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Brownian transport in corrugated channels with inertia
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Transport of suspended Brownian particles dc driven along corrugated narrow channels is numerically
investigated in the regime of finite damping. We show that inertial corrections cannot be neglected as long
as the width of the channel bottlenecks is smaller than an appropriate particle diffusion length, which depends
on the the channel corrugation and the drive intensity. With such a diffusion length being inversely proportional
to the damping constant, transport through sufficiently narrow obstructions turns out to be always sensitive to
the viscosity of the suspension fluid. The inertia corrections to the transport quantifiers, mobility, and diffusivity
markedly differ for smoothly and sharply corrugated channels.
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I. INTRODUCTION

Brownian transport in narrow corrugated channels is a topic
of potential applications to both natural [1–3] and artificial
devices [4]. Depending on the amplitude and geometry of the
wall modulation, corrugated channels fall within two distinct
categories (see Fig. 1): (i) smoothly corrugated channels.
Also called entropic channels [5], these quasi-one-dimensional
(1D) channels were introduced first in Ref. [6] and further
investigated in Refs. [7–14], as an instance of two (2D) or
three-dimensional (3D) systems describable in terms of an
effective 1D kinetic equation. These are typically modeled
as periodic channels with axial symmetry and unit cells
delimited by bottlenecks, which are assumed to be narrow with
respect to the cell dimensions, i.e., the channel cross section
and the period; (ii) compartmentalized (or septate) channels
[15–21]. These channels are sharply corrugated channels
formed by identical compartments separated by thin dividing
walls and connected by narrow openings (pores) centered
around their axis. At variance with the case of smoothly
corrugated channels, diffusion in compartmentalized channels
cannot be reduced to an effective 1D kinetic process directed
along the axis. Accordingly, driven transport in such strongly
constrained geometries exhibits distinct features, which cannot
be reconciled with the known properties of Brownian motion
in quasi-1D systems [3,22,23].

Corrugated channels are often used to model transport of
dilute mixtures of small particles (like biomolecules, colloids,
or magnetic vortices) in confined geometries [4]. Each particle
is subjected to thermal fluctuations with temperature T and
large viscous damping constant γ and a homogeneous constant
force directed locally parallel to the channel axis. Such a dc
drive is applied from the outside by coupling the particle to
an external field (for instance, by attaching a dielectric or
magnetic dipole or a magnetic flux to the particle), without
inducing drag effects on the suspension fluid. Interparticle
and hydrodynamic interactions can thus be ignored; for a
more detailed discussion on the validity of this simplifying
assumption we refer the readers to Refs. [5,14].

In this paper we investigate the relevance of the inertia
effects due to the viscosity of the suspended particle. As is often
the case with biological and most artificial suspensions [4],

the Brownian particle dynamics in the bulk can be regarded
as overdamped. This corresponds to (i) formally setting the
mass of the particle to zero, m = 0, or, equivalently, to make
the friction strength γ tend to infinity, and (ii) assuming F

smaller than the thermal force F0 = γ
√

kT /m; for the validity
and the corrections to the Smoluchowski approximation, see
references cited in Ref. [28]. The current literature on corru-
gated channels invariably assumes such an overdamped limit.
But how large is an “infinite” γ (or how small a “zero” m)?
The answer, of course, depends on the geometry of the channel.

Our main conclusion is that the overdamped dynamics
assumption for Brownian diffusion through pores of width
� subjected to a homogeneous drive F , applies only for
γ � √

mkT /�, and γ � √
mF/� [28], irrespective of the

degree of corrugation. This means that inertial correction
cannot be neglected as long as Brownian diffusion is spatially
correlated on a length (lT = √

mkT /γ at small dc drive or
lF = mF/γ 2 at large dc drive) of the order of or larger than
the pore width �. Therefore, for sufficiently narrow pores or
sufficiently large drives, inertia always comes into play by
enhancing the blocking action of the channel bottlenecks.

This paper is organized as follows. In Sec. II we introduce
the Langevin equation formalism employed in our simulation
code. Simulation data for the particle mobility and diffusivity
are analyzed in Sec. III as functions of the drive, the channel
geometry, and the damping constant in sinusoidally corrugated
channels. We report significant deviations from the best known
overdamped regime. In Sec. IV we consider the case of
septate channels for which dependable fitting formulas could
be analytically obtained. Inertial effects in these two limiting
corrugation regimes are compared in Sec. V. Finally, in Sec. VI
we add some concluding remarks.

II. MODEL

Let us consider a point-like Brownian particle of mass m

diffusing in a 2D suspension fluid contained in a periodic
channel with unit cell xL × yL, as illustrated in Fig. 1. The
particle is subjected to a homogeneous force �F . The damped
dynamics of the particle is modeled by the 2D Langevin
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FIG. 1. (Color online) Sketch of a smoothly corrugated (a) and a
compartmentalized 2D channel (b) directed along the x axis. In both
cases the channel unit cell is xL long and yL wide; the radius of the
connecting bottlenecks or pores is �.

equation,

m
d2�r
dt2

= −γ
d�r
dt

+ �F +
√

γ kT �ξ (t), (1)

where �r = (x,y). The random forces �ξ (t) = [ξx(t),ξy(t)]
are zero-mean, white Gaussian noises with autocorrelation
functions 〈ξi(t)ξj (t ′)〉 = 2δijδ(t − t ′), with i,j = x,y. Here,
γ plays the role of an effective viscous damping constant
incorporating all additional effects that are not explicitly
accounted for in Eq. (1), like hydrodynamic drag, particle-wall
interactions, etc. We numerically integrated Eq. (1) by a
Milstein algorithm [29]. The stochastic averages reported in
the forthcoming sections were obtained as ensemble averages
over 106 trajectories with random initial conditions; transient
effects were estimated and subtracted.

As anticipated in Sec. I, we considered two categories of
periodic channels, smoothly corrugated and septate channels.
The symmetric walls of smoothly corrugated channels have
been modeled by the sinusoidal functions ±w(x), where

w(x) = 1

4

[
(yL + �) − (yL − �) cos

(
2πx

xL

)]
, (2)

[Fig. 1(a)]. The compartments of the septate channels
are rectangular and the dividing walls have zero width;
[Fig. 1(b)].

Two quantifiers have been used to best represent the
different transport properties of these two channel geometries
in the overdamped limit, γ → ∞:

(i) Mobility. The response of a Brownian particle in a
channel subjected to a dc drive, F , oriented along the axis
direction, x, is expressed by the mobility,

μ(F ) = 〈v(F )〉/F, (3)

where 〈v〉 ≡ 〈ẋ(F )〉 = limt→∞[〈x(t)〉 − x(0)]/t . In entropic
channels μ(F ) increases from a relatively small value for F =
0, μ0, up to the free-particle limit, γμ∞ = 1, for F → ∞ [11].
We recall that in a smooth channel a free particle drifts with
speed v∞ = F/γ , that is, with γμ = 1. On the contrary, in

compartmentalized channels γμ(F ) decreases monotonically
with increasing F toward a geometry-dependent asymptotic
value, γμ∞, equal to the ratio of the pore to the channel
cross-section [15], that is

γμ∞ = �/yL. (4)

(ii) Diffusivity. As a Brownian particle is driven across
a periodic array of bottlenecks or compartment pores, its
diffusivity,

D(F ) = lim
t→∞[〈x2(t)〉 − 〈x(t)〉2]/2t, (5)

picks up a distinct F dependence. In entropic channels
with smooth bottlenecks, for F → ∞ the function D(F )
approaches the free diffusion limit, D(∞) = D0, after going
through an excess diffusion peak centered around an interme-
diate (temperature-dependent [11]) value of the drive. The bulk
or free diffusivity, D0, is proportional to the temperature, D0 =
kT /mγ . Such a peak signals the depinning of the particle from
the entropic barrier array [30]. In compartmentalized channels,
instead, D(F ) exhibits a distinct quadratic dependence on
F [17,19], reminiscent of Taylor’s diffusion in hydrodynamics
[31], that is, for � � yL,

D(F )

D0
= 1

2

(
F�

kT

)2

. (6)

This observation suggests that the particle never frees itself
from the geometric constriction of the compartment pores, no
matter how strong F .

These two quantifiers of mobility and diffusivity can also be
used to assess the magnitude of the inertia effects. We remind
here that, in the absence of external drives and for any value of
the damping constant, Sutherland-Einstein relation [24–27],

γμ0 = D(0)/D0, (7)

establishes the dependence of the transport parameters on the
temperature and the channel compartment geometry under
equilibrium conditions [15].

In preparation for the quantitative analysis of our numerical
data, we remark that Eq. (1) can be conveniently rewritten in
terms of the rescaled units t → γ t/m and x/lT , with lT =√

mkT /γ . A straightforward dimensional argument shows
that, for any given channel unit cell xL × yL, both the particle
rescaled mobility, γμ [Eq. (3)], and its rescaled diffusivity,
D/D0 [Eq. (5)], are functions of the rescaled drive, F/F0, with
F0 = γ

√
kT /m, and three cell parameters, typically, the pore

width, �/lT , the pore-to-channel cross-section ratio, �/yL,
and the compartment aspect-ratio, r = xL/yL (see Table I).
Note that a simultaneous rescaling of all lengths by a factor κ

would correspond to a noise intensity rescaling, T → T/κ2.
Throughout our simulations we assumed narrow channels with
small bottlenecks, meaning that xL � yL and � � yL.

III. CORRUGATED CHANNELS

As anticipated in a preliminary report [32], inertial effects
in corrugated channels become apparent both for small γ and
for large F . Upon inspecting Fig. 2 we realize that inertia
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TABLE I. Summary of characteristic scaling parameters and their meaning.

F0 = γ

√
kT

m
Thermal force: viscous force experienced by a Brownian particle with thermal velocity vth = √

kT /m.

D0 = kT

γ
,v∞ = F

γ
Free diffusivity and velocity in bulk.

lT =
√

mkT

γ
Thermal length: distance covered by a Brownian particle diffusing with thermal velocity vth in the relaxation time, m/γ .

lF = mF

γ 2 Ballistic length: distance covered by a driven Brownian particle drifting with velocity v∞ in the relaxation time, m/γ .

γT =
√

mkT

�
Damping cut-off at the pore (zero drive): lT = �.

γF =
√

mF

�
Damping cut-off at the pore (strong drive): lF = �.

DT = kT

γT
, FT = kT

�
Scaling parameters introduced in Figs. 2–5; obtained by replacing γ with γT , respectively, in D0 and F0.

tends to suppress the particle mobility through the channel
bottlenecks. Indeed, in the underdamped limit, γ → 0, the
rescaled mobility drops to zero, no matter what F [Fig. 2(a)].
In particular, when expressing γ in units of γF = √

mF/�

[see Eq. (9) below], the mobility curves at large drives tend
to collapse on a universal curve well fitted by the power
law (γ /γF )α with α = 1.4. Correspondingly, in Fig. 2(b) the
mobility decays like F−α/2 for small F � FT .

The power law, γμ ∝ (γ /γF )α , introduced here, is only a
convenient fit of the rescaled mobility function, even if it holds
for two or more decades of γ /γF . [Note that the power law
γμ ∝ F−α/2 works throughout the entire F range explored in
Fig. 2(b).] The analytical form of that function remains to be
determined. The data reported in Fig. 2(c) clearly suggests that
the fitting exponent, α, slightly depends on �, with α → 2 in
the limit � → 0.
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FIG. 2. (Color online) Rescaled mobility, γμ, in a smoothly corrugated channel with r = xL/yL = 1, �/yL = 0.1, and (a) vs. γ /γF for
different F ; (b) vs. F/FT for different γ . The relevant scaling parameters are FT = kT /�, γT = √

mkT /� [Eq. (8)] and γF = √
mF/�

[Eq. (9)]. The dashed lines represent, respectively, the fitting power laws (γ /γF )α in (a) and (F/FT )−α/2 in (b), both with α = 1.4 (see Sec. III).
In (c) γμ is plotted vs. γ /γF (main panel) and F/F0 (inset) for γ /γT = 0.8, F/FT = 125, and different cross-section ratios, �/yL. The
corresponding fitting exponents α are also reported in the legend. In the inset, F is expressed in units of F0 instead of FT for graphical reasons.
The dependence of γμ on the geometry of the channel unit cell for low damping and small drives is illustrated in (d), where γμ is plotted vs.
rγ /γT . The predicted linear law with slope π/4 [32] is represented by a dotted line [see also Eq. (12) and text following].
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FIG. 3. (Color online) Rescaled diffusivity, D/D0, vs. F/F0

(main panel) and D/D0 vs. F/FT (inset) in the corrugated channel
of Eq. (2) with r = 1, �/yL = 0.1, and different γ . The scaling
parameters introduced here are DT = kT /γT and F0 = γ

√
kT /m.

The solid line in the inset is the heuristic power law of Eq. (17).

The dependence of the rescaled mobility on the system
parameters in the underdamped limit is further illustrated
in Fig. 2(d), where at low γ and for vanishingly small
drives, the mobility grows proportional to the aspect ratio
r = xL/yL of the channel unit cell and the pore cross
section �.

Deviations from the expected overdamped behavior are the
more prominent in the diffusivity data. As shown in Fig. 3, at
large γ the curves D(F ) approach the horizontal asymptote
D(F ) = D0, as expected [11]. However, beyond a certain
value of F , seemingly proportional to γ 2 (inset), these curves
abruptly part from their horizontal asymptote with a sort of
cusp. In the underdamped limit, the F dependence of the
diffusivity bears no resemblance with the typical overdamped
behavior. At low γ , all D(F ) data sets collapse on a unique
curve [Fig. 3, inset], which tends to a value smaller than D0 for
F → 0, and diverges for F → ∞, like F β with β  1. Such
power law holds for large γ , as well, though for sufficiently
large F only. Indeed, for exceedingly large F , all D(F ) curves
seem to eventually approach a unique asymptote, irrespective
of γ .

By comparing the plots of Figs. 2 and 3 we conjecture that
corrections due to inertia become significant in two regimes,
namely:

(i) at low drives, under the condition

γ � γT =
√

mkT /�. (8)

This characteristic damping was used to rescale the mobility
data in Fig. 1 [see also Fig. 2(b), inset]; moreover, in Fig. 3,
for γ < γT the diffusivity becomes a monotonic function of

F with no plateau around D0. The physical meaning of γT is
simple. For γ < γT , the thermal length lT = √

mkT /γ grows
larger than the width of the pores, �, so that the Brownian
particle cannot reach the normal diffusion regime, implicit in
the Sutherland-Einstein relation, before bouncing off the pore
walls. As a consequence, the Smoluchowski approximation
fails in the vicinity of the bottlenecks.

Replacing γ with γT in the bulk quantities D0 and F0 yields,
respectively, DT = kT /γT and FT = kT /�. These are the
γ -independent rescaling factors introduced in Figs. 2 and 3 to
characterize the inertia effects of the pore constrictions;

(ii) at high drives for

γ � γF =
√

mF/�. (9)

As pointed out in Ref. [19], the large drive regime sets on
when the length scale of the longitudinal particle distribution
grows smaller than the pore size, namely for F � FT . In the
presence a strong dc drive, the condition γ � γT does not
ensure normal diffusion: the additional condition that � � lF
is required. Here, lF = mF/γ 2 represents the ballistic length
of a driven-damped particle, that is an estimate of the bouncing
amplitude of a driven particle against the bottleneck. Upon
increasing F at constant γ , lF eventually grows larger than
� and inertia comes into play. This mechanism is clearly
responsible for the abrupt increasing branches of D(F ) in
Fig. 3. A synoptic comparison of all characteristic scaling
parameters of the system is displayed in Table I.

In conclusion, low and large drive limits are quantitatively
defined as F � FT and F � FT , respectively. As γF was
introduced to characterize the large drive (ballistic) regime,
clearly γF > γT . This means that applying a large external
drive makes the effects of inertia all the stronger. On the other
hand, if we decrease �, while keeping F constant, inertia
effects are controlled by γT rather than by γF , as eventually
γT > γF . The smooth crossover between these two regimes is
responsible for the weak � dependence of the fitting exponent
α in Fig. 2.

An analytical derivation of the transport quantifiers in the
presence of strong inertial effects (low γ and/or large F )
proved a difficult task. This is the case, for instance, of the
universal mobility curve in the inset of Fig. 2(a). To gain a
deeper insight on this and related issues we address next the
particular case of a rectangular compartmentalized channel.

IV. SEPTATE CHANNELS

The role of inertia in compartmentalized channels is
illustrated by the plots of Fig. 4. In Fig. 4(a) the rescaled
mobility curve γμ(F ) at low damping exhibits a horizontal
asymptote for F → ∞. However, in comparison with the
overdamped case reported in Sec. II, such an asymptote
is proportional to � only for relatively narrow pores (see
also inset) and is strongly suppressed with decreasing γ .
The dependence of the mobility on the damping constant is
better illustrated in Fig 4(b), where γμ linearly increases
with γ before reaching the limit predicted in the overdamped
regime [15,17–19]. Similar behaviors were observed both at
low (inset) and large drives (main panel). For large drives
the rescaled mobility actually converges toward the estimate
γμ|∞ of Eq. (4).
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FIG. 4. (Color online) Transport in a compartmentalized channel
with r = xL/yL = 1: rescaled mobility, γμ, vs. F/F0 (a) and vs.
γ /γT (b); diffusivity, D/D0, vs. F/FT (c). The remaining simu-
lation parameters are reported in the legends. The relevant scaling
parameters are F0 = γ

√
kT /m, FT = kT /�, and γT = √

mkT /�.
Inset of (a): γμ vs. F/FT for different r and �/yL. Inset of
(b): γμ vs. γ /γT for different �/yL and r . Inset of (c): D/D0

vs. �/yL for F/FT = 2 · 103. The dotted curves represent the
approximate analytical expressions of Eqs. (11) and (15), respectively,
for the mobility in (b) and the diffusivity in (c) (main panel and
insets). In (b) the quantity γμ|∞ was estimated from the horizontal
asymptotes. Note that γμ∞ (see Sec. II) is known to be proportional
to � for F → ∞ [horizontal arrows, Eq. (4)] and to | ln �|
for F → 0 [19].

The dependence of the rescaled mobility on the compart-
ment geometry is further illustrated in the inset of Fig. 4(b): in
the zero drive limit and for low γ , the mobility is proportional
to the aspect ratio r = xL/yL and the pore size, �, as already
reported for the corrugated channels of Fig. 2(d).

Contrary to the smoothly corrugated channels of Sec. III,
the drive dependence of the diffusivity is apparently not
much affected by inertia. As shown in Fig. 4(c), the curves
D(F ) keep diverging quadratically with F , irrespective of
the compartment size and the damping constant, like in the
overdamped limit. In the notation introduced above for the
corrugated channel, D(F ) scales like F β but, contrary to Fig. 3,
here β = 2. The power law dependence of D(F ) on the pore
size and the channel width is displayed in the insets of Fig. 4(c).

Although of lesser applicability, septate channels have a
practical advantage over smoothly corrugated channels, as they
are characterized by well distinct time scales, which often
allow convenient analytical approximations. The problem
under study is no exception.

Let us consider first the rescaled mobility at large drives,
F � FT . As anticipated in Secs. I and III, two time scales
control the particle current through the channel: (i) the bulk
relaxation time, m/γ , and (ii) the ballistic time across the pore,
m/γT . The latter is a measure of transient effects that may be
detected only at the shortest distances; here, the pore width.
To bridge the above time scales we introduce the effective
relaxation time τeff = m/γeff , where the effective damping
constant is defined as

γeff = γ (1 + γT /γ ). (10)

Correspondingly, the rescaled mobility function can be ap-
proximated to

γμ = γμ|∞
1 + γT /γ

, (11)

where γμ|∞ denotes the rescaled mobility in the overdamped
limit, γ → ∞. Despite its being a simple interpolating
formula, Eq. (11) fits quite closely the simulation curves of
Figs. 4(a) and 4(b) for large drives (main panel). Note that the
horizontal asymptotes for large γ coincide with the expected
values of γμ|∞, whose dependence on the compartment
geometry, noise, and drive intensity is analytically known
[17–20].

Let us consider next the rescaled mobility at low drives,
F � FT . For F = 0 the transport quantifiers γμ0 and D(0)
can be formally expressed in terms of the mean exit time, τ̄e,
of the Brownian particle out of a single compartment, namely,
D(0) = x2

L/4τ̄e and μ0 = D(0)/kT ; see Eq. (7). An analytical
expression for τ̄e as a function of the compartment geometry
is only available in the overdamped dynamics approximation
[33]. In the absence of a fully analytical treatment, we interpret
the numerical results shown in the inset of Fig. 4(b) by
assuming a 1D collisional dynamics along the x axis. At
very low damping and F = 0, the particle bounces off the
same compartment wall with rate 2vth/xL (attack frequency),
but only a fraction �/yL of such collisions leads to a pore
crossing. As a consequence, τ̄e ∼ xLyL/2�

√
kT /m and

γμ0 ∼ γ xL

2
√

mkT

�

yL

= r

2

γ

γT

, (12)
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which agrees with the linear fit in the inset of Fig. 4(b).
Note that such a qualitative argument applies to the weakly
corrugated channels of Fig. 2(c), as well. In that case, however,
vth must be replaced by (2/π )vth, to account for an almost
isotropic 2D distribution of the ballistic trajectories inside
the compartment; correspondingly, the factor 1/2 on the
right-hand side of Eq. (12) should be changed to π/4; see
Fig. 2(d).

The scaling law of the diffusivity at large drives, D(F ) ∝
F β with β = 2, can be quantitatively determined by general-
izing an argument originally introduced for the overdamped
regime [19]. For large F , the instantaneous particle velocity,
v(t) ≡ ẋ(t), switches between a locked mode with v0 = 0, as
it sticks against a compartment wall, and a running mode with
v∞ = F/γ , as it runs along the central lane of the channel. In
view of Eq. (4), it is clear that the particle spends a fraction of
the time (1 − �/yL) in the locked mode, and the remaining
time (�/yL) in the running mode. The random variable v(t)
can thus be modeled as a dichotomic process with subtracted
autocorrelation function [34]

C(t) ≡ lim
s→∞[〈v(t + s)〉 − 〈v〉][〈v(s)〉 − 〈v〉]

= (v∞ − v0)2 τ̄0τ̄∞
τ̄ 2

exp

(
− τ̄ t

τ̄0τ̄∞

)
,

where τ̄0 = (1 − �/yL)τ̄ and τ̄∞ = (�/yL)τ̄ are the average
permanence times, respectively, in the locked and running
mode; their sum, τ̄ , is the relaxation time constant of
the dichotomic process, still to be determined. The spatial
diffusivity D(F ) can be obtained by integrating C(t) over time
and then making use of the explicit expressions for v0, v∞, τ̄0,
and τ̄∞, namely

D(F ) =
∫ ∞

0
C(t)dt =

(
F

γ

)2[
�

yL

(
1 − �

yL

)]2

τ̄ . (13)

To determine the unknown time constant τ̄ = (yL/�)τ̄∞, we
notice that a particle remains in the running mode for a time
τ̄∞ of the order of the time it takes to diffuse out of the central
channel lane, namely, for low damping,

2D0τ∞ = 1
4 [(yL + �)2 − (yL − �)2]. (14)

By inserting the analytical expression for τ∞ thus derived into
Eq. (13) and taking for simplicity the limit of narrow pores,
� � yL, one arrives at

D(F )

D0
= �

2yL

(
F

FT

)2

. (15)

This expression is independent of γ and well reproduces all
simulation data of Fig. 4(b) at large F or, more precisely, under
the condition that γ � γF .

On comparing the asymptotic laws for the diffusivity at
γ → 0 [Eq. (15)] and at γ → ∞ [Eq. (6)], one would expect
D(γ → 0)/D(γ → ∞) = �/yL. On the contrary, in Fig. 4(c)
we immediately notice that all D(F ) curves approach the
same asymptotic scaling law [Eq. (6)]. As discussed for
the corrugated channels, the overdamped diffusion scaling
law [Eq. (15)] holds only under the condition that γ �
γF . Correspondingly, here as well, increasing F such that

F > γ 2�/m, or lF � �, makes inertia effects on confined
diffusion emerge (though in a less dramatic way).

V. DISCUSSION

The comparison between transport properties in smoothly
and sharply corrugated channels is suggestive of the role
played by the channels profile in the presence of inertia. In
principle, both channel geometries of Secs. III and IV could
be reproduced by means of one parametric profile function,
say,

wη(x) = 1

2

[
� + (yL − �) sinη

(
πx

xL

)]
, (16)

with tunable exponent η [35]. This function coincides with
w(x) [Eq. (2)] for η = 2 and approaches a rectangular com-
partment xL × yL for η → 0. The divide between smoothly
and sharply corrugated channels can be set at η = 1, where
the two sides of the bottleneck profile change from concave,
for η > 1, to convex, for η < 1. Such change in the pore
geometry affects, for instance, the drive dependence of the
rescaled mobility at low damping (Fig. 5). All curves γμ(F )
with η > 1 decay with the same approximate power law as
reported in Fig. 2(b) for η = 2. For η < 1, instead, the behavior
of γμ(F ) is as in Fig. 2(b) (sinusoidally corrugated channel),
at low F , and in Fig. 4(a) (septate channel), at large F . Without
further analyzing the η dependence of the transport quantifiers,
we now discuss certain differences and similarities between
sinusoidal and septate channels.

In both types of channels, the diffusivity grows asymptot-
ically with the drive according to a power law, D(F ) ∝ F β ,
where β = 2 for septate channels and β = 1 for sinusoidal
channels. For smoothly corrugated channels this result may
come as a surprise, since, for large damping, the diffusivity is
known to approach its bulk value, D(F → ∞) = D(0). The
asymptotic power law with β = 1 illustrated in the inset of
Fig. 3 results from the enhanced trapping effect due to the
underdamped particle bouncing back and forth against the
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FIG. 5. (Color online) Channel with tunable corrugation
[Eq. (16)]: rescaled mobility, γμ vs. F/FT for different η. Other
simulation parameters: r = 1, �/yL = 0.1, and γ /γT = 0.8. The
dashed line is the power law (F/FT )−α/2 with α = 1.4 drawn in
Fig. 2(b) for η = 2.
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compartment walls. A simple qualitative argument yields [32]

D(F )

DT

∼ π

8

xLF

kT
= r

π

8

yL

�

F

FT

, (17)

in rather good agreement with our simulation data (see inset of
Fig. 3). Note that, lowering the temperature, for small damping
D(F ) diverges like T −1/2, which means that diffusion is the
result of chaotic ballistic collisions.

Inertia corrections to the drive dependence of the diffusivity
are not as dramatic in septate channels [Fig. 4(c)] as they
appear in corrugated channels (Fig. 3). This explains why
the role of the threshold γF [Eq. (9)] is less prominent for
sharply corrugated channels. On a closer look, however, one
notices that, on increasing γ , the data points for D(F )/D0

approach the predicted oblique asymptote of Eq. (15) at larger
and larger F , consistently with the large-drive inertial regime
γ � γF .

Finally, we notice that septate and sinusoidally corrugated
channels also differ in the large-drive behavior of their mobil-
ities at low damping. While in septate channels γμ(F → ∞)
was shown to approach a small but finite value, γμ|∞(γ /γT )
[Eq. (11)], the mobility in sinusoidal channels was numerically
fitted by the scaling law γμ(F → ∞) ∼ (γ /γF )α , where α is
an increasing function of � with α(� → 0) = 2 [Fig. 2(c)].
This means that in sinusoidal channels, 〈v(F )〉 [and not
γμ(F )] tends to a finite asymptotic value. By definition,
the rescaled mobility can be written as γμ ∼ (xL/τ̄d )(γ /F ),
where τ̄d denotes the mean drift time of a particle across a
compartment in the presence of a strong drive. Accordingly,
as α → 2, the drift time τ̄d becomes insensitive to the (large)
drive, which hints at an emerging ballistic dynamics [36].
We also remark that the above scaling law for γμ(F → ∞)
applies to all pore geometries with η � 1 [35] (Fig. 5); for
septate channels, η → 0, such a scaling law, with 1 < α < 2,
closely reproduces the decaying branch of the mobility curves
displayed in Fig. 4(a).

VI. CONCLUSIONS

The main result of this work is that for real physical
suspensions flowing through confined geometries, both in
biological and artificial systems, pore crossings grow in-
creasingly sensitive to the suspension fluid viscosity with
decreasing the pore radius. With respect to previous attempts
at incorporating finite-mass effects in the analysis of Brownian
transport through corrugated narrow channels [37–39], we
stress that the inertial effects reported here are not of mere
academic interest [32].

Inertial effects can be directly observed, for instance,
in a dilute solution of colloidal particles driven across a
porous membrane or an artificial sieve [40,41]. On the other
hand, channel profiles at the micro- and nanoscales can be
tailored as most convenient [42]. As detailed in Ref. [32], the
experimental demonstration of inertial effects on Brownian
transport through narrow pores is to become accessible when
manipulating artificial particles of micrometric size by means
of well-established experimental techniques [43–46]. For
nanoparticles, like biological molecules, detecting such effects
will require more refined experimental setups.
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