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Geometric magnetism in open quantum systems
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An isolated classical chaotic system, when driven by the slow change in several parameters, responds with
two reaction forces: geometric friction and geometric magnetism. By using the theory of quantum fluctuation
relations, we show that this holds true also for open quantum systems and provide explicit expressions for those
forces in this case. This extends the concept of Berry curvature to the realm of open quantum systems. We
illustrate our findings by calculating the geometric magnetism of a damped charged quantum harmonic oscillator
transported along a path in physical space in the presence of a magnetic field and a thermal environment. We find
that, in this case, the geometric magnetism is unaffected by the presence of the heat bath.
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I. INTRODUCTION

According to the adiabatic theorem, when a thermally
isolated quantum system is subjected to an adiabatic cyclical
driving, it returns to the same state where it started from [1].
The only effect of the excursion is that the state acquires a
phase. In 1984, Berry clarified that such a phase consists of
a gauge-dependent (hence, nonphysical) part and a gauge-
independent (hence, physical and measurable) part, which is
determined only by the geometry of the path described by the
driving parameters [2]. This is, by now, customarily called
Berry’s phase. Soon later, Hannay [3] and Berry [4] found the
analogous classical phenomenon: When a classical integrable
system undergoes an adiabatic cyclic evolution, the action
variable remains constant, but the angle variable experiences
an anholonomy effect, that is, it does not return to its original
value but accumulates a shift, known as the Hannay angle.
More recently, Robbins and Berry [5] addressed the question
of whether there existed a geometric phase also in the case
of classical chaotic systems. Their approach was based on
the observation that the Berry phase is given by the flux of
a two form (Berry’s curvature) through a surface bounded
by the cyclic path in the parameter space. Therefore, they
investigated the classical limit of the quantum two form and
found the expression [5],

Bc = 1

2ω(E)

∂

∂E

[
ω(E)

∫ ∞

0
dt〈∇Ht=0 × ∇Ht 〉E

]
, (1)

where ∇Ht is the gradient in the parameter space of the Hamil-
tonian evaluated at time t (i.e., the instantaneous negative
force exerted by the external driving), × denotes the cross
product, 〈· · · 〉E denotes the microcanonical average at energy
E, and ω(E) is the corresponding density of states. Later,
Jarzynski [6] showed that the surface integral of the classical
chaotic two-form (1) measures a shift accumulated along the
chaotic trajectory on the constant energy hypersurface, which
generalizes the concept of Hannay’s angle. In a subsequent
paper, Berry and Robbins [7] re-derived Eq. (1) adopting a
statistical mechanical approach. They considered an initially
microcanonically distributed ensemble and focused on the
average force with which the system reacts to the external
driving F = −〈∇H 〉E up to first order in the driving speed.
They showed that the reaction force contains two terms: a

frictionlike force and a Lorentz-like force. The latter stems
from a magneticlike field, the so-called geometric magnetism,
which is nothing but the classical chaotic two form detailed
in Eq. (1). The approach developed in Ref. [7] is similar to
Kubo’s linear-response theory [8]. The main differences are
as follows: (i) In Kubo’s theory, the initial state is canonical,
whereas, in Berry and Robbins’ theory it is microcanonical;
(ii) Kubo’s theory gives the response of a driven system
to a weak perturbation and gives, accordingly, a linear
relationship between the response and the strength of the
driving. The theory of Berry and Robbins, instead, yields
the response of a driven system to a slow perturbation and
gives, accordingly, a linear relationship between the response
and the speed of the driving. We might label Berry and Rob-
bins theory [7] a microcanonical adiabatic linear-response
theory.

In recent years, yet further attempts have been devoted to
investigate possible generalizations of Berry’s phase. It has
been realized that geometric phases can be used as effective
and reliable tools for quantum computation [9,10]. Thus, the
study of geometric phases in realistic open quantum systems
has become of paramount importance. This problem has been
typically addressed from a dynamics point of view, that is,
one researches proper definitions of phases with respect to
nonunitary dynamics [11–21] (which are the relevant ones
for open systems), instead of the unitary dynamics originally
considered by Berry.

The problem of finding the geometric phase of an open
quantum system is addressed here by adopting a statistical
mechanical method akin to the one employed by Berry
and Robbins [7]. Below, we develop a canonical adiabatic
linear-response theory for open quantum systems. As the
main result, we obtain the general expression of the field of
geometric magnetism of open quantum systems, see Eq. (21)
below. The geometric phase is given by its surface integral in
analogy with the standard case. In developing the theory, we
take full advantage from the theory of quantum work fluctu-
ation relations [22,23], which can be formulated within two
complementary viewpoints: exclusive and inclusive [24,25].
The former is best suited to derive Kubo’s linear-response
theory [26,27], the latter, as we see below, is best suited
to derive the searched canonical adiabatic linear-response
theory.
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II. ADIABATIC LINEAR RESPONSE OF OPEN
QUANTUM SYSTEMS

We consider a driven open quantum system in contact with
a thermal bath at fixed temperature T = 1/(kBβ). Following
the established procedure [28,29], we, hence, close the system
by coupling it to a thermal bath. The total (system + bath)
Hamiltonian reads

H(Rt ) = HB + HSB + H (Rt ), (2)

where HB is the bath Hamiltonian, HSB is the (possibly strong)
system-bath coupling, and H (Rt ) is the system Hamiltonian,

H (Rt ) = H0 − Rt ·Q. (3)

Here, t is time, Rt = (R1
t , . . . ,R

N
t ) denotes a set of time-

dependent external parameters, (the generalized displace-
ments) Q = (Q1, . . . ,QN ) is the set of conjugated system
observables (the generalized forces), and “·” denotes the scalar
product. We assume that the bath is ideal, meaning that it is
has infinite heat capacity C and, accordingly, cannot change
its temperature T upon injection of finite amounts of energy.
For convenience, we introduce the notations,

�
eq
R = e−βH(R)/ZR, ZR = Tr e−βH(R) (4)

to denote the Gibbs equilibrium of the total system at fixed
parameters R and the corresponding partition function (Tr is
the trace over the total system). We assume that, at t = 0, the
total system is in the equilibrium �

eq
R0

. We next consider some
system observable O and ask how its expectation value at time
t = τ ,

〈Oτ 〉 .= Tr �
eq
R0

Oτ = Tr �τO (5)

deviates from its equilibrium expectation value,

〈O〉eq
Rτ

.= Tr �
eq
Rτ

O. (6)

Here, Oτ denotes the Heisenberg picture Ot = U
†
t0OUt0, �t is

the total system density matrix at time t : �t = Ut0�
eq
R0

U
†
t0 , and

Uτ t denotes the quantum time-evolution operator from time t

to time τ , generated by the total Hamiltonian H(Rt ).
Using the cyclic property of the trace operator, and the prop-

erty U
†
τ tUτ t = 1, one can prove the following nonequilibrium

identity:

〈Oτ e
−βHτ (Rτ )eβH(R0)〉eq

R0
= e−β �F 〈O〉eq

Rτ
, (7)

where �F = −β−1 ln(ZRτ
/ZR0 ) is the difference in free

energy of the total system states �
eq
Rτ

and �
eq
R0

. For O = 1,
Eq. (7) reproduces the quantum Jarzynski equality [22,30].
Equation (7) may be obtained from the nonequilibrium
generating functional of Andrieux and Gaspard [27] by
means of functional differentiation. Note that the free-energy
difference can be written in the following form [31]: �F =
− ∫ Rτ

R0
dR · 〈Q〉eq

R = − ∫ τ

0 dt Ṙt · 〈Q〉eq
Rt

. Using the notations,

W = Hτ (Rτ ) − H(R0) = −
∫ τ

0
dt Ṙt · Qt , (8)

Wdis = W − �F = −
∫ τ

0
dt Ṙt · [

Qt − 〈Q〉eq
Rt

]
, (9)

Eq. (7) reads

〈Oτ e
−βHτ (Rτ )eβ[Hτ (Rτ )−Wdis]〉eq

R0
= 〈O〉eq

Rτ
. (10)

The operators W and Wdis do not correspond to any quantum-
mechanical observable [22,30], but approach—in the classical
limit—the exclusive work w and dissipated work w − �F ,
respectively [25]. Under our assumptions that the bath has
infinite heat capacity, the nonequilibrium expectation (5) of
Wdis vanishes in the adiabatic limit (for a discussion of the
scaling of Wdis with the bath size in a classical setup, see
Ref. [32]). Since the expectation of Wdis is given by the
Kullback-Leibler relative entropy between �τ and �

eq
Rτ

[33–36],
this also means that, in the adiabatic limit, �τ → �

eq
Rτ

. As the
driving speed increases, the actual state �τ lags more and more
behind the “reference” equilibrium state �

eq
Rτ

[32].
In the following, we consider slow (quasiadiabatic) driving

and accordingly expand Eq. (10) to first order in Wdis

(here, slow means that the characteristic time of variation in
the driving is small compared to the characteristic time of
relaxation to the Gibbs equilibrium). Following the method
outlined in Ref. [27], we use the operator expansion,

eβAe−β(A−ε) = 1 +
∫ β

0
du euAεe−uA + O(ε2). (11)

Setting A = −Hτ (Rτ ) and ε = −Wdis, we arrive, up to first
order in Wdis, at the result,

〈�Oτ 〉 .= 〈Oτ 〉 − 〈O〉eq
Rτ

= −
∫ τ

0
dt

∫ β

0
du〈Oτ e

−uHτ (Rτ )�Qte
uHτ (Rτ ) · Ṙt 〉eq

R0
.

(12)

Using the cyclic property of the trace operator and unitarity
U

†
τ tUτ t = 1, we rewrite the integrand in Eq. (12) as

Tr �τOUτ0e
−uH(Rτ )Uτ t�Q U

†
τ te

uH(Rτ )U
†
τ0 · Ṙt . (13)

Since this expression is already of first order in Wdis, we
can replace the exact density matrix �τ with the approximate
equilibrium density matrix �

eq
Rτ

. The next crucial assumption
is that the correlation function in Eq. (12) decays quickly
compared to the time scale of variation in Rt , which, in fact,
was assumed to be very large. Under this assumption, one can
approximate the exact time-evolution operator Uτ t with the
time evolution at frozen R = Rτ : Uτ t � e−iH(Rτ )(t−τ )/h̄, can
replace Rt by Rτ , to arrive at

〈�Oτ 〉 = −
∑

i

∫ τ

0
dt 	

Rτ

i,O(t − τ )Ṙi
τ , (14)

	
Rτ

i,O(t)
.=

∫ β

0
du

〈
�O−ih̄u�Qi

t

〉eq
Rτ

. (15)

Note that 	
Rτ

i,O(t) is the quantum equilibrium correlation
function between O and �Qi (i.e., the relaxation function [8])
calculated with respect to the equilibrium state and propagator
at fixed R = Rτ .

III. GEOMETRIC FRICTION AND GEOMETRIC
MAGNETISM

The theory applies regardless of the number N of driving
parameters. Geometric magnetism only appears in the case
where there are at least N � 2 driving parameters.
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Choosing O as the ith component of the force Qi , Eq. (12)
becomes, using vector notation,

〈�Qτ 〉 = −K(Rτ )Ṙτ , (16)

where K(Rτ ) is the N × N conductance matrix whose ele-
ments are the integrated force-force equilibrium correlation
functions,

Kjk(Rτ ) =
∫ τ

0
dt

∫ β

0
du

〈
�Q

j

−ih̄u�Qk
t−τ

〉eq
Rτ

(17)

=
∫ τ

0
dt

(∫ β

0
du

〈
Q

j

−ih̄uQ
k
t−τ

〉eq
Rτ

− 〈Qj 〉eq
Rτ

〈Qk〉eq
Rτ

)
.

(18)

Note that the right-hand sides of Eqs. (14) and (16) are
geometric, i.e., they depend on time only through the time-
dependent parameters Rτ . Following Berry and Robbins [7],
we assume, for simplicity, a parameter space of dimension
N = 3 and rewrite Eq. (16) in vector notation as

〈�Qτ 〉 = −KS(Rτ )Ṙτ − B(Rτ ) × Ṙτ . (19)

The first term, stemming from the symmetric part KS of the
conductance matrix K, is geometric friction, and the second
term, stemming from the antisymmetric part KA of the conduc-
tance matrix is geometric magnetism. The field of geometric
magnetism B has components Bi = −1

2

∑
jk εijkK

jk [εijk is
the Levi-Civita tensor] and reads, in vector notation,

B(Rτ ) = −1

2

∫ τ

0
dt

∫ β

0
du〈Q−ih̄u × Qt−τ 〉eq

Rτ
. (20)

The theory may be generalized to account for general
nonlinear driving, i.e., for system Hamiltonians H (Rt ) not
necessarily of the form in Eq. (3). In the general case, the
operator W reads [24]: W = ∫ τ

0 dt Ṙt · ∇Ht (Rt ). Accordingly,
the general theory is obtained by replacing Q everywhere with
∇H . The main result, therefore, is that the field of geometric
magnetism emerges as

B(R) = 1

2

∫ ∞

0
dt

∫ β

0
du〈∇H−ih̄u × ∇Ht 〉eq

R , (21)

where, for simplicity, we have changed the integration domain
from [0,τ ] to (−∞,0], we have used the fact that the
antisymmetric part of the relaxation function is odd under
t → −t [8] to express the result as an integral from 0 to ∞,
and we have dropped the time label τ = 0 in R. Equation (21)
is the open quantum system version of Berry and Robbins’
expression (1) for the geometric magnetism of an isolated
classical chaotic system.

It is worthwhile to reexpress Eq. (21) in terms of the
symmetrized force autocorrelation function,

� R
jk(t) = 1

2 〈{∂kH,∂jHt }〉eq
R , (22)

where {·,·} denotes the quantum anticommutator and ∂j =
∂/∂Rj . To this end, we rewrite it in tensor notation as

Bi(R) = −1

2

∑
jk

εijk

∫ ∞

0
dt 	R

jk(t), (23)

where 	R
jk(t) is the relaxation function between ∂jH and ∂kH ,

see Eq. (15). According to the fluctuation-dissipation theorem
[8],

	R
jk(t) =

∫ ∞

−∞
dt ′�(t − t ′)� R

jk(t ′), (24)

�(t) = 2

h̄π
ln

[
coth

(
π |t |
2βh̄

)]
, (25)

hence,

Bi(R) = −1

2

∑
jk

εijk

∫ ∞

0
dt

∫ +∞

−∞
dt ′�(t − t ′)� R

jk(t ′), (26)

or, in vector notation,

B(R) = 1

4

∫ ∞

0
dt

∫ +∞

−∞
dt ′�(t − t ′)

×〈∇H × ∇H t ′ − ∇H t ′ × ∇H 〉eq
R . (27)

Equation (23) can be rewritten in a remarkably simple form

Bi(R) = −1

2

∑
jk

εijk	̃
R
jk(0), (28)

where the symbol 	̃R
jk(s) = ∫ ∞

0 dt e−st	R
jk(t) denotes the

Laplace transform of 	R
jk(t).

A. Classical limit

Equation (16) also holds true classically. The derivation
can be repeated following the quantum derivation given
above, allowing observables to commute. As a result, the
quantum thermal correlation functions have to be replaced
by the classical expressions [8] so that the classical geometric
magnetism reads

Bcl(R) = β

2

∫ ∞

0
dt〈∇H × ∇Ht 〉eq

R . (29)

This result may also be obtained by taking the limit h̄ → 0
of Eq. (21). Alternatively, one can take the limit h̄ → 0 of
Eq. (27). In this limit, �(t) → βδ(t) [8], where δ denotes
Dirac’s δ function and observables commute ∇H t ′ × ∇H →
−∇H × ∇H t ′ .

IV. OPEN SYSTEM DYNAMICS

The geometric magnetism (and the geometric friction) may
be recast in the more familiar language of dissipative open
system dynamics [37,38] in terms of the system reduced density
matrix,

ρS
τ = TrBρτ , (30)

where TrB denotes the trace over the bath Hilbert space. The
linear response of the force, which defines the conductance
matrix K (hence, the geometric friction and the geometric
magnetism), may be written as

〈� Qτ 〉 = Tr ρτ Q − Tr ρ
eq
Rτ

Q

= TrSρ
S
τ Q − 〈 Q〉eq,S

Rτ
, (31)

where TrS denotes the trace over the system-S Hilbert space
and 〈·〉eq,S

R denotes expectation over the equilibrium reduced
density matrix [39],

ρ
eq,S

R = TrBe−βH(R)/ZR = e−βH ∗(R)/ZR, (32)
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where H ∗(R) is the Hamiltonian of mean force and ZR =
TrSe−βH ∗(R) is the partition function of an open quantum sys-
tem [29,37–39]. In the case of weak coupling, the Hamiltonian
of mean force reduces to the system Hamiltonian HS .

The element Kjk of the conductance matrix may be
experimentally or numerically obtained by driving the system
with a small constant velocity in the ĵ direction Vj ĵ and
measuring or computing the reaction force in the k direction,

Kjk(Rτ ) = −[
TrSρ

S,j
τ Qk − 〈Qk〉eq,S

Rτ

]
/Vj , (33)

where we have introduced the notation ρ
S,j
τ to denote the

reduced density matrix resulting from the perturbation Vj ĵ .
Accordingly, the geometric magnetism may be expressed in
terms of the reduced density matrix,

Bi(Rτ ) = 1

2

∑
jk

εijk

[
TrSρ

S,j
τ Qk − 〈Qk〉eq,S

Rτ

]
/Vj . (34)

As illustrated above, the geometric magnetism may be
accessed also by calculating the equilibrium force autocor-
relation function. Although quantum correlation functions
cannot, in general, be expressed as expectations over the
reduced density matrix, they are open quantum system objects
that depend explicitly on bath properties, notably the bath
spectral density, see Eq. (39) below. In particular, it should be
noted that exact open quantum system dynamics generally is
(i) neither linear [40] (ii) nor can it be described by trace
preserving completely positive maps [41,42]. Attempts to
resort to approximations (e.g., Markov and rotating wave)
to express the correlation functions in terms of Markovian
dynamics for the system observables, may lead to results which
contradict basic principles, such as the fluctuation-dissipation
theorem [43] and, therefore, to non-negligible errors in the
evaluation of geometric friction and magnetism. See Ref. [44]
for a recent example of the drastic effects that even good
approximations may have on the calculation of geometric
phases. Therefore, very special care must be paid when
employing such approximations in this context.

V. ILLUSTRATION: THE DAMPED CHARGED
HARMONIC OSCILLATOR IN A MAGNETIC FIELD

As an illustration of the theory, we consider a quantum
damped charged harmonic oscillator of mass m and charge
q transported along a path Rt in the presence of a constant
magnetic field B. Adopting the Caldeira-Leggett model of
quantum Brownian motion [45], the system, bath, and coupling
Hamiltonian read

H (Rt ) = ( p − q A)2/(2m) + mω2x2/2 − mω2x · Rt ,

HB =
N∑

n=1

[
P2

n/mn + mnω
2
nξ

2
n

]
/2,

HSB = −x ·
N∑

n=1

cnξn + x2
N∑

n=1

cn/
(
2mnω

2
n

)
. (35)

Here, x, p, and ω denote the harmonic oscillator position,
momentum, and frequency, respectively. ξn, Pn, mn, and
ωn denote the nth bath’s oscillator position, momentum,
mass, and frequency, respectively. The symbol cn denotes

the linear coupling constant between the harmonic oscillator
and the nth bath’s oscillator. The symbol A denotes the
vector potential. Note that, according to Eq. (3), Q = mω2x.
Assuming an initial global Gibbs distribution and adopting the
Feynmann-Vernon path-integral approach [37], one arrives,
after integrating out the bath’s degrees of freedom, at the
following generalized quantum Langevin equation for the
charged oscillator’s position [46]:

mẍt +
∫ t

−∞
dt ′η(t − t ′)ẋt ′ − q ẋt × B + mω2xt = Ft + f t ,

(36)

where η(t) is the friction kernel, f t = mω2 Rt is the externally
applied force, and Ft is the stochastic force. Without loss of
generality, we assume that B points in the z direction B = B ẑ.
Since the motion in the z direction is decoupled from the
motion in the x and y directions, the xz and yz relaxation
functions vanish, implying that the geometric magnetism is
also directed in the ẑ direction. Furthermore, due to spatial
homogeneity, geometric magnetism does not depend explicitly
on the position Rt . That is, B = B ẑ. From the compact
expression (28), the strength of the geometric magnetism
reads

B = − 1
2 [	̃xy(0) − 	̃yx(0)] = −	̃a

xy(0), (37)

where we have introduced the notation 	a
xy for the anti-

symmetric component of 	xy and 	̃a
xy(s) for its Laplace

transform. Following Ref. [46], the Laplace transform of the
antisymmetric part of the response function reads

α̃a
xy(s) = (mω2)2qBs

[mω2 + ms2 + sη̃(s)]2 + q2B2s2
, (38)

where [·,·] denotes the quantum commutator and η̃(s) is the
Laplace transform of the bath friction kernel. Its form depends
on the bath spectral density. For an ohmic bath, η̃(s) is constant.
As compared to Eq. (2.15) of Ref. [46], we have, in our
Eq. (38), an extra factor (mω2)2 stemming from our definition
of αa

xy in terms of Qx = mω2x, Qy = mω2y, rather than x,y.
Since 	xy = ∫ ∞

t
dt ′αxy(t ′) [8], we have

	̃a
xy(s) = α̃a

xy(0)

s
− (mω2)2qB

[mω2 + ms2 + sη̃(s)]2 + q2B2s2

= − (mω2)2qB

[mω2 + ms2 + sη̃(s)]2 + q2B2s2
, (39)

where αa
xy(0) = 0 due to the fact that, at equal times, Qx

and Qy commute. Regardless of the bath spectral density, the
friction kernel η(t) vanishes at long times, hence, according
to the final value theorem, lims→0 sη̃(s) = 0. Using Eq. (37),
one finally obtains the result,

B = qB, (40)

which evidently holds both classically and quantum mechani-
cally. Apart from the charge q, geometric magnetism is nothing
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but the physical magnetic field in this case. The factor q stems
from the fact that the geometric Lorentz force in Eq. (19)
reads −B × Ṙ, whereas, the Lorentz force reads −qB × v

[where v = (ẋ,ẏ,ż)]. This very same result was found also in
Refs. [47,48] for the case of an isolated classical or quantum
harmonic oscillator. Our result (40) conveys the nontrivial
knowledge that this continues to hold also for an open classical
or quantum harmonic oscillator. That is, the presence of a bath
does not destroy the geometric magnetism, in fact, it does
not minimally alter it in this case. Analogous calculations
involving the symmetric part of the relaxation function lead
to the result that the geometric friction is given by the time
integral of the friction kernel

∫ ∞
0 dt η(t).

It is noteworthy that the case of geometric magnetism is
distinct from the case of standard equilibrium diamagnetism,
which is absent in the classical limit of open systems and
reveals itself at the quantum level only, see the Bohr–van
Leeuwen theorem [49,50].

VI. CONCLUDING REMARKS

We have derived a general expression for the field of
geometric magnetism in open quantum systems Eq. (21),
possibly coupled strongly to the environment. This generalizes
the expression (1) of Robbins and Berry [5] and Berry and
Robbins [7], which refers to closed chaotic classical systems. It
is worth noticing that, contrary to the case studied by Berry and
Robbins, here, no assumption of chaotic dynamics of the driven
system H (Rt ), which may well be integrable, is made. It is the
presence of the thermal bath HB and the coupling to it HBS that
provide the necessary degree of chaos for the development of a
response theory à la Kubo. It is, however, important to remark
about the differences between the presently developed theory
and that of Kubo. This is best seen by confronting Eq. (14)
with Kubo’s formula,

〈Oτ 〉 − 〈O〉eq
R0

=
∫ τ

0
dt

∫ β

0
du〈�O−ih̄u�Q̇t−τ 〉eq

R0
· Rt . (41)

Note the prominent difference that Kubo’s formula (41) gives
an expression (linear in R) for the difference between the
nonequilibrium expectation of O at time τ and its equilibrium
expectation at time 0, whereas, the present formula (14) gives
an expression (linear in Ṙ) for the difference between the
nonequilibrium expectation of O at time τ and its equilibrium
expectation at the same time τ . Thus, in Kubo’s theory, the
small parameter is the strength of the driving, whereas, in our
theory, the small parameter is the speed. Both formulas (14)
and (41) yield the response in terms of equilibrium correlation
functions. Kubo’s formula involves the correlation between
O and Q̇ (the response function), our formula involves the
correlation between O and Q (the relaxation function). Note
that Kubo’s formula (41) follows from an exact fluctuation
relation,

〈Oτ e
−βH0,τ eβH0〉eq

R0
= 〈O〉eq

R0
, (42)

that looks very similar to our starting Eq. (7) [26,27]. The
differences are that: (i) the right-hand side is evaluated at
R0 in Eq. (42), whereas, it is calculated at Rτ in Eq. (7),

(ii) Eq. (42) does not involve the free-energy difference �F ,
which, instead, appears in Eq. (7), and (iii) in Eq. (42), the
unperturbed system Hamiltonian H0 appears instead of the
total Hamiltonian H(Rt ) appearing in Eq. (7). These com-
plementary expressions (7) and (42) are customarily referred
to as the “inclusive viewpoint” and “exclusive viewpoint”
fluctuation relations, respectively. Interested readers can find
accounts of the importance of these viewpoints in the theory
of nonequilibrium fluctuations in Refs. [22,24,25]. Just like
Eq. (42) allows one to obtain Kubo’s formula (41) and the
whole hierarchy of higher-order nonlinear responses, so does
Eq. (7) allow one to obtain the adiabatic linear-response
relation (14) as well as the higher-order terms in the adiabatic
expansion. An interesting open question is whether and under
which conditions geometric forces appear in those higher-
order terms.

Our main result, Eq. (21), provides a straightforward way
to define the Berry phase of an open quantum system. Just
like the surface integral of the classical two-form (1) provides
a generalization of Berry phase for chaotic classical systems
[5,6], so does the surface integral of the geometric magnetism
(21) provide an analog of the Berry phase of open quantum
systems, reading

γ =
∫

B · d�. (43)

This so-defined phase γ would, in general, differ from those,
equally sound and useful, expressions of a Berry phase
introduced for open systems in the prior literature [11–21].
In full analogy with the original Berry phase, γ is geometric,
that is, it depends only on the path described by the driving
parameters. It vanishes for a path enclosing no area, and it
vanishes in the case when the system dynamics are time-
reversal invariant, i.e., when for any t, �H(Rt ) = H(Rt )�.
Here, � is the antiunitary time-reversal operator, which
reverses momenta and keeps the spatial coordinates and all ex-
ternal parameters (possibly including physical magnetic fields)
unaltered [1,22]. This is so because, due to Onsager-Casimir
relations [51], the conductance matrix K would be symmetric
in this case, hence, the geometric magnetism B would
vanish.

Our simple example of a quantum harmonic oscillator
transported along a path already shows that the presence of
an environment does not destroy geometric magnetism. In
fact, in this specific (linear) case, the geometric magnetism
is given by the actual physical magnetic field, exactly like
in the isolated case [47,48]. For nonlinear systems, the
difference between the real and the geometric magnetic fields
could be detected as well as the difference between quantum
and classical regimes. However, the quantum-mechanical
treatment of nonlinear open systems constitutes an ambitious
challenge because, in this case, the system evolution cannot
be handled analytically in an exact manner. This challenge,
in principle, could be approached numerically, for example,
(i) by resorting to the Floquet-Markov formalism [52] under
the assumption of weak system-bath coupling or (ii) by fol-
lowing the Feynmann-Vernon path-integral formalism [29,37]
to calculate the reduced density matrix numerically through
stochastic unraveling of the corresponding influence functional
[53].
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Geometric magnetism is at the basis of a currently growing
experimental activity aimed at producing artificial gauge fields
in thermally isolated cold atomic gases [54–58]. The present
theory opens the possibility of engineering synthetic gauge
fields also in the presence of a thermal environment via our
general expression (21).
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