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Brownian transport in narrow corrugated channels is a
topic of potential applications to both natural [1,2] and
artificial devices [3]. Depending on the amplitude and
geometry of the wall modulation, corrugated channels
fall within two distinct categories: i) smoothly corrugated
channels, typically modeled as quasi–one-dimensional
(1D) periodic channels with axial symmetry and unit
cells delimited by smooth, narrow bottlenecks, also called
pores [4–12]; ii) compartmentalized channels [13–16],
formed by identical compartments separated by thin
dividing walls and connected by narrow pores centered
around the channel axis. Brownian transport in such
sharply corrugated channels must be treated as an irre-
ducible two- or three-dimensional diffusion problem [17].
More importantly, for both categories of corrugated
channels most analytical results only apply under the
condition of very narrow pores [2,5,17].
Corrugated channels are often used to model transport

of dilute mixtures of small particles (e.g., biomolecules,
colloids or magnetic vortices) in confined geometries [3].
Each particle is subjected to thermal fluctuations with
temperature T and large viscous damping γ, and a
homogeneous constant bias of strength F parallel to the
channel axis. Such a dc drive is applied by coupling
the particle to an external field (e.g., by attaching a
dielectric or magnetic dipole, or a magnetic flux to the
particle), without inducing drag effects on the suspension

fluid. Interparticle and hydrodynamic interactions are thus
ignored for simplicity (these assumptions are discussed in
ref. [4]).
In this paper we investigate the relevance of inertial

effects due to the viscosity of the suspended particle.
As is often the case with biological (and most artificial)
suspensions [3], the Brownian particle dynamics in the
bulk can be regarded as overdamped. This corresponds to
i) formally setting the mass of the particle to zero, m= 0,
or, equivalently, to making the friction strength γ tend
to infinity, and ii) assuming F smaller than the thermal
force F0 = γ

√
kT/m (Smoluchowski approximation) [18].

The current literature on corrugated channels invariably
assumes such an overdamped limit. But how large is an
“infinite” γ (or how small can be a “zero” m)? The
answer, of course, depends on the geometry of the channel.
Our main conclusion is that the overdamped dynamics
assumption for Brownian diffusion through pores of width
∆ subjected to a homogeneous drive F , applies only
for γ�√mkT/∆ and γ�√mF/∆, irrespective of the
degree of corrugation. This means that the inertial effects
cannot be neglected as long as the Brownian diffusion
is spatially correlated on a length (lT =

√
mkT/γ at

small dc drive, or lF =mF/γ
2 at large dc drive) of the

order of, or larger than, the pore width ∆. Therefore,
for sufficiently narrow pores or sufficiently large drives,
inertia always comes into play by enhancing the blocking
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Fig. 1: (Color online) Rescaled mobility, γµ, vs. rescaled
damping constant, rγ/γT , in the corrugated channel of eq. (2)
at small drive, F/FT = 0.1, and for different pore sizes, ∆/yL,
and aspect ratio, r= xL/yL. All quantities are expressed in
dimensionless units with scaling parameters r= xL/yL, FT =
kT/∆ and γT =

√
mkT/∆, see eq. (3). The dotted line is the

fitting law of eq. (5). The actual parameter values used in
our simulations arem= kT = yL = 1. Inset: corrugated channel
with the boundary function w(x) given in eq. (2).

action of the channel bottlenecks. Thus, the condition
of vanishingly narrow pores, ∆→ 0, assumed in most
analytical studies, can be inconsistent with the assumption
of overdamped diffusion in the spirit of the Smoluchowski
approximation [18]. Finally, we also discuss applications
to transport in colloidal systems.
Let us consider a point-like Brownian particle diffusing

in a two-dimensional (2D) suspension fluid contained in a
periodic channel with unit cell xL× yL, as illustrated in
fig. 1 (inset). The particle is subjected to a homogeneous

force �F = F�ex oriented along the x-axis. The damped
Brownian particle obeys the 2D Langevin equation

md2�r/dt2 =−γ d�r/dt+ �F +
√
2γkT �ξ(t), (1)

where �r= (x, y). The random forces �ξ(t) = (ξx(t), ξy(t))
are zero-mean, white Gaussian noises with autocorrelation
functions 〈ξi(t)ξj(t′)〉= δijδ(t− t′), with i, j = x, y. The
symmetric walls of the corrugated channel have been
modeled by the sinusoidal function ±w(x) (fig. 1, inset),

w(x) = (1/4)[(yL+∆)− (yL−∆) cos(2πx/xL)]. (2)

With this choice for w(x) we made explicit contact
with the current literature on entropic channels [4–10].
However, similar results were obtained for sharper corru-
gation profiles, e.g., for compartmentalized channels [13–
16] (not reported here). We numerically integrated eq. (1)
by a Milstein algorithm [19] with time step, ∆t, ranging
from 10−6 down to 10−9, as F was increased. For each
run, ∆t was set small enough for the output to be inde-
pendent of it. The stochastic averages reported below were

obtained as ensemble averages over 106 trajectories with
random initial conditions; transient effects were estimated
and subtracted.
Two quantifiers have been used to characterize

the Brownian transport in such sinusoidally corrugated
channel:
i) Mobility. The response of a Brownian particle in

a channel subjected to a dc drive, F , oriented along the
x-axis, is expressed by the mobility, µ(F ) = 〈v(F )〉/F,
where 〈v〉 ≡ 〈ẋ(F )〉= limt→∞[〈x(t)〉−x(0)]/t. The func-
tion µ(F ) increases from a relatively small value for F = 0,
i.e., µ(F = 0) = µ0, up to the free-particle limit, γµ∞ = 1,
for F →∞ [10]. We recall that in the bulk, a free particle
drifts with speed F/γ.
ii) Diffusivity. As a Brownian particle is driven

across a periodic array of bottlenecks or compartment
pores, its diffusivity, D(F ) = limt→∞[〈x2(t)〉− 〈x(t)〉2]/2t,
picks up a distinct F -dependence. In corrugated chan-
nels with smooth bottlenecks, for F →∞ the function
D(F ) approaches the free or bulk diffusion limit,
D(∞) =D0 ≡ kT/γ, after going through an excess diffu-
sion peak centered around an intermediate (temperature-
dependent [10]) value of the drive. Such a peak signals
the depinning of the particle from the barrier array of
w(x) associated with the channel bottlenecks [20].
Recall that, in the absence of external drives and for

any value of the damping constant, Einstein’s relation,
γµ0 =D(F = 0)/D0, establishes the dependence of the
transport parameters on the temperature and the channel
compartment geometry under equilibrium conditions.
Inertial effects in corrugated channels become apparent

both for small γ and for large F . By inspecting figs. 1 and 2
we immediately realize that (for small γ) inertia tends
to suppress the particle mobility through the channel
bottlenecks. At large F , when plotted vs. γ (fig. 2(a)), the
rescaled mobility approaches unity for γ→∞, as expected
in the Smoluchowski approximation [10], but drops to zero
in the underdamped limit, γ→ 0. More remarkably, the
resulting γµ curves shift to higher γ on increasing F (main
panel). On expressing γ in units of γF =

√
mF/∆, see

eq. (4) below, the curves for large drives tend to collapse on
a universal curve well fitted by the power law (γ/γF )

α with
α= 1.4 (inset). Correspondingly, in fig. 2(b) the mobility
grows like ∆α/2 at large F (inset) and decays like F−α/2

for small ∆ (main panel).
The power law, γµ∝ (γ/γF )α, introduced here is only a

convenient fit of the rescaled mobility function, even if it
holds for two or more decades of γ/γF . The analytical form
of that function remains to be determined. Deviations
from the fitted power law, µ∝∆α/2, for the mobility at
very small ∆ (fig. 2(b), inset), suggest that the fitting
exponent, α, slightly depends on ∆, with α→ 2 in the
limit ∆→ 0 (not shown). (Note that, on the contrary,
the power law γµ∝ F−α/2 works throughout the entire
F range explored in fig. 2(b).)
The dependence of the rescaled mobility on the system

parameters in the underdamped limit is further illustrated

50002-p2



                                                             

Fig. 2: (Color online) Rescaled mobility, γµ, in a corrugated
channel with aspect ratio r= 1, rescaled pore size ∆/yL = 0.1,
and (a) vs. the rescaled damping γ/γT for different force values
F ; (b) vs. F/FT for various γ. The scaling parameters are FT =
kT/∆ and γT =

√
mkT/∆; the actual simulation parameters

were set to m= kT = yL = 1, as in fig. 1. Inset in (a): data from
the main panel after different rescaling of damping constant,
γ/γF , with γF =

√
mF/∆, see eq. (4); the raising branch of

the universal curve for large drives is fitted by the power law
(γ/γF )

α with α= 1.4. Inset in (b): γµ vs. ∆/yL for γ/γT = 0.4
and two values of F . The dotted lines in (b) represent the large-
drive power laws (F/FT )

−α/2 (main panel) and (∆/yL)α/2

(inset), both with α= 1.4; for F/FT = 1, µ is proportional to
∆ (inset).

in fig. 1, where at low γ and for vanishingly small drives,
the mobility grows proportional to the aspect ratio r=
xL/yL of the channel unit cell and the pore cross-section
∆, i.e., it scales with the dimensionless quantity rγ/γT
(see also the data set for F/FT = 1 in the inset of fig. 2(b)).
Deviations of the diffusivity data from the expected

overdamped behavior are even more prominent. As shown
in fig. 3, at large γ the curves D(F ) approach the hori-
zontal asymptote D(F ) =D0, as expected [10]. However,
beyond a certain value of F , seemingly proportional to
γ2 (see figure inset), these curves abruptly depart from

Fig. 3: (Color online) Rescaled diffusivity, D/D0, vs. rescaled
force, F/F0, (main panel) and the rescaled diffusion coeffi-
cient D/DT vs. F/FT (inset) in the corrugated channel of
eq. (2) with aspect ratio r= 1, rescaled pore width ∆/yL = 0.1,
and different friction coefficients γ. The actual simulation
parameters are m= kT = yL = 1. The meaning of the scaling
parameters, DT = kT/γT , F0 = γ

√
kT/m, and FT = kT/∆, is

discussed in the text. The solid line in the inset is the heuristic
power law of eq. (6).

their horizontal asymptote. In the underdamped limit, the
F -dependence of the diffusivity bears no resemblance with
the typical overdamped behavior. At low γ, all D(F ) data
sets collapse to a unique curve (fig. 3, inset), which tends
to a value smaller than D0 for F → 0, and diverges for
F →∞, like F β with β 	 1. Such power law holds for large
γ, as well, though in the large-F domain, only. Indeed, for
exceedingly large F , all D(F ) curves seem to eventually
approach a unique asymptote, irrespective of γ.
By comparing the plots of figs. 1–3 we conjecture

that corrections due to inertia become significant in two
regimes:
i) at low drives for

γ � γT =
√
mkT/∆. (3)

This characteristic damping was used to rescale the mobil-
ity data in fig. 1 (see also fig. 2(b), inset); moreover, in
fig. 3, for γ < γT the diffusivity becomes a monotonic
function of F with no plateau around D0. The phys-
ical meaning of γT is simple. For γ < γT the thermal
length lT =

√
mkT/γ grows larger than the width of the

pores, ∆, so that the Brownian particle cannot reach the
normal diffusion regime, implicit in Einstein’s relation,
before bouncing off the pore walls. As a consequence, the
Smoluchowski approximation fails in the vicinity of the
bottlenecks.
Replacing γ with γT in the bulk quantities D0 and F0

yields, respectively, DT = kT/γT and FT = kT/∆. These
are the γ-independent rescaling factors introduced in
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figs. 1–3 to characterize the inertia effects of the pore
constrictions;
ii) at high drives, for

γ � γF =
√
mF/∆. (4)

In the presence of a strong dc drive, the condition γ� γT
does not suffices to ensure normal diffusion; the additional
condition ∆> lF is required. Here, lF =mF/γ

2 represents
the ballistic length of a driven-damped particle, which is
an estimate of the bouncing amplitude of a driven particle
against the bottleneck. Upon increasing F at constant γ,
lF eventually grows larger than ∆ and inertia comes into
play for γF � γ. This mechanism is clearly responsible for
the abrupt increasing branches of D(F ) in fig. 3.
An analytical derivation of the transport quantifiers

in the presence of strong inertial effects (low γ and/or
large F ) proved a difficult task. However, the following
phenomenological arguments can explain our numerical
findings.
Let us first consider the rescaled mobility at low drives.

For F = 0 the transport quantifiers γµ0 and D(0) can be
formally expressed in terms of the mean exit time, τ̄e,
of the Brownian particle out of a single compartment,
namely, D(0) = x2L/4τ̄e and µ0 =D(0)/kT (Einstein’s
relation). An analytical expression for τ̄e as a function
of the compartment geometry is only available in the
Smoluchowski approximation [17]. In the low-damping
regime, we only have a rough estimate of τ̄e. For F = 0
the particle bounces off a compartment wall with rate
(2/π)(2

√
kT/m/xL) (attack frequency), but only a

fraction ∆/yL of such collisions leads to pore crossing. As
a consequence, τ̄e ∼ 4xLyL

√
m/kT/π∆ and

γµ0 ∼ π
4

γxL√
kT

∆

yL
=
π

4

(
r
γ

γT

)
, (5)

which closely reproduces the numerical data of fig. 1 for
F/FT = 1 with mobility µ∝∆.
The divergence of the diffusivity with the drive shown

in fig. 3, D(F )∝ F β with β = 1, is surprising since in the
Smoluchowski approximation D(F ) always tends to its
bulk value,D0. A heuristic explanation for this asymptotic
power law runs as follows. The dispersion of a strongly
driven particle at low damping is due to its bouncing back
and forth inside the channel cells with speed ±v̄ and v̄=
F/γ. Therefore, D(F ) = v̄2τ̄e/4, where τ̄e is the particle
mean exit time through one of the pores of a channel
cell, τ̄e = (π/2)(xL/v̄)(γ/γT ). The time constant τ̄e is
estimated here as the cell crossing time, xL/v̄, multiplied
by the geometric factor π/2 (also used to derive eq. (5))
and the success probability, γ/γT , for the particle to actu-
ally cross the bottleneck during a sequence of correlated
bounces extending over the relaxation time m/γ. One
thus concludes that D(F ) = (π/8)(xL∆F )/

√
mkT , or, in

rescaled units of γT and DT ,

D(F )

DT
=
π

8

xLF

kT
, (6)

in rather good agreement with our simulation data (see
inset of fig. 3). Lowering the temperature, for small damp-
ing D(F ) diverges like T−1/2, which means that diffu-
sion is dominated by a (chaotic) mechanism of ballistic
collisions.
The main result of this work is that for real physical

suspensions flowing through compartmentalized geome-
tries, both in biological and artificial systems, the limit of
vanishingly small pore size becomes extremely sensitive to
the finite viscosity of the suspension fluid. With respect
to previous attempts at incorporating finite-mass effects
in the analysis of Brownian transport through corrugated
narrow channels [21], we stress that the inertial effects
reported here are not of mere academic interest. Indeed,
such effects can become appreciable even at low Reynolds
numbers and for relatively small drives, where the viscous
action of the fluid on a suspended particle is well described
by Stokes’ term in eq. (1) —i.e., hydrodynamic corrections
are negligible.
Inertial effects can be directly observed, for instance,

in a dilute solution of colloidal particles driven across a
porous membrane or an artificial sieve [22]. To be specific,
let us consider spherical polystyrene beads [23] of radius
r0 = 1µm, suspended in a low viscous medium with, say,
η= 8.9× 10−4 Pa · s (water), 6.0× 10−4 Pa · s (benzene) or
3.6× 10−4 Pa · s (acetone). For the typical mass density of
polystyrene, 200 kg/m3, the mass of a spherical bead of
radius r0 = 1µm is m	 8.4× 10−16 kg. The correspond-
ing rescaled damping constant γ/m, eq. (1), can be deter-
mined by making use of Stokes’ law, γ/m= 6πηr0/m,
namely γ/m	 2.0× 10−5 ps−1 (water), 1.4× 10−5 ps−1
(benzene) and 8.1× 10−6 ps−1 (acetone).
At room temperature, T = 300K, the thermal energy

unit is kT = 4.14× 10−21 kgm2/s2. If the pore radius is,
say, 10% larger than r0, then the effective width ∆̃ for
the finite-radius particle to go through the pore, becomes
∆̃ =∆− 2r0 = 0.2 µm and the rescaled zero-drive damp-
ing threshold γT /m=

√
kT/m∆̃2 equals 1.1× 10−8 ps−1.

Here, γT � γ, which justifies the applicability of the
overdamped dynamics. Nevertheless, for effective widths
in the order of nanometers, i.e., ∆̃ = 0.002µm, γT /m	
2.2× 10−6 ps−1 reaches the order of the rescaled damping
constant of acetone reported above.
Moreover, the corresponding non-scaled large-drive

damping threshold γF /m=
√
F/m∆̃ can be easily

achieved when applying dielectrophoretic forces. Depend-
ing on the size of the electrodes, dielectrophoretic
forces acting on particles with radius 1µm can result in
pulling forces of up to 100 pN [24]. As a consequence,
γF /m	 1.1× 10−5 ps−1 >γF /m. For suspended parti-
cles of even larger radius or higher mass density, both
conditions γ < γT and γ < γF are also experimentally
achievable.
In conclusion, the experimental demonstration of iner-

tial effects on Brownian transport through narrow pores is
accessible by manipulating artificial particles of moderate
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size by means of well-established experimental techniques
(see also [25]). For too small particles, like biological mole-
cules, detecting such effects might require, however, more
refined experimental setups.
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