or normal
mode representation of the Hamiltonian. In the equilibrium
case and for weak coupling, the density matrix is ∼ e−βH, and
then the eigenmode representation is useful in the computation
of equilibrium averages of various physical observables.
Similarly, we expect that the “diagonal” representations of
the nonequilibrium density matrix is as useful for computing
averages in the NESS. Thus, for example, the Von Neumann
entropy of the nonequilibrium steady state, defined as S =
−Tr[ρS ln ρS], can be readily obtained from our findings. In
particular one finds that

Sfermion = −
N∑

s=1

(1 − ds) ln(1 − ds) + ds ln ds,

Sboson = −
N∑

s=1

(ds/h̄ − 1/2) ln(ds/h̄ − 1/2)

− (ds/h̄ + 1/2) ln(ds/h̄ + 1/2), (5.64)

where {ds} are the “diagonalized” correlations defined via
Eqs. (2.9) and (2.25).

ACKNOWLEDGMENTS

We thank the Centre for Computational Science and
Engineering, National University of Singapore, where this
work was initiated. A.D. thanks DST for support through
the Swarnajayanti fellowship. K.S. was supported by MEXT,
Grant No. 23740289. P.H. was supported by the DFG via
SPP 1243 and via seed funding by the excellence cluster
“Nanosystems Initiative Munich” (NIM).

APPENDIX: PROCEDURE TO FIND
THE SYMPLECTIC MATRIX S

We here explain the general procedure to find the sym-
plectic matrix S [24,25]. We first consider the eigenvalue

problem for the matrices iC
1
2
S J C

1
2
S and CS J . Note that the

covariance matrix CS is real-valued, symmetric, and positive
definite. Positive definiteness is shown by yT CSy = yT Cy =
〈(ϕT y)2〉ss � 0 for arbitrary real column vector y.

The matrix iC
1
2
S J C

1
2
S is a Hermitian matrix. Therefore it

possesses real eigenvalues as iC
1
2
S J C

1
2
S ω = dω, where ω is

the eigenvector. Taking the complex conjugate of both sides,

we have the equation iC
1
2
S J C

1
2
S ω∗ = −dω∗. From this, if d is

an eigenvalue, then −d is also an eigenvalue.
Hence, we can start with the following equations:

iC
1
2
S J C

1
2
S ω±

k = ∓dkω
±
k , (A1)

where ω±
k are eigenvectors (ω−

k = ω+
k

∗) which have real
eigenvalues ∓dk (dk > 0). These equations are equivalent to

CS Jv±
k = ±idkv

±
k , (A2)

where the vectors v±
k are defined as

v±
k = C

1
2
S ω±

k . (A3)

We divide the vector v±
k into the real and imaginary parts as

v±
k = vR

k ± ivI
k . (A4)

Then, Eq. (A2) implies the two relations

CS JvR
k = −vI

kdk, (A5)

CS JvI
k = vR

k dk. (A6)

Because the matrix iC
1
2
S J C

1
2
S is Hermitian, we can normalize

the vector ω±
k as

(ω±
k )†ω±

k′ = 2d−1
k′ δk,k′ , (A7)

(ω±
k )†ω∓

k′ = 0. (A8)

From (A3), the vector ω±
k is expressed with vectors v

R,I
k as

ω±
k = C

− 1
2

S

(
vR

k ± ivI
k

)
. (A9)
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Using this, Eqs. (A7) and (A8) are written as(
vR

k ∓ ivI
k

)T
C

− 1
2

S C
− 1

2
S

(
vR

k′ ± ivI
k′
)

= (
vR

k

)T
C−1

S vR
k′ + (

vI
k

)T
C−1

S vI
k′

∓i
[(

vI
k

)T
C−1

S vR
k′ − (

vR
k

)T
C−1

S vI
k′
] = 2d−1

k′ δk,k′ , (A10)(
vR

k ∓ ivI
k

)T
C

− 1
2

S C
− 1

2
S

(
vR

k′ ∓ ivI
k′
)

= (
vR

k

)T
C−1

S vR
k′ − (

vI
k

)T
C−1

S vI
k′

∓i
[(

vI
k

)T
C−1

S vR
k′ + (

vR
k

)T
C−1

S vI
k′
] = 0. (A11)

From this, we find the following set of relations:(
vR

k

)T
C−1

S vR
k′ = d−1

k′ δk,k′, (A12)(
vI

k

)T
C−1

S vI
k′ = d−1

k′ δk,k′ , (A13)(
vR

k

)T
C−1

S vI
k′ = 0, (A14)(

vI
k

)T
C−1

S vR
k′ = 0. (A15)

Utilizing Eqs. (A5) and (A6), the above relations can be recast
as (

vR
k

)T
JvI

k′ = δk,k′ , (A16)(
vI

k

)T
JvR

k′ = −δk,k′ , (A17)(
vR

k

)T
JvR

k′ = 0, (A18)(
vI

k

)T
JvI

k′ = 0. (A19)

We next define the 2N × 2N matrix V :

V = (
vR

1 , . . . ,vR
N ,vI

1 , . . . ,vI
N

)
. (A20)

Using the matrix V , relations (A5) and (A6) can be simply
written as

CS JV = V J D, (A21)

where the matrix D is a 2N × 2N diagonal matrix:

D = diag(d1, . . . ,dN ,d1, . . . ,dN ). (A22)

In addition, relations (A16)–(A19) can be written with the
matrix V as

VT JV = J . (A23)

We now introduce the matrix S as

S = ( JV)T . (A24)

One can prove that the matrix S satisfies the symplectic
relation, namely,

S J ST = VT JT J JV
= −VT JT V = VT JV = J, (A25)

SCS ST = VT JT CS JV
= VT JT V J D

= −VT JV J D

= −J2 D = D, (A26)

where we used Eqs. (A21) and (A23).
To evaluate the symplectic matrix S numerically, we first

solve eigenvalue problem (A1) to obtain the eigenfunction
ω±

k . Next, we normalize them as in (A7), and find v
R,I
k .

Finally, constructing the matrix V as in (A20), one obtains
the symplectic matrix as in (A24).
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