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Non-Markovian qubit decoherence during dispersive readout
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We study qubit decoherence under generalized dispersive readout, i.e., we investigate a qubit coupled to a
resonantly driven dissipative harmonic oscillator. We provide a complete picture by allowing for arbitrarily large
qubit-oscillator detuning and by considering also a coupling to the square of the oscillator coordinate, which
is relevant for flux qubits. Analytical results for the decoherence time are obtained by a transformation of the
qubit-oscillator Hamiltonian to the dispersive frame and a subsequent master equation treatment beyond the
Markov limit. We predict a crossover from Markovian decay to a decay with Gaussian shape. Our results are
corroborated by the numerical solution of the full qubit-oscillator master equation in the original frame.
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I. INTRODUCTION

The final readout of the qubit state presents an essential
part of any quantum algorithm [1]. For solid-state qubits,
it is typically realized by coupling the qubit to a harmonic
oscillator such that the oscillator frequency undergoes a shift
whose sign depends on the state of the qubit. This shift can
be probed by driving the oscillator at its bare frequency,
with the consequence that the phase of the response provides
information about the qubit state [2–7]. Typically, one works
with a qubit-oscillator detuning that is slightly larger than the
respective mutual coupling while still being much smaller than
the qubit splitting [2,3]. The resulting frequency shift of the
oscillator then can be derived from the Rabi Hamiltonian via a
transformation to the so-called dispersive frame [8]. For even
stronger detuning, the transformation becomes more involved,
but, nevertheless, the sign of the dispersive shift depends on
the qubit state [9] and, thus, qubit readout remains possible.
For an extreme detuning, such that the oscillator frequency
exceeds the qubit splitting by far, a measurement protocol
has been proposed by which one can reconstruct information
about coherent qubit oscillations from recorded data [10]. Even
though similar readout is possible by driving the qubit directly
[11,12], the oscillator plays a constructive role as band pass.

For driving the oscillator and for measuring its response, the
setup must be coupled to auxiliary electronic circuitry, which
represents an environment that eventually destroys the phase
of the qubit. Generally information about the qubit state can be
obtained only at the rate at which the qubit coherence decays
[13]. Thus, a quantitative understanding of qubit decoherence
stemming from the coupling to a resonantly driven oscillator
is inevitable for the design of dispersive readout schemes.
For sufficiently small detuning, such that the rotating-wave
approximation underlying the Rabi Hamiltonian holds, the
decoherence rate follows from an intuitive consideration in
which the shot noise of the cavity photons randomizes the
qubit phase [8]. This result will emerge as limiting case of our
more general picture.

For weakly dissipative quantum systems, Bloch-Redfield
theory [14,15] represents a natural framework for studying
decoherence, in particular when memory effects are minor.
When qubit decoherence stems from a dissipative harmonic
oscillator, however, its naive application may significantly

overestimate the decoherence rate [16,17] because peaks in
the effective spectral density of the oscillator [18–20] cause
non-Markovian behavior. This may in particular be the case for
the ultrastrong qubit-oscillator coupling which marks a recent
trend [21–24].

Here we present a global picture of the qubit decoherence
during dispersive readout. We consider both linear and
quadratic qubit-oscillator coupling as well as arbitrarily large
detuning, while we do not account for higher-order corrections
to the dispersive shift [25] and nonlinearities in the oscillator
potential [26]. While in Ref. [19] this problem was studied
for an oscillator at thermal equilibrium, we focus on the
semiclassical regime, in which the oscillator is governed by the
driving. In Sec. II, we introduce our quantum master equation
for the full qubit-oscillator-bath model. Section III is devoted
to an analytical derivation of the dephasing time. We develop
a picture in which the driven dissipative oscillator acts as a
bath which is eliminated in second-order perturbation theory
but beyond a Markov approximation. In order to corroborate
the resulting dephasing time, we numerically solve in Sec. IV
the quantum master equation for the qubit and the oscillator in
the original frame.

II. QUBIT-OSCILLATOR MODEL

The qubit coupled to the oscillator is described by the
Hamiltonian

H0 = h̄ε

2
σz + h̄g1σx(a† + a) + h̄g2σx(a† + a)2 + h̄ω0a

†a,

(1)

where g1 is the strength of the dipole interaction which is linear
in the oscillator displacement a† + a. The coupling to the
square of the displacement with strength g2 is mainly relevant
for flux qubits and can be controlled to some extent [27,28].

The system state can be probed via a coupling an external
circuitry which we model by the system-bath Hamiltonian

Hbath = (a† + a)
∑

ν

cν(b†ν + bν) +
∑

ν

h̄ωνb
†
νbν, (2)

where bν is the annihilation operator of a bath mode ν. The
influence of the bath is determined by the spectral density
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I (ω) = 2π
∑

ν c2
νδ(ω − ων), which we assume to be ohmic,

i.e., I (ω) = γω/ω0 with the oscillator damping rate γ .
An external ac driving corresponds to one particular bath

mode being in a highly excited coherent state. It may be
described as classical oscillation, such that the oscillator
experiences a driving force A cos(	t − φ0). This corresponds
to the driving Hamiltonian

HF (t) = Ax cos(	t − φ0). (3)

For convenience, we have introduced the dimensionless
position and momentum operators x = (a† + a)/

√
2 and p =

i(a† − a)/
√

2, respectively.
Within the usual Born-Markov approximation for the

oscillator (see Appendix), one obtains the master equation

Ṙ = − i

h̄
[H0 + HF (t)] − iγ

2
[x,[p,R]+]

− γ

2
coth

(
h̄ω0

2kBT

)
[x,[x,R]] (4)

for the joint density operator R of the qubit and the oscillator,
where [,]+ denotes the anticommutator. It provides all nu-
merical results presented below. In case of low temperatures,
kBT � h̄ω0, the hyperbolic cotangent assumes a value close
to unity. Notice that in contrast to a parametric driving, the lin-
early coupled ac force does not affect the dissipative terms [29].
Because the dissipative terms of a quantum master equation
contain the system-bath coupling operator in the interaction
picture [14,15], the coupling to the qubit in principle influences
the oscillator dissipation. For dispersive readout schemes,
however, this coupling only shifts the oscillator frequency by
a small amount and, thus, has no significant impact on the
oscillator dissipation. Hence, we neglect this correction and
work with the dissipative kernel obtained in the absence of the
qubit.

III. ANALYTICAL ESTIMATE OF
THE QUBIT DEPHASING TIME

Extracting an analytical expression for the qubit decoher-
ence time from the master equation (4) represents a formidable
task. Thus, we have to rely on several approximations that
make use of the conditions under which dispersive readout may
be performed. We start by a transformation to the dispersive
frame which yields a coupling to the square of the position
coordinate of the driven oscillator. The relevant influence on
the qubit is determined by the corresponding auto correlation
function which we evaluate in the semiclassical limit. It
becomes stationary only after averaging within a rotating-wave
approximation over the initial phase φ0 of the driving. Finally,
the resulting non-Markovian master equation for the qubit is
solved for short times.

A. Transformation to the dispersive frame

For the discussion of dispersive readout, the dispersive
picture of the qubit-oscillator Hamiltonian H0 has proven use-
ful [8,10,13]. In order to capture also very large qubit-oscillator
detuning, we need to perform the according transformation
beyond rotating-wave approximation. This yields the effective

qubit-oscillator Hamiltonian [9]

H̄0 = h̄ε

2
σz + h̄(λ‖σz + λ⊥σx)x2 + h̄ω0

2
(x2 + p2) (5)

with the coupling constants

λ‖ = g2
1

ε − ω0
+ g2

1

ε + ω0
, (6)

λ⊥ = 2g2. (7)

Thus, the coupling linear in the oscillator coordinate has turned
into a quadratic coupling with strength λ‖, while λ⊥ has been
introduced for a unified notation. In correspondence to the
orientation of the coupling operators on the Bloch sphere, we
refer to the coupling terms as “longitudinal” and “transverse,”
respectively.

If only energy-conserving terms in the qubit-oscillator
coupling were considered [8], λ‖ would be given by only
the first term of Eq. (6) and, thus, be ∝ (ε − ω0)−1. By
contrast, the second term of Eq. (6) turns the frequency de-
pendence into λ‖ ∝ |ε2 − ω2

0|−2. This means that for positive
detuning, ω0 > ε, the counter-rotating terms diminish the
dispersive shift. Since we will find that decoherence grows
with λ‖, the coherence time is larger than predicted within
rotating-wave approximation [8]. The interpretation of the
effective interaction is that it shifts the oscillator frequency
by ±(λ2

‖ + λ2
⊥)1/2, where the sign depends on the state of the

qubit. Therefore, probing the oscillator frequency provides
information about the latter. In this work we are interested in
the qubit decoherence that stems from this coupling.

When transforming to the dispersive frame, the oscillator
position and momentum operators acquire qubit contributions
of the order g1/|ε ± ω0| [9]. Inserting these into the master
equation (4) [30,31] yields dissipative qubit terms of the order
γ (g1/|ε ± ω0|)2. However, they are negligible as compared to
the terms considered below.

B. Driven oscillator as effective bath

We now treat the oscillator as environment coupled to the
qubit coordinate Y = λ‖σz + λ⊥σx via the Hamiltonian H̄int =
h̄Yη with the environmental fluctuations η determined by the
operator x2. Its expectation value 〈x2〉 yields a correction to
the qubit Hamiltonian of the order λ‖. Therefore, the impact
of 〈x2〉 on the dissipative terms is already beyond the order
considered herein and can be omitted, such that the relevant
fluctuation reads

η = x2 − 〈x2〉. (8)

We assume weak dissipation such that the bath can be
eliminated within second-order perturbation theory. This is in
accordance with our observation of predominantly coherent
time evolution; see the numerical results in Sec. IV. The
dissipative part of the master equation for the qubit density
operator ρ then reads

ρ̇ = −
∫ t

0
dt{Sηη(t,t ′)[Y,[Y (t − t ′),ρ]]

+ iAηη(t,t ′)[Y,[Y (t − t ′),ρ]+]}. (9)
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It is non-Markovian due to its explicit time dependence and
the corresponding lack of a semigroup property. The operator

Y (t) = λ‖σz + λ⊥{σx cos(εt) − σy sin(εt)} (10)

is the qubit part of the coupling in the interaction picture. Sηη

and Aηη are the real part and the imaginary part, respectively,
of the effective bath correlation function

Cηη(t,t ′) = 〈η(t)η(t ′)〉 ≡ Sηη(t,t ′) + iAηη(t,t ′), (11)

which is not time homogeneous due to the driving. The
evaluation of Sηη in the limit in which dispersive readout is
performed is a cornerstone of our analytical treatment.

Since we consider measurement schemes that rely on the
response to deterministic driving, the fluctuations are small
so we can linearize in the oscillator position fluctuation δx ≡
x − x̄(t) and work with the approximation

η(t) = 2x̄(t)δx(t). (12)

The auto correlation function of the effective bath coordinate
η then becomes

Cηη(t,t ′) = 4x̄(t)x̄(t ′) 〈δx(t)δx(t ′)〉, (13)

where the term with the angular brackets is the position-
position correlation function Cδx δx of the dissipative harmonic
oscillator. Due to the linearity of the oscillator’s equation of
motion, it is independent of the driving and, thus, stationary.

The response to the classical driving can be expressed in
terms of the oscillator Green’s function G(ω), Eq. (A3). This
yields

x̄(t) =
√

2n̄ cos(	t − φ0 − φ), (14)

where n̄ = 1
2A2|G(ω)|2 is the mean cavity photon number

and φ is the phase of the Green’s function, while φ0 is the
unknown initial phase of the driving. For a harmonic oscillator
in the weak-coupling regime, the response to the fluctuations
of the external circuitry is conveniently computed with the
help of the quantum regression theorem [32]; see Sec. A 3 in
the Appendix. For low temperatures, kBT � h̄ω0, it can be
approximated by

Sδx δx(τ ) = 1
2e−γ τ/2 cos(ω0τ ), (15)

where τ = t − t ′. Equations (14) and (15) allow us to evaluate
the correlation function (13). After performing an average over
the initial phase φ0, we obtain for its symmetric part the time
homogeneous expression

Sηη(τ ) = 2n̄e−γ τ/2 cos(	τ ) cos(ω0τ ). (16)

The phase average represents a rotating-wave approximation
and is possible since qubit decoherence and dissipation are
much slower than the coherent oscillator dynamics. The
correlation function (16) possesses four resonance peaks of
width γ at the frequencies ω = ±ω0 ± 	, where for resonant
driving, 	 = ω0, the two central peaks coincide at zero
frequency.

The peaks of the spectral density correspond to long-time
correlations of the quantum noise that may lead to non-Markov
effects. Therefore, a treatment with a fully Markovian master
equation is not appropriate [17]. We thus generalize ideas that
have been used for studying non-Markovian decoherence in
autonomous systems [33–38]. We analyze the longitudinal and
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FIG. 1. (Color online) Typical time evolution of the qubit operator
〈σx〉 (solid line) and the corresponding purity (dashed) for 	 = ω0 =
0.8ε, g1 = 0.02ε, γ = 0.02ε, and driving amplitude A = 0.06ε such
that the stationary photon number is n̄ = 4.5. (Inset) Purity decay
shown in the main panel (dashed) compared to the decay given by
Eq. (17) together with Eq. (21) (solid line).

the transverse dephasing separately by setting either g1 or g2

to zero.

C. Coherence decay for linear qubit-oscillator coupling

We assume that the qubit is initially in the state (|↑〉 + |↓〉)/√
2, i.e., in a coherent superposition of the eigenstates of the

qubit Hamiltonian (h̄ε/2)σz. The corresponding off-diagonal
elements of the density matrix in the eigenbasis then are both
1/2 and undergo an oscillatory decay, ρ↑↓ = 1

2 exp{−iεt −
�(t)}, where in the Markov limit, �(t) = �t . It is straightfor-
ward to demonstrate that then the purity P ≡ tr ρ2, being our
measure of coherence, evolves as

P (t) = 1

2
[1 + e−2�(t)] ≈ 1 − �(t). (17)

The approximation holds for short times at which the purity
still lies significantly above 1/2. A typical time evolution is
depicted in Fig. 1 below. It demonstrates that the purity decay
is indeed not necessarily a simple exponential but may have
Gaussian shape.

The still unknown function �(t) will be determined from
the master equation (9) for the density matrix element ρ↑↓ at
short times yielding for g2 = 0

�̇‖(t) = − ρ̇↑↓
ρ↑↓

≡ �‖(t) (18)

with the time-dependent decoherence rate

�‖(t) = 4λ2
‖

∫ t

0
dτ Sηη(τ ). (19)

The index ‖ refers to the longitudinal qubit-oscillator coupling
in the dispersive Hamiltonian (5). Notice that in the original
Hamiltonian (1), this coupling is transverse. In the following,
we evaluate this rate for resonant driving and weak oscillator
damping, γ � ω0 = 	.
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Inserting the effective spectral density (16) into Eq. (19)
yields

�‖(t) = 8n̄λ2
‖

γ
(1 − e−γ t/2), (20)

where we have neglected terms oscillating rapidly with
frequency 2ω0. By straightforward time integration, we obtain

�‖(t) = 8n̄λ2
‖

γ 2
(γ t + 2e−γ t/2 − 2) (21)

≈
{

2n̄λ2
‖t

2 for γ t � 1,

8n̄λ2
‖t/γ for γ t � 1.

(22)

Inserting this approximation into our ansatz for ρ↑↓ reveals that
during an initial stage, the coherence decays like a Gaussian
ρ↑↓ ∼ exp(−t2/T 2

G) with the time scale

TG = 1√
2n̄λ2

‖
. (23)

Thereafter, normal exponential decay ρ↑↓ ∼ exp(−t/TM ) sets
in, where

TM = γ

8n̄λ2
‖
. (24)

Since both approximations in Eq. (22) are never smaller than
the exact expression, we connect the two limits by choosing at
each time the smaller one, i.e.,

�‖(t) ≈ min
(
t2

/
T 2

G,t
/
TM

)
. (25)

This implies a crossover from Gaussian to Markovian decay
at time tc = 4/γ .

As criterion for “significant dephasing,” we use � > 1/4,
which means that the off-diagonal matrix element ρ↑↓ has
decayed by at least 22% . For larger values of �, the visibility of
coherent oscillations is already quite small. Therefore, the rel-
evant dephasing is Gaussian if t2

c /T 2
G > 1/4 or, equivalently,

128n̄λ2
‖ > γ 2. In the opposite case, the Gaussian stage can

be ignored and coherence fades away during time TM/4. In
combination, this yields the dephasing time

T ∗
‖ ≈

⎧⎨
⎩

TM/4 = γ

32n̄λ2
‖

for 128n̄λ2
‖ < γ 2,

TG/2 = 1√
8n̄λ2

‖
for 128n̄λ2

‖ > γ 2.
(26)

The first line holds for the Markovian behavior found for weak
coupling. Notice that λ‖ is an effective coupling constant that
becomes smaller with increasing detuning |ε − ω0|. Thus, for
small detuning (but still within the dispersive limit) and for
large photon number, we expect Gaussian decay.

At this stage, it is interesting to establish a connection to
Refs. [8,13], where the fluctuation of the cavity photon number
leads to a fluctuating qubit splitting and, thus, randomizes the
qubit phase. Then, for |λ‖| � γ and λ⊥ = 0, one finds that the
off-diagonal matrix elements of the density operator decay at
a rate �φ = 1/TM = 8λ2

‖n̄/γ [8,13], which is accordance with
our result in the Markov limit.

D. Coherence decay for quadratic qubit-oscillator coupling

For g2 �= 0, the situation becomes considerably more
complicated, because the dissipative terms in the master

equation (9) couple all density matrix elements to each other.
Therefore, one can no longer obtain a closed first-order
equation for ρ↑↓ such as Eq. (18). For this reason we attempt an
analytical solution only in the Markovian regime. In doing so,
we perform the time integral in Eq. (9) until infinity such that
we obtain a time-independent Bloch-Redfield master equation.
The decoherence rate is conveniently extracted from the
equivalent equation of motion for the Bloch vector �s = 〈�σ 〉. By
straightforward algebra the latter emerges as d�s/dt = M�s + �h
with the dynamical matrix

M =
⎛
⎝ 0 −ε 0

ε −2�⊥ 0
0 0 −2�⊥

⎞
⎠ (27)

and the decay rate

�⊥ = λ2
2Sηη(ε) = 4γ n̄λ2

⊥
γ 2 + 4ε2

. (28)

The inhomogeneity �h stems from the second line of Eq. (9)
and determines the stationary state which is not relevant in the
present context.

We proceed by computing the eigenvalues of M to lowest
order in the dissipative terms, which yields −2�⊥ and ±iε −
�⊥ [39]. The latter correspond to the decaying oscillations
of ρ↑↓, which reveals that the transverse decoherence is
determined by �⊥ = �⊥t . Thus, we obtain in the Markov
limit the time scale TM = 1/�⊥ and, thus, the dephasing time

T ∗
⊥ = 1

4�⊥
= γ 2 + 4ε2

16γ n̄λ2
⊥

. (29)

This result holds under two conditions. First, it is required
that the time integration in the master equation (9) can be
extended to infinity, which is possible if the decay time of the
effective bath correlation function (16) is much shorter than
the dephasing time, 1/γ � T ∗

⊥, which means 16n̄λ2
⊥ � γ 2 +

4ε2. Second, the qubit frequency must be within the oscillator
linewidth, i.e., ε � γ , because otherwise the oscillator would
shield the qubit from the external circuitry. Then higher-order
processes may dominate while the master equation (9) is of
only second order. The latter condition is also essential for an
application that we have had in mind, namely time-dependent
dispersive qubit readout via a high-frequency oscillator [10].

IV. NUMERICAL DETERMINATION OF
THE QUBIT DEPHASING TIME

The numerical computation of the dephasing time T ∗
from the full master equation (4) is possible only in a
restricted parameter regime for various reasons. First, at
resonant driving, the stationary state of the oscillator has
mean photon number n̄ = A2/2γ 2. The assumption of the
oscillator being in its semiclassical limit is fulfilled only for
n̄ � 1 or equivalently A � γ . Second, our considerations in
Sec. II require that the oscillator reaches its stationary state
during a time much shorter than the qubit dephasing time,
i.e., for 1/γ � T‖,T⊥. Finally, the stationary photon number
is limited by computation time, which grows with the number
of oscillator Fock states needed for numerical convergence.
While we find a good agreement of the numerical and the
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analytical results already for n̄ � 5, the natural expectation
is that the agreement even increases with the mean photon
number, because then the oscillator becomes more classical.

We start with the oscillator in the coherent state that
corresponds to the stationary classical solution in the absence
of the qubit. For the qubit itself, we use as initial state the
superposition (|↑〉 + |↓〉)/√2. The dissipative time evolution
of both the qubit and the oscillator is obtained by numerical
integration of the full master equation (4) with the original
Hamiltonian (1). Thus, we implicitly also test the validity of
the dispersive picture in the presence of a heat bath.

The central quantity of our numerical study is the time evo-
lution of the purity P (t) = tr ρ2(t) from which we determine
the dephasing time T ∗ by the criterion P (T ∗) = 1

2 (1 + e−1/2),
i.e., �(T ∗) = 1/4 as above. Moreover, we use P (t) to decide
whether decoherence decays like a simple exponential or like
a Gaussian. A formal procedure for the distinction is fitting
P (t) for short times to the ansatz P (t) = 1 − aM t − a2

Gt2. The
decay is mainly Markovian or mainly Gaussian depending on
which rate aM or aG is larger and, thus, dominates.

A. Linear qubit-oscillator coupling g1

Figure 1 depicts the time evolution of the qubit expectation
value 〈σx〉 which exhibits decaying oscillations with frequency
ε. The parameters correspond to an intermediate regime
between the Gaussian and the Markovian dynamics, as is
visible in the inset.

In Fig. 2, we compare the decay time T ∗
‖ with the analytical

result (26) for various values of the oscillator damping and
the qubit-oscillator coupling g1 as function of the oscillator
frequency. Whether Markovian or Gaussian decay dominates
is visualized by filled and stroked symbols, respectively. We
have skipped the regime very close to resonance, |λ‖| �
5|ω0 − ε|, since there the dispersive Hamiltonian (5) is not
valid and so far no dispersive readout protocol has been
proposed.
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g1 = 0.014 , γ = 0.1

g1 = 0.014 , γ = 0.01
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FIG. 2. (Color online) Dephasing time for purely linear qubit-
oscillator coupling (g2 = 0), resonant driving, 	 = ω0, and oscillator
damping, γ = 0.02ε. The amplitude A = 0.07ε corresponds to the
mean photon number n̄ = 6.125. Filled symbols and dashed lines
refer to predominantly Markovian decay, while for Gaussian decay,
stroked symbols and solid lines are used.

Our prediction for regimes with non-Markovian decay
is confirmed by the numerical solution rather well. Notice,
however, that in the crossover regime, our formal criterion for
Markovian decay provides a unique answer, even though the
respective other decay may already contribute significantly.
The agreement of the numerically found border with our
prediction corroborates as well the crossover time tc con-
jectured above. Concerning the values of T ∗

‖ , we observe a
good overall agreement with the tendency that the analytical
result slightly underestimates T ∗

‖ . In the regime of Gaussian
decay, a Markov approximation would yield a significantly
smaller coherence time. This means that, interestingly enough,
the qubit stays coherent for a longer time than is expected
from Bloch-Redfield theory. For large oscillator frequency,
ω0 � ε, also the predicted behavior T ∗

‖ ∝ λ−2
‖ ∝ |ε2 − ω2

0|2
is confirmed. This substantiates the relevance of the counter-
rotating correction to the dispersive shift [9].

B. Quadratic qubit-oscillator coupling g2

We proceed as above but consider the coupling to the
square of the oscillator coordinate in the Hamiltonian (1),
while setting g1 = 0. Even though the linear coupling g1 can
be controlled to some extent [27,28], it is probably hard to turn
it off completely. Still our choice has relevance in the limit of
large detuning in which the effective dispersive coupling λ‖
becomes rather small; see Eq. (6). Then for realistic values
of g2 for flux qubits, a protocol for recording coherent time
evolution has been proposed [10]. A necessary condition for
this is an oscillator bandwidth of the order of the qubit splitting,
such that the oscillator does not filter out the information about
the coherent qubit dynamics. Therefore, we will choose an
oscillator with the rather large frequency 	 = ω0 = 5ε and
with damping up to γ = ε.

Figure 3 shows the numerically obtained coherence
times and whether the decay is predominantly Gaussian or
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∝ g−2
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FIG. 3. (Color online) Dephasing time for purely quadratic qubit-
oscillator coupling (g1 = 0), resonant driving at large frequency, 	 =
ω0 = 5ε, and various values of the oscillator damping γ . The driving
amplitude is A = 3.5γ , such that always n̄ = 6.125. Filled symbols
mark Markovian decay, while stroked symbols refer to Gaussian
shape. The solid line depicts the value obtained for γ = ε in the
Markov limit. The corresponding numerical values are connected by
a dashed line which serves as guide to the eye.
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GEORG M. REUTHER, PETER HÄNGGI, AND SIGMUND KOHLER PHYSICAL REVIEW A 85, 062123 (2012)

Markovian. For the large oscillator damping γ = ε, the
conditions for the validity of the (Markovian) Bloch-Redfield
equation stated at the end of Sec. III D hold. Then we observe a
good agreement of the numerically obtained T ∗

⊥ and Eq. (29).
There seems a slight systematic deviation for large values of
g2. In this limit, however, the numerical results are not very
precise, because the purity falls off already during the first
few oscillation periods. This rapid decay hinders a precise
numerical determination of the dephasing rate. Thus, the
agreement is still within the numerical precision.

For small oscillator damping, γ � ε, Bloch-Redfield the-
ory is not applicable, as discussed above. Moreover, the
short time evolution of the purity is already too complex
for a comprehensive prediction of the decoherence time.
Nevertheless our numerical solution provides some hint on the
decoherence process. We find that the crossover from simple
exponential decay to decay with a Gaussian shape occurs at
smaller values of the qubit-oscillator coupling. For small g2,
the qubit stays coherent slightly longer, while for large g2,
coherence decays a bit faster as compared to the case γ = ε. In
both regimes, the γ dependence of T ∗

⊥ is weak. This disproofs
the Markovian theory for γ � ε, because the latter predicts
TM ∝ 1/γ , which stays in contrast to our numerical result.

V. DISCUSSION AND CONCLUSIONS

A qubit undergoing dispersive readout, i.e., one that is
coupled to a resonantly driven dissipative harmonic oscilla-
tor, experiences decoherence from a rather exotic effective
environment. The latter’s main properties stem from the
small oscillator linewidth, the strong driving, and a coupling
coordinate that does not commute with the qubit Hamiltonian.
Nevertheless, it has been possible to analytically obtain essen-
tial and concise information about the decoherence process.
Our approach is based on a transformation to the dispersive
frame, which turns the linear coupling into phase noise. In
doing so it is crucial to perform the transformation beyond
rotating-wave approximation, in particular, for studying the far
detuned case where the nonrotating corrections are of the same
order as the rotating-wave terms. For the subsequent analytical
treatment, we have derived the dephasing time within our
picture of an effective spectral density provided by the driven
harmonic oscillator in the semiclassical limit. At the same
time it has turned out that a peaked spectral density induces a
generally non-Markovian dissipative dynamics.

As a main finding of this work, we have pointed out
that the decoherence process happens in two stages. In
the beginning, the purity decays like a Gaussian, while,
subsequently, Markovian decay sets in. If the qubit-oscillator
coupling is strong or if the oscillator is strongly driven, the
major part of the coherence decays already during the first
stage such that the relevant dynamics possesses a Gaussian
time profile. Thus, with the trend toward ultrastrong coupling
between a qubit and a harmonic mode [21–24], Gaussian decay
should become increasingly relevant. In the opposite limit of
weak coupling, the first stage reduces the qubit coherence
only by a small amount, rendering the relevant decoherence
Markovian. The dephasing times in the two regimes exhibit
distinct parameter dependencies, which we have determined
analytically. Remarkably, in the Gaussian regime, the coher-

ence time may be significantly longer than what one would
expect from an extrapolation of the Markovian result.

For a numerical description of the dynamics, we have solved
the full Bloch-Redfield master equation for the qubit coupled
to the driven oscillator in the frame of the original Hamiltonian.
This has allowed us to obtain numerical results that are
fully independent of the analytical treatment. They have
confirmed our predictions for the partially non-Markovian
purity decay for the case of linear qubit-oscillator coupling.
For quadratic coupling, the decoherence process is more
involved. Nevertheless, it has been possible to obtain an
analytical expression for the decoherence rate in the Markovian
limit. Beyond this limit, our numerical solution indicates that
decoherence is non-Markovian provided that the oscillator
dissipation is very weak.

Finally, we are convinced that our results on the decoher-
ence induced by a resonantly driven oscillator will support the
design of future experiments with dispersive readout and its
generalizations.
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APPENDIX: THE DRIVEN DISSIPATIVE
HARMONIC OSCILLATOR

1. Markovian master equation

In the absence of the qubit and for sufficiently weak
oscillator-bath coupling, the dissipative dynamics of the oscil-
lator is well described within Bloch-Redfield theory [14,15].
Since additive driving of the form (3) does not influence the
dissipative terms [29], it is possible to use the master equation
for the undriven dissipative harmonic oscillator and to simply
add the time-dependent Hamiltonian (3), such that

ρ̇osc = −iω0[a†a,ρosc] − i

h̄
[HF (t),ρosc] − iγ

2
[x,[p,ρosc]+]

− γ

2
coth

(
h̄ω0

2kBT

)
[x,[x,ρosc]]. (A1)

2. Average position

Due to the linearity of the quantum Langevin equation for
the dissipative harmonic oscillator, its position expectation
value x̄ obeys the classical equation of motion

¨̄x + γ ˙̄x + ω2
0x̄ = ω0F (t). (A2)

The response x̄(t) to the driving is most conveniently obtained
by a time convolution with the Green’s function G(t), where

G(ω) = ω0

−ω2 − iγ ω + ω2
0

, (A3)

and the inhomogeneity F (t). For F (t) = A cos(	t − φ0), the
solution reads as

x̄(t) = |G(	)|A cos(	t − φ − φ0), (A4)
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where the phase shift φ is the argument of the Green’s function.
The corresponding semiclassical state is a coherent state with
mean photon number n̄ = 1

2A2|G(	)|2.

3. Position correlation function

In the Markovian limit for the undriven dissipative har-
monic oscillator implied in the master equation (A1) in
the absence of HF , the equilibrium position autocorrelation
function

Sδx δx(t) = 1
2 〈δ[x(t),δx(0)]+〉 (A5)

can be computed by help of the quantum regression theorem
[32]. It essentially states that Sδx δx obeys the same equation of

motion as the average position. Thus,

S̈δx δx + γ Ṡδx δx + ω2
0Sδx δx = 0. (A6)

The initial value is

Sδx δx |t=0 = 1

2
coth

(
h̄ω0

2kBT

)
, (A7)

while for symmetric ordering, its time derivative at t = 0
vanishes. Thus, we can express the solution as Fourier
integral of the Green’s function (A3) which we evaluate via
Cauchy’s theorem. In the weak damping limit considered
herein, γ �ω0, we neglect the dissipation-induced frequency
shift and continue with the approximation

Sδx δx(t) = 1

2
coth

(
h̄ω0

2kBT

)
e−γ t/2 cos(ω0t). (A8)
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