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We study the transport of Brownian particles through a corrugated channel caused by a force field

containing curl-free (scalar potential) and divergence-free (vector potential) parts. We develop a

generalized Fick-Jacobs approach leading to an effective one-dimensional description involving the

potential of mean force. As an application, the interplay of a pressure-driven flow and an oppositely

oriented constant bias is considered. We show that for certain parameters, the particle diffusion is

significantly suppressed via the property of hydrodynamically enforced entropic particle trapping.
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Effective control of mass and charge transport at
microscale level is in the limelight of widespread timely
activities in different contexts. Such endeavors involve lab-
on-chip techniques [1,2], molecular sieves [3–5], biologi-
cal [6] and designed nanopores [7], chromatography or,
more generally, separation techniques of size-dispersed
particles on micro- or even nanoscales [8–10], to name
but a few. Particle separation techniques use the fact that
the response of the particles to external stimulus, such as
gradients or fields, depends on their physical properties
like surface charges, magnetization, size, or shape. The
necessary force acting on a suspended particle can be
exerted, for example, by surrounding walls [11], by
neighboring particles and molecules via hydrodynamic
interactions [12–14], or by external electric fields causing
electro-osmotic flows [15], electrophoresis [16,17],
induced-charge electrokinetic flows [18–20], magneto-
and dielectrophoresis [21,22], etc. The progress in experi-
ments has triggered theoretical activities and led to the
development of the Fick-Jacobs (FJ) approach [23–27],
in which the elimination of equilibrated transverse degrees
of freedom provides an effective description for diffusive
transport along the longitudinal coordinate only. Thus far,
this approach has mainly been limited to energetic poten-
tials generating conservative forces on the particles, as
given by the first term in Eq. (1) below.

With this Letter, we overcome this restriction by extend-
ing the FJ formalism to the most general force field FðrÞ
exerted on particles, which can be decomposed into a curl-
free part [scalar potential �ðrÞ] and a divergence-free part
[vector potential �ðrÞ], which constitute the two compo-
nents of the Helmholtz’s decomposition theorem,

F ðrÞ ¼ �r�ðrÞ þ r��ðrÞ: (1)

As an application that admits a simple interpretation of
the divergence-free force, we consider particle transport
caused by the interplay of a pressure-driven flow [28–33]
and a constant bias acting in longitudinal channel direction
(here x) [34–37]. This in turn then yields our major finding,

namely the phenomenon of hydrodynamically enforced
entropic trapping (HEET) of Brownian particles.
We start by considering spherical Brownian particles of

radius R suspended in a solvent of density � and dynamic
viscosity �. The latter fills a planar, three-dimensional
channel with confining periodic walls at y ¼ !�ðxÞ, with
period L, and plane walls placed at z ¼ 0 and z ¼ H, with
H � L, see Fig. 1. Assuming that (i) the particle suspen-
sion is dilute, and (ii) the particles are small, i.e., R � �!
with the density comparable with �, implies that inertial
effects, hydrodynamic particle-particle and particle-wall
interactions, and, as well, effects initiated by rotation of
particles can safely be neglected [12,38].
Passing to rescaled variables r ! rL, � ! �kBT,

� ! �kBT, F ! FkBT=L, and t ! �t, in terms of the

FIG. 1 (color online). A segment of the corrugated channel at
cross section z ¼ 0, confining the overdamped motion of point-
like Brownian particles. The wiggling profiles are given by
periodic functions !�ðxÞ, see Eq. (11); a unit cell is marked
by the separating dashed lines. The quantities �! and ��
denote the minimal and maximal channel widths, respectively.
The field lines depict a typical external force field FðrÞ, acting on
the particles which are the result of a competition of a constant
bias f and an oppositely oriented divergence-free force from the
driven solvent induced by a pressure pðrÞ with pressure change
�p along a unit cell. This results both in vortices and stagnation
points, note the dots.
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relaxation time � ¼ 6��RL2=ðkBTÞ, where r ¼ ðx; y; zÞT
is the particle position and kBT is the thermal energy, we
arrive at the dimensionless Langevin equation describing
the overdamped motion of particles, i.e.,

dr

dt
¼ FðrÞ þ �ðtÞ; (2)

with the Gaussian random force � ¼ ð�x; �y; �zÞT obeying

h�iðtÞi ¼ 0, h�iðtÞ�jðsÞi ¼ 2�ij�ðt� sÞ, i, j being either x,
y, or z. Although formally Eq. (2) is stated for a quiescent
liquid, the case of driven solvent can be treated via the term
r��ðrÞ entering FðrÞ, see below.

Let us next develop a generalized FJ theory for the
formulated setup in Eq. (2). We use the corresponding
Smoluchowski equation for the joint probability density
function (PDF) Pðr; tÞ [36,39]

@tPðr; tÞ ¼ �r½FðrÞPðr; tÞ� þ r2Pðr; tÞ; (3)

supplemented by the no-flux boundary conditions at the
walls and the requirement of periodicity along the channel
(here x). In the spirit of the FJ approach, we perform
the long-wave analysis [40–42] in the dimensionless
geometric parameter " ¼ ð��� �!Þ=L � 1 [43,44],
which characterizes the deviation of the corrugated walls
from flat structures, i.e., " ¼ 0; �! and �� denote the
minimal and maximal channel widths, respectively.
Upon rescaling the transverse coordinate y ! "y, the
profile functions become !�ðxÞ ! "h�ðxÞ and � !
ð"�x;�y; "�zÞT . Expanding, as well, the PDF in a series

in even powers of ", we have Pðr; tÞ ¼ P0ðr; tÞ þ
"2P1ðr; tÞ þOð"4Þ, �ðrÞ ¼ �0ðrÞ þOð"2Þ, and similarly
for �iðrÞ, i ¼ x, y, z. Substituting this ansatz into Eq. (3)
and observing the boundary conditions, we obtain a
hierarchic set. For the steady state, we find P0ðrÞ ¼
gðx; zÞ exp½��0ðrÞ�, where gðx; zÞ is obtained in the
order Oð"2Þ.

With the conditions that (i) the x component of
r��0ðrÞ is periodic in x with unit period, and (ii) its z
component vanishes at z ¼ 0, H, the stationary marginal

PDF, P0ðxÞ ¼ limt!1
RhþðxÞ
h�ðxÞ dy

R
H
0 dzPðr; tÞ, yields

P0ðxÞ ¼ I�1IðxÞ: (4)

Here, IðxÞ ¼ e�F ðxÞ Rxþ1
x dx0eF ðx0Þ, I ¼ R

1
0 dxIðxÞ, and

F ðxÞ is the generalized potential of mean force, reading

F ðxÞ ¼ � ln

�Z hþðxÞ

h�ðxÞ
dy

Z H

0
dze��0ðrÞ

�

�
Z x

0
dx0

Z hþðx0Þ

h�ðx0Þ
dy

Z H

0
dzðr��0ÞxPeqðy; zjx0Þ; (5)

with Peqðy; zjxÞ ¼ e��0ðrÞ=
RhþðxÞ
h�ðxÞ dy

R
H
0 dze��0ðrÞ. We

reveal that F ðxÞ comprises the usual entropic contribution
(the logarithmic term) [26,34] caused by the nonholonomic
constraint stemming from the boundaries [45,46] and the

new contribution, the part stemming from �0, which is
associated with the conditional average of the x component
of divergence-free forces exerted on the particle weighted
by its equilibrium conditional PDF Peqðy; zjxÞ. In the

absence of �, Eqs. (4) and (5) reduce to the commonly
known result of the Fick-Jacobs approximation [24,36].
The kinetic equation for the time-dependent marginal

PDFP0ðx; tÞ, with the steady-state solution in Eq. (4), is the
generalized Fick-Jacobs equation, which reads

@

@t
P0ðx; tÞ ¼ @

@x

�
dF ðxÞ
dx

P0ðx; tÞ
�
þ @2

@x2
P0ðx; tÞ: (6)

We evaluate the stationary average particle current by use
of well-known analytic expressions [36,47], to yield

h _xi ¼ I�1ð1� e�F Þ; (7)

wherein �F ¼ F ðxþ 1Þ �F ðxÞ. The effective diffusion
coefficient Deff ¼ limt!1½hx2ðtÞi � hxðtÞi2�=ð2tÞ [in units
of the bulk diffusivity, D0 ¼ kBT=ð6��RÞ] is calculated
via the first two moments of the first passage time distri-
bution, see Eq. (17) in Ref. [36], leading to

Deff ¼ I�3
Z 1

0
dx

Z x

x�1
dx0eF ðxÞ�F ðx0ÞI2ðxÞ: (8)

In order to elucidate this result, we apply it next to
Brownian motion under the influence of both, an external
constant bias with magnitude f in the x direction, resulting
in�ðrÞ ¼ �fx, and to the Stokes’ drag force caused by the
difference between the particle velocity _r and the solvent
flow field uðrÞ ¼ r��ðrÞ. This implies a one-way cou-
pling between the solvent and the particles, when only the
particle dynamics is influenced by the fluid flow but not
vice versa [48], as ensured by the adopted assumption of a
dilute suspension. Accordingly, the particle dynamics is
described by Eqs. (1) and (2).
Having mainly microfluidic applications in mind, we

shall focus on a slow pressure-driven steady flow of an
incompressible solvent, determined by the dimensionless
Stokes or ‘‘creeping flow’’ equations [12,33],

rpðrÞ ¼ r2uðrÞ; r � uðrÞ ¼ 0; (9)

being valid for small Reynolds number Re¼�L2=ð��Þ� 1.
Here, the flow velocity u ¼ ðux; uyÞT and the pressure

pðrÞ are measured in the units of L=� and �=�, respec-
tively. We require that u obeys periodicity, uðx; yÞ ¼
uðxþ 1; yÞ, and the no-slip boundary conditions,
uðrÞ ¼ 0, 8r 2 channel wall. The pressure satisfies
pðxþ 1; yÞ ¼ pðx; yÞ þ �p where �p is the pressure
drop along one unit cell.
As the channel’s height is much larger than all other

length scales, we focus on the two-dimensional flow of
incompressible fluid. Applying the curl to both sides of the
first relation in Eq. (9) eliminates pðrÞ, yielding the bihar-
monic equation r4�ðx; yÞ ¼ 0 for the stream function
�ðx; yÞ, � ¼ �ðx; yÞez. Then, the components of the
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flow velocities are given by ux ¼ @y� and uy ¼ �@x�.

With the above scaling, y ! "y, � ! "�, solving the
biharmonic equation 0 ¼ @4y�0ðx; yÞ þOð"2Þ, and satisfy-
ing the no-slip boundary conditions, @y�0 ¼ 0 at y ¼
h�ðxÞ, and the conditions specifying the flow throughput,
�0 ¼ 0 at y ¼ h�ðxÞ and �0 ¼ ��p=ð12hH�3ðxÞixÞ at
y ¼ hþðxÞ [49,50], we find in leading order the result

�0 ¼ ��p

12

½y� h�ðxÞ�2½3hþðxÞ � h�ðxÞ � 2y�
H 3ðxÞhH�3ðxÞix

; (10)

where H ðxÞ ¼ hþðxÞ � h�ðxÞ is the rescaled local width
and h�ix ¼

R
1
0 dx denotes the average over one period of

the channel.
To elucidate the intriguing features caused by the

divergence-free force based on Eq. (10) and its interplay
with the constant bias, we consider a reflection symmetric
sinusoidally shaped channel [43,44], cf. Fig. 1,

!�ðxÞ ¼ �
�
��þ �!

4
� ��� �!

4
cosð2�xÞ

�
: (11)

Note that in the limit of the straight channel,
� :¼ �!=�� ¼ 1, Eq. (10) yields the Poiseuille flow,
ux ¼ �p½y2 � ð��=2Þ2�=2 and uy ¼ 0, between two

plane walls at y ¼ ���=2.
Next, we investigate the dependence of the transport

quantities, such as the average particle velocity h _xi and
the effective diffusion coefficient Deff on the force magni-
tude f and the pressure drop �p, which control the curl-
free and the divergence-free contributions in Eq. (1).

Figure 2(a) depicts the impact of the pressure drop �p
on the mean particle velocity h _xi, cf. Eq. (7), for different
values of external bias f. Only at f ¼ 0, h _xi ¼ h _xi�p is

point symmetric with respect to �p, where

h _xi�p ¼ � 4�pð�!Þ2 ffiffiffiffi
�

p
3ð1þ �Þð3þ 2�þ 3�2Þ ; f ¼ 0: (12)

The behavior changes drastically for f � 0. For �p < 0
with j�pj � 1, ux and f are both positive, the Stokes’
drag dominates over the constant bias and thus
h _xi � h _xi�p / ��p. The increase in �p results in a sys-

tematic crossover from the flow-driven transport to biased
entropic transport. We observe a broad range of j�pj with
the width / f in which the presence of the flow is insig-
nificant, yielding h _xi � h _xif,

h _xif ’ f3 þ 4�2f

f2 þ 2�2ð ffiffiffiffi
�

p þ 1=
ffiffiffiffi
�

p Þ ; �p ¼ 0: (13)

Note that for �p > 0, the solvent flow drags the particles
into the direction opposite to the external force (ux < 0 and
f > 0) and with increasing growth in �p a sharp jump of
h _xi from positive to negative values occurs. Although
strong nonvanishing local forces fex þ uðx; yÞ are acting
on the particles, there exists a critical ratio ðf=�pÞcr such

that h _xi ¼ 0. As follows from Eq. (7), this occurs when
Fðxþ 1Þ � FðxÞ ¼ �F ¼ 0, yielding for the critical ratio

�
f

�p

�
cr
¼ 1

12

hWðxÞ�1ix
hWðxÞ�3ix

¼ 2��2�2

3ð3þ 2�þ 3�2Þ ; (14)

being solely determined by the channel geometry, see
Fig. 2(b). Here, WðxÞ denotes the local channel width,
WðxÞ ¼ !þðxÞ �!�ðxÞ. Upon further increasing �p,
the flow-induced force starts to dominate over the static
bias f again and h _xi � h _xi�p / ��p.

FIG. 2 (color online). Comparison of Brownian dynamics
simulations (markers) based on Eqs. (1) and (2) with the Fick-
Jacobs approximation (lines) for a corrugated channel with the
profiles given by Eq. (11) for �� ¼ 0:5 and �! ¼ 0:1. Panel
(a): Mean particle velocity h _xi versus pressure drop �p for
different force magnitudes f. The solid line corresponds to
f ¼ 0, Eq. (12), the dashed lines represent Eq. (7) for f � 0.
Panel (b): The dependence of fcr on �pcr for different � is
depicted [lines: Eq. (14)]. Panel (c): Effective diffusion Deff as a
function of �p for different f [lines: Eq. (8)] and the horizontal
dashed-dotted line corresponds to Deff ¼ D0. Panel (d):
Stationary joint PDF Pðx; yÞ (color coding) obtained via direct
simulation of Eqs. (1), (3), and (10), and force field FðrÞ (lines)
for f ¼ 102 and �p ¼ 6:5� 104, showing hydrodynamically
enforced entropic trapping.
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The role of �p and f on the effective diffusion
coefficient Deff is presented in Fig. 2(c). In the purely

flow-driven case, f ¼ 0 (squares), Deff ¼ 2
ffiffiffiffi
�

p
=ð1þ �Þ

[43] for h _xi & 1, i.e., small j�pj. It exhibits the so termed
Taylor-Aris dispersion [51,52]; i.e., Deff / ð��h _xiÞ2=192
when h _xi � 1, i.e., large j�pj.

In the limit of a resting fluid, �p ¼ 0, such that solely
static bias induced transport occurs, the effective diffusion
Deff exhibits the known bell shaped behavior as a function
of f [34]. An intriguing effect emerges when the Stokes
drag (u) and the external force (fex) exerted on the particle
start to counteract, when ux / ��p and f are comparable,
but of opposite signs. In this case, their superposition,
FðrÞ ¼ fex þ u, contains vortices and stagnation
points, leading to hydrodynamically enforced entropic
trapping. At a given f and �p determined by Eq. (14),
yielding a vanishing particle current, Deff displays an
abrupt decrease and is several orders of magnitudes smaller
than the bulk value. Although the particles experience
continuous thermal fluctuations, they exhibit long resi-
dence times in the domains of strong accumulation where
the force field pushes the particles towards the channel
wall, see Fig. 2(d). This HEET effect becomes more pro-
nounced for larger fcr and �pcr, resulting in a more local-
ized particle distribution or, equivalently, larger depletion
zones. This clarifies why the minimum of Deff decreases
with the growth in f, see Fig. 2, leading to a stiffer trap.

HEEToffers a unique opportunity to efficiently separate
particles of the same size based on their different response
to applied stimuli, e.g., to sift healthy cells from diseased
and dead cells [8,53,54]. Even small distinctions in the
response can be used to trap healthy cells and achieve
opposite transport directions, cf. Fig. 3, for the diseased

and dead cells by tuning f at a fixed �p (or, equivalently,
�p at a fixed f) such that f=�p is close to the value given
by Eq. (14). We stress that the corrugation of the channel,
� � 1, is a crucial prerequisite for the function of an
entropic sieve. For straight channels, � ¼ 1, the force
field FðrÞ lacks vortices, the latter being responsible for
particle accumulation. As a result, the effective diffusion
coefficient is bounded from below by the value of bulk
diffusivity and HEET fails. Thus, the Péclet number
jh _xij=Deff , which qualifies the transport of the objects, is
strongly reduced compared to channels with finite corru-
gation, � � 1, cf. inset in Fig. 3.
In conclusion, we generalized the Fick-Jacobs approxi-

mation for the most general force acting on the particle,
Eq. (1), which can involve both the curl-free and the
divergence-free components. Focusing on a typical corru-
gated channel geometry, we put forward an effective one-
dimensional description involving the potential of mean
force, which along with the commonly known entropic
contribution in the presence of a constant bias, acquires
a qualitatively novel contribution associated with the
divergence-free force.
The analysis of particle transport caused by the counter-

action of a pressure-driven flow (presenting the case of a
divergence-free force) and a constant bias of strength f
pointing in the opposite direction, ensues the intriguing
finding that the mean particle current can identically vanish
despite the presence of locally strong forces. Being accom-
panied by a significant suppression of diffusion, thus being
robust against thermal fluctuations, this purely entropic
effect of strong particle accumulation, induced by the
corrugation of the channel, yields a selective hydrodynami-
cally enforced entropic trapping, which can be utilized to
separate particles of the same size. The theoretical predic-
tions here are in excellent agreement with the results
obtained from numeric simulations. Note that our method-
ology admits the situation of a driven solvent; alternatively,
similar effects can be expected in a resting solvent with
nonvanishing divergence-free forces.
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