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Introduction. – In 1968 Lynden-Bell and Wood [1]
pointed out an interesting fact: self-gravitating systems
have negative specific heats. As Lynden-Bell later on
explained [2] this fact seemed quite natural to astro-
nomers, who know for example that when a star gains
energy it expands and cools down [3]; but it appeared
incongruous, if not completely wrong, to statistical mech-
anists, who learn from textbooks that specific heats
are necessarily positive. The paradox was resolved by
Thirring [4]: While it is true that any system in weak
contact with a thermal bath, hence characterized by the
canonical distribution, necessarily has a positive specific
heat, isolated systems, characterized by the microcanon-
ical distribution, may well have negative specific heats.
Since then, many models showing microcanonical negative
specific heats have been reported, see, e.g., [5–11], their
statistical mechanics has been discussed [12,13], and nega-
tive specific heats have been experimentally measured in
thermally isolated small atomic clusters [14,15]. Recently
it has also been pointed out that if a system is in strong
coupling with its environment, likewise it may display
negative specific heat [16–23].
Inspired by ref. [24], here we consider an ordinary

system S with Hamiltonian HS(x,p) and weakly couple it
via an interaction energy h(x,X), to a second system with
Hamiltonian HC(X,P), possessing a constant negative
microcanonical heat capacity C < 0, i.e.,

H(x,p,X,P) =HS(x,p)+HC(X,P)+h(x,X) . (1)

For the sake of clarity we recall that the heat capacity C is
defined as the derivative of a system’s energy with respect

to the temperature, C = ∂E/∂T , while the specific heat c
is defined as the heat capacity per unit mass.
The archetypical example of a system with constant

negative microcanonical heat capacity is that of a single
particle in the gravitational (or the attractive Coulomb)
force field, for which C =−3/2 [2]. Throughout the paper,
temperature is expressed in units of energy. In these units
kB , Boltzmann’s constant, is dimensionless and equal to
1, and the heat capacity C = ∂E/∂T is dimensionless as
well.
Our main result is that, provided the total system

samples the microcanonical ensemble, the system S
samples the power-law distribution

p(x,p) =
[HS(x,p)−Etot]C−1∫
dxdp[HS(x,p)−Etot]C−1 , C < 0, (2)

where Etot is the (conserved) energy of the total system.
To express this result in eq. (2) in the usual set of
units, where the temperature is measured in Kelvin, and
both the heat capacity and kB have the dimension of
Joule/Kelvin, one should replace C in eq. (2) with the
dimensionless ratio C/kB .
We illustrate this result in fig. 1. A neutral particle,

with Hamiltonian HS = p
2/2m, is confined into a box

and makes elastic collisions with a particle carrying a
charge q subject to the Coulomb field generated by a fixed
charge −q. The charged particle has constant negative
heat capacity C =−3/2, and its Hamiltonian reads:

HC=−3/2(X,P) =P 2/2M −α/|X| , (3)

where α= q2/4πε0 with ε0 the dielectric permittivity of
vacuum. According to our main result, eq. (2), since
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Fig. 1: (Color online) Illustrative example of our main result,
eq. (2). A neutral particle (orange) moves freely within a box,
making elastic collisions with the box walls and a charged parti-
cle (black) immersed in the attractive Coulomb field generated
by a fixed point charge (red). Because the heat capacity of the
charged (black) particle is C =−3/2, the velocity probability
distribution function of the neutral (orange) particle conforms
to a power law with power index −3/2− 1 =−5/2, eq. (4).

the charged particle has constant negative heat capacity
C =−3/2, the velocity probability distribution function of
the neutral particle is given by the following power law:

p(p) =
(p2/2m−Etot)−5/2∫
dp(p2/2m−Etot)−5/2 . (4)

Derivation of the result in eq. (2). – Assuming
i) the microcanonical distribution for the total system, and
ii) weak coupling h, the system S marginal distribution
p(x,p) can be written as [25–27]

p(x,p) =
ΩC [Etot−HS(x,p)]

Ωtot(Etot)
, (5)

where

ΩC(E) =

∫
dXdP δ[E−HC(X,P )] (6)

is the density of states of the negative heat capacity system
whose energy is E, and

Ωtot(Etot) =

∫
dXdPdxdp δ[Etot−H(x,p,X,P )] (7)

is the density of states of the compound system. Here δ
denotes Dirac’s delta function.
We note that if a classical system has a constant negative

microcanonical heat capacity C < 0, then its density of
states is of the form

ΩC(E)∝ (−E)C−1, C < 0. (8)

For the derivation of this density of states see appendix A.
In arriving at eq. (8) we adopt the convention to set
the zero of the energy of constant negative heat capacity
systems as the lowest energy corresponding to unbound
trajectories. Thus, the density of states is only defined for
negative E’s, and it diverges for E � 0.
Using eq. (8) in (5) one arrives at the result in eq. (2).

It is important to stress that in eq. (2) the system S

energy has a lower bound, which is conventionally set to
zero, and that the total energy Etot must be negative,
thus ensuring that the energy E =Etot−HS of the system
with negative heat capacity is negative at all times. This
is necessary in order that the C-system always stays on
bounded trajectories and never escapes to infinity.

Numerics. – To corroborate our main result, eq. (2),
we simulated the dynamics of the system depicted in
fig. 1, using a symplectic integrator [28]. We focussed
on the probability density ρ(ES) of finding the neutral
particle (our S system) at energy ES for a total (negative)
simulation energy Etot. According to eq. (4) this is given
by

ρ(ES) =
[ES −Etot]−5/2E1/2S∫∞

0
dES [ES −Etot]−5/2E1/2S

, (9)

where the term E
1/2
S derives from the density of states

ΩS(ES)∝E3/2−1S of the neutral particle. Note that for
large ES , ρ(ES)∝E−2S .
Following ref. [27], we chose h(x,X) = VLJ (|x−X|),

where VLJ is the truncated Leonard-Jones potential

VLJ(r) =

{
0 , |r|> 21/6σ,
4ε
[(
σ
r

)12− (σ
r

)6]
+ ε , |r|< 21/6σ. (10)

We employ the same potential for the walls of the
confining cubic box, in which the particle moves freely.
In our simulation, we set ε, σ, and M (M is the mass of
the particle carrying the charge q) as the units of energy,
length, and mass, respectively.
Following ref. [27], in order to avoid the singularity of

the attractive Coulomb field at X= 0, in the simulation
we employ the Plummer potential [29]:

ϕb(X) =
−α√
X2+ b2

. (11)

Using this potential in place of the pure Coulombic poten-
tial ϕ(X) =−α/|X|, induces a deviation of the density
of states from the pure power-law form Ω−3/2(E) =
(−E)−5/2, resulting in a cut-off in the expected power-law
distribution ρ(ES). This cut-off moves to higher energy
values as b becomes smaller.
Figure 2 displays the result of our simulation for b=

10−2, Etot =−1, a box of side length L= 10, α= 5, and
m=

√
3. The computed energy distribution function for

the neutral atom excellently agrees with the expected
power-law form in eq. (9) over three decades. At higher
energies the distribution displays the expected cut-off due
to the truncation in eq. (11). Note that when the neutral
atom has high energy the charged particle has low energy
and stays close to the bottom of the Plummer potential,
eq. (11). The condition Etot < 0 ensures that the energy
E =Etot−HS of the charged particle is also negative, thus
ensuring that its motion remains confined at all times.
With our choice of box side length L= 10, and Etot =−1,
the confinement keeps the charged particle within the box
at all times.
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Fig. 2: (Color online) Energy probability density function
ρ(ES) of a neutral particle performing Lennard-Jones colli-
sions, eq. (10), with the walls of a confining box, and with a
charged particle in the Plummer potential, eq. (11). Black dots:
numerical simulation. Red thick solid line: analytic calculation
based on the Plummer potential, eq. (11). Black thin solid
line: analytic calculation based on the pure gravitational poten-
tial ϕ(X) =−α/|X|, eq. (9). Simulation parameters: Etot =−1,
b= 10−2, L= 10, α= 5, and m=

√
3.

Methods. The simulation was performed by means
of an implicit Runge-Kutta symplectic integrator [28].
We simulated the evolution of the whole system with a
time step size ∆t= 10−5 and total number of time steps
N = 1.28× 1012. Note that the units of time are σ√M/ε.
In order to calculate the statistics, we divided the ES-
axis in 104 intervals of size ∆ES = 0.0499, and counted
how many times each interval was visited during the
simulation. We adopted a sampling time τ = 2× 105∆t.
The resulting histogram was then normalized and divided
by ∆ES to give an estimate of the probability density.
Finally, for better visualization in the log-log plot in
fig. 2, the histogram was coarse-grained with a series of
intervals with exponentially increasing size, viz., we took
∆En+1S /∆EnS = 1.1, where ∆E

n
S is the size of the n-th

interval and ∆E0S =∆ES .

Comparison with the finite bath statistics. –
When C > 0, one finds the expression ΩC(E)∝EC−1 for
the densities of states, see appendix A. This differs from
eq. (8) by a minus sign in front of E. Note that for constant
positive heat capacity systems, whose energy is bounded
from below, we adopt the convention that the zero of the
energy corresponds to this lower bound. Accordingly, in
this case one obtains for the probability density function
the same expression as in eq. (2), but with HS −Etot
replaced by Etot−HS :

p(x,p) =
[Etot−HS(x,p)]C−1∫
dxdp[Etot−HS(x,p)]C−1 , C > 0. (12)

The statistics in eq. (12) is sometimes referred to as the
“finite bath statistics” [26], because it is induced by the
weak coupling of the S system with a system with a finite
positive heat capacity, like, for instance a finite collection

of N free particles, for which C = 3N/2. As we will see
below, this can also be achieved with one single parti-
cle in a properly chosen potential. The finite bath statis-
tics in eq. (12) interpolates between the microcanonical
distribution p(x,p)∝ δ[ES −HS(x,p)] and the canoni-
cal distribution p(x,p)∝ e−HS(x,p)/T . These two limit-
ing cases are obtained when C approaches 0 and +∞,
respectively [26,30,31]. Note that when C > 0, Etot−HS
in eq. (12), is non-negative, as a consequence of the fact
that the system S energy may not overcome the total (non-
negative) energy Etot. While the negative C distributions
in eq. (2) have fat power-law tails, the positive C distrib-
utions in eq. (12) exhibits sharp cut-offs at HS =Etot.

Implementing constant heat capacity systems
with single particles. – In three dimensions, constant
heat capacity systems can be obtained with a single
particle governed by the Hamiltonian:

HC(X,P) =P
2/2M + gC|X/L|6/(2C−3) , (13)

with constants g, L> 0 with units of energy and length,
respectively, and C �∈ [0, 3/2]. As shown with explicit
calculations in appendix B, the associated density of states
is proportional to EC−1 for C > 3/2, and is proportional
to (−E)C−1 for C < 0. Accordingly, when a system with
Hamiltonian HS bounded from below stays in weak
contact with one such constant heat capacity system,
its statistics conforms with either eq. (2) or eq. (12),
depending on whether C < 0 or C > 3/2, respectively. The
potential in (13) includes many special cases of interest.
For C approaching 3/2 the potential approaches a box
potential, namely the system is a particle in a box, which
knowingly has a constant heat capacity of 3/2. For C = 3,
we have a harmonic oscillator. For C =−3/2 we have the
1/r case of eq. (3). For C→±∞, the potential approaches
the logarithmic form

C|X|6/(2C−3) � 3 ln |X|+C, |C| � 1 , (14)

which, as we have shown recently [27], produces the Gibbs
distribution. Thus, not only does the canonical ensemble
emerge from the coupling to a system with positive infinite
heat capacity, but also from the coupling to a system with
negative infinite heat capacity. The case C = 0 is excluded
from eq. (13) because it corresponds to an unbound free
particle, whose density of states, accordingly, diverges for
all energies. For 0<C < 3/2, the exponent 6/(2C − 3)
is negative, hence one must chose g < 0 to ensure that
the potential is attractive. The density of states diverges
nonetheless because it involves a divergent integral, see
appendix B.
Similar expressions as in eq. (13), but with a different

exponent for |X| can be found in spaces of dimensions
other than three.

Conclusions. – We have shown, both analytically and
numerically, that weak coupling to a system with constant
negative heat capacity leads to the emergence of velocity
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probability distributions with fat power-law tails. The
power law emerges because the S-system may withdraw
indefinitely large amounts of energy from the infinitely
deep algebraic potential “well” that systems with constant
negative heat capacity possess.
Because of the fat tails it is possible that the negative
C distributions may not be normalizable. This happens,
for instance, when the S-system density of states goes
asymptotically as EαS , with α>−C. In this case the S-
system “wins” over the C-system and the integral of
ΩC [Etot−ES ]ΩS [ES ], which asymptotically goes like ∝
EC+α−1S , diverges. For α>−C +1, ΩC [Etot−ES ]ΩS [ES ]
asymptotically increases with increasing energies, while for
−C +1>α>−C it vanishes for ES→∞. As examples,
consider the case of fig. 1, but with many neutral parti-
cles. With two neutral particles we have −C +1= 5/2>
α= 2>−C = 3/2, that is the distribution would not be
normalizable but would vanish for large ES . With three
or more neutral particles we have α� 7/2> 5/2 =−C +1,
and the distribution would be increasing for large ES .
Arguably the system never reaches equilibrium in such
cases.
For our example of a neutral particle making collisions

with a particle in the 1/r potential field, fig. 1, the energy
distribution has a power index −2, which is very close
to the exponent observed in the energy distribution of
cosmic rays [32,33]1. This suggests that the power index
�−2 of the cosmic ray energy distribution might originate
from multiple collisions of the cosmic particles with objects
obeying 1/r potentials before they reach our instruments.
We leave this as an open question.
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Appendix A. Density of states for systems with
constant heat capacity. – A classical system has a
constant negative microcanonical heat capacity C if and
only if its density of states is of the form

ΩC(E) = f(−E)C−1 , C < 0 (A.1)

with some constant f > 0.
To see this consider the microcanonical heat capacity:

C(E) = [∂T (E)/∂E]−1 , (A.2)

1Typically one looks at the cosmic ray differential spectrum
[32,33], which is the derivative of the probability distribution with
respect to energy. The cosmic ray spectrum has a power index �−3.
Accordingly, the energy probability distribution has a power index
�−2.

where T (E) is the microcanonical temperature. For
constant C this implies

T (E) =E/C + a , (A.3)

with some integration constant a. Using the definition of
microcanonical temperature

T (E) = [∂ lnΦC(E)/∂E]
−1 , (A.4)

one obtains, after a further integration

ΦC(E) = d[E/C + a]
C , (A.5)

with some integration constant d. Here

ΦC(E) =

∫
dXdP θ[E−HC(X,P )] (A.6)

is the phase space volume, and θ denotes Heaviside’s step
function. Adopting the convention ΦC(0) =∞, sets a= 0,
hence ΦC(E) = d[E/C]

C . Recalling that C < 0, this can be
recast as ΦC(E)∝ (−E)C . Using the well-known relation

ΩC(E) = ∂ΦC(E)/∂E , (A.7)

we obtain eq. (A.1).
To see that the reverse is also true, consider eq. (A.7).

We have, using eq. (A.1),

ΦC(E) =

∫ E
−∞
ΩC(E

′)dE′ =−f(−E)C/C. (A.8)

Using (A.4), we obtain

T (E) =E/C. (A.9)

From eq. (A.2) it then follows that the heat capacity is C.
Likewise, a classical system has a constant positive

microcanonical heat capacity C if and only if its density
of states is of the form

ΩC(E) = fE
C−1 , C > 0 (A.10)

with some constant f > 0.
To see this the argument proceeds identically to the

argument above, with the only difference that in the case
C > 0 the constant a is set to zero as a consequence of the
convention ΦC(0) = 0.
The argument supporting the reverse implication also

proceeds identically as above, with the only difference that
now the phase volume reads ΦC(E) = fE

C/C.

Appendix B. Density of states for the Hamil-
tonians in eq. (13). – We begin with the case C < 0,
implying that the exponent

γ = 6/(2C − 3) (B.1)
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lies in the interval −2< γ < 0. Using eq. (A.6) with
eq. (13), recalling that E,C < 0, the phase volume reads,
after integration over dP

ΦC(E) =
(2πM)3/2

Γ(5/2)

∫
dX[E− gC|X|γ ]3/2

= 4π
(2πM)3/2

Γ(5/2)

∫ (E/gC)1/γ
0

dρρ2[E− gCργ ]3/2

= 4π
(2πM)3/2

Γ(5/2)

(−E)3/2+3/γ
(−gC)3/γ

∫ 1
0

dyy2[yγ − 1]3/2,

(B.2)

where we switched to spherical coordinates in the
second line and we performed the change of variables
y= ρ(gC/E)1/γ in the third line. The limit of integration
(E/gC)1/γ represents the turning point of the closed
orbit of negative energy E. In the interval −2<γ < 0 the
integral converges and can be expressed in terms of the
gamma function Γ(x), as

∫ 1
0

dyy2[yγ − 1]3/2 =
√
π

4

Γ(−C)
Γ(3/2−C) . (B.3)

Note that 3/2+3/γ =C. Hence ΦC ∝ (−E)C . Accord-
ingly, using eq. (A.7), we find that the density of states is
of the form ΩC ∝ (−E)C−1.
For 0<C < 3/2 it is γ <−2, hence one must now choose
g < 0 in order that the potential is attractive. One then
arrives at the same expression as for the case C < 0. In

this case however the integral
∫ 1
0
dyy2[yγ − 1]3/2 diverges.

For C > 3/2 it is γ > 0. One can proceed as above,
recalling that now E,C > 0, to obtain

ΦC(E) = 4π
(2πM)3/2

Γ(5/2)

∫ (E/gC)1/γ
0

dρρ2[E− gCργ ]3/2

= 4π
(2πM)3/2

Γ(5/2)

∫ 1
0
dyy2[1− yγ ]3/2
(gC)3/γ

EC . (B.4)

The integral in the numerator is well behaved for all γ > 0,
and can be expressed as∫ 1

0

dyy2[1− yγ ]3/2 =
√
π

4

Γ(C − 1/2)
Γ(C +1)

. (B.5)

Using eq. (A.7), we find that the density of states is of the
form ΩC ∝EC−1.
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