

Large-scale ferrofluid simulations on graphics processing units
A.Yu. Polyakov a,b,∗, T.V. Lyutyy a, S. Denisov b, V.V. Reva a, P. Hänggi b
a Sumy State University, Sumy, Ukraine
b Institute of Physics, University of Augsburg, Augsburg, Germany

1. Introduction

Ferrofluids are media composed of magnetic nanoparticles of
diameters in the range 10–50 nm which are dispersed in a viscous
fluid (for example, water or ethylene glycol) [1]. These physical
systems combine the basic properties of liquids, i.e. a viscosity and
the presence of surface tension, and those of ferromagnetic solids,
i.e. an internal magnetization and high permeability to magnetic
fields. This synergetic duality makes ferrofluids an attractive
candidate for performing different tasks, ranging from the delivery
of rocket fuel into a spacecraft’s thrust chambers under zero-
gravity conditions to high-precision drug delivery during cancer
therapy [2]. Moreover, ferrofluids have already found their way
into commercial applications as electromagnetically-controlled
shock absorbers, dynamic seals in engines and computer hard-
drives, and as key elements of high-quality loudspeakers, to name
but a few [3].

Being liquids, ferrofluids can be modeled by using different
macroscopic, continuous medium approaches. The corresponding
field, ferrohydrodynamics [1], is a well-established area that has
produced a lot of fundamental results. However, some important
phenomena such as magnetoviscosity [4,5] cannot be described
properly either on the hydrodynamical level or within the single-
particle picture [6]. The role of multiparticle aggregates – chains

∗ Corresponding author at: Sumy State University, Sumy, Ukraine. Tel.: +380
665208509.

E-mail address: alexander.p1987@gmail.com (A.Yu. Polyakov).

and clusters – living in the ferrofluid bulk is important there. The
evaluation of other non-Newtonian features of ferrofluids, which
can be controlled by external magnetic fields [5], also demands
information about the structure of aggregates and their dynamics.
The key mechanism responsible for the formation of ferroclusters
is the dipole–dipole interaction acting betweenmagnetic particles.
Under certain conditions, the interaction effects can overcome
the destructive effects of thermal fluctuations and contribute
tangibly to the ensemble dynamics. Therefore, in order to get a
deeper insight into the above-mentioned features of ferrofluids,
the interaction effects should be explicitly included in the model.

Strictly speaking, dipole–dipole interaction acts between all
possible pairs of N ferromagnetic particles. Therefore, the com-
putational time of the straightforward sequential algorithm scales
like N2. This is a fundamental drawback of many-body simula-
tions, and standard CPU-based computational resources often limit
the scales of the molecular-dynamics calculations. In order to run
larger ensembles for longer times, researchers either (i) advance
their models and numerical schemes and/or (ii) rely on more ef-
ficient computers. The first track led to different methods devel-
oped to explore the equilibriumproperties of bulk ferrofluids.Most
prominent are cut-off sphere approximations [7] and the Ewald
summation technique [8]; see also Ref. [9] for different modifi-
cations of the technique. However, both methods are of limited
use for computational studies of confined ferrofluids, a problem
that attracts special attention nowadays due to its practical rel-
evance [10,11]. An alternative approach is the search for ways
to increase the scalability and parallelism of computations; see
Ref. [12]. Until recently, this practically meant the use of either

mailto:alexander.p1987@gmail.com

1484
large computational clusters, consisting of many central process-
ing units (CPUs), or massively parallel supercomputers, like Blue
Gene supercomputers. The prices and the maintenance costs of
such devices are high. The advent of general-purpose computing
on graphics processing units (GP2U) [13] has changed the situation
drastically and boosted simulations of many-body systems to new
level [14]. GPUs, initially designed to serve as the data pipelines for
graphical information, are relatively small, easy to maintain, and
possess high computation capabilities allowing for parallel data
processing. Nowadays, scientific GPU computing is used in many
areas of computational physics, thanks to the Compute Unified De-
vice Architecture (CUDA) developed by NVIDIA Corporation [15].
CUDA significantly simplifies GPU-based calculations so now one
could use a Sony PlayStation 3 as a multi-core computer by pro-
gramming it with C, C++ or Fortran [16] languages.

The typical scale of molecular-dynamics simulations in fer-
rofluid studies is within the range N = 102–103 [17,18], while
N = 104 constitutes the current limit [19]. It is evident that the in-
crease of the ensemble size by several orders of magnitude would
tangibly improve the statistical sampling and thus the quality of
simulation results. To run 105–106 interacting magnetic particles
numerically is a task notmuchdifferent from the running of an arti-
ficial Universe [20]. Therefore, similar to the case of Computational
Cosmology [21–23], the GP2U concept seems to be very promising
also in the context of ferrofluid simulations. In this paperwe report
the performance of a recently proposedGPU-orientedmodification
of the Barnes–Hut algorithm [24] used to simulate the dynamics of
N = 103–106 interacting ferromagnetic particles moving in a vis-
cous medium.

Although being mentioned as a potentially promising approach
(see, for example, Ref. [25]), the Barnes–Hut algorithm has never
been used in molecular-dynamics ferrofluid simulations, to the
best of our knowledge. Our main goal here is to demonstrate a
sizable speed-up one can reach when modeling such systems on
a GPU – and by using GPU-oriented numerical algorithms – com-
pared to the performance of conventional CPU-based algorithms.
We also demonstrate the high accuracy of the Barnes–Hut approx-
imation by using several benchmarks. The paper is organized as
follows. First, in Section 2, we specify themodel. Then, in Section 3,
we describe how both the All-Pairs and Barnes–Hut algorithms can
be efficiently implemented for GPU-based simulations. The results
of numerical tests are presented and discussed in Section 5. Finally,
Section 6 contains conclusions.

2. The model

The model system represents an ensemble of N identical
particles of radius R, made of a ferromagnetic material of density D
and specific magnetization µ. Each particle occupies volume V =
3
4πR3, has magnetic moment m⃗ = m⃗(t) of constant magnitude
|m⃗| = m = Vµ, mass M = VD, and moment of inertia I = 2

5MR2.
The ensemble is dispersed in a liquid of viscosity η. Based on the
Langevin dynamics approach, the equations of motions for the kth
nanoparticle can be written in the following form [17]:

I θ̈k = −Nkx sinϕk + Nky cosϕk − Gr θ̇k + Ξ r
θ , (1)

Iϕ̈k = Nkz − Gr ϕ̇k + Ξ r
ϕ, (2)

M ¨⃗rk = µ0(m⃗k∇k) · H⃗k + F⃗ sr
k − Gd

˙⃗rk + Ξ⃗ d
r⃗ , (3)

where θ andϕ are the polar and azimuthal angles of themagnetiza-
tion vector m⃗, respectively.Nkx = mkyHkz−mkzHky,Nky = mkzHkx−

mkxHkz,Nkz = mkxHky − mkyHkx; x, y, z denote the Cartesian
coordinates, and dots over the variables denote the derivatives
with respect to time. r⃗k is the radius vector defining the nanopar-
ticle position, and the gradient is given by ∇k =

∂
∂ r⃗k
= e⃗x ∂

∂xk
+

e⃗y ∂
∂yk
+ e⃗z ∂

∂zk
(e⃗x, e⃗y, e⃗z are the unit vectors of the Cartesian coordi-

nates). ConstantsGt = 6πηR andGr = 8πηR3 specify translational
and rotational friction coefficients, and µ0 = 4π · 10−7 H/m is the
magnetic constant.

The resulting field acting on the kth particle H⃗k is the sum of the
external field H⃗ext and the overall field exerted on the particle by
the rest of the ensemble,

H⃗k =

N
j=1,j≠k

H⃗dip
kj + H⃗ext , (4)

H⃗dip
kj =

3r⃗kj(m⃗j r⃗kj)− m⃗j r⃗ 2
kj

|r⃗kj|5
, (5)

where r⃗kj = r⃗k − r⃗j. F⃗ sr
k in Eq. (3) denotes the force induced by

a short-range interaction potential. In this paper, we use Lennard-
Jones potential [17] (though hard-sphere [26], soft-sphere [27] and
Yukawa-type [28] potentials can be used as alternatives), so

F⃗ sr
k = 24E

N
j=1,j≠k

r⃗kj
r⃗ 2
kj


s
r⃗kj

12

−


s
r⃗kj

6


. (6)

Here, E is the depth of the potential well and s is the equilib-
rium distance at which the interparticle force vanishes. The in-
teraction between a particle and container walls is also modeled
with a Lennard-Jones potential of the same type. The random-
force vector, representing the interaction of a particle with a
thermal bath, has standard white-noise components, ⟨Ξ r

α(t)⟩ =
0 (α = ϕ, θ), ⟨Ξ d

β (t)⟩ = 0 (β = x, y, z), and second moments
satisfying ⟨Ξrα(t)Ξrβ (t ′)⟩ = 3kBTGrδαβδ(t − t ′)(α, β = ϕ, θ)
⟨Ξdα(t)Ξdβ (t ′)⟩ = 2kBTGtδαβδ(t − t ′)(α, β = x, y, z) [17]. Here,
kB is the Boltzmann constant and T is the temperature of the heat
bath.

By rescaling the variables, τ = t/Tch, (Tch = R/µ
√
3D/4µ0),

u⃗ = m⃗/|m⃗|, ρ⃗k = r⃗k/R, ∇ρk =
1
R

d
dρ⃗k

, the equations of motion for
the kth particle can be rewritten in reduced form:

2
5
·
d2θk
dτ 2

= −(ukyhkz − ukzhky)sinϕk + (ukzhkx − ukxhkz)cosϕk

−Γr
dθk
dτ
+

T 2
ch

VR2D
ξ r
θ (7)

2
5
·
d2ϕk

dτ 2
= ukxhky − ukyhkx − Γr

dϕk

dτ
+

T 2
ch

VR2D
ξ r
ϕ (8)

d2ρ⃗k

dτ 2
= f⃗ dipk + f⃗ srk − Γd

dρ⃗k

dτ
+

T 2
ch

VRD
ξ⃗ d
ρ⃗ , (9)

where

h⃗k =

N
j=1,j≠k

h⃗dip
kj + h⃗ext , (10)

h⃗dip
kj =

3ρ⃗kj(u⃗jρ⃗kj)− u⃗jρ⃗
2
kj

ρ 5
kj

, (11)

f⃗ dipk =

N
j=1,j≠k


3
ρ⃗kj(u⃗ju⃗k)+ u⃗k(u⃗jρ⃗kj)+ u⃗j(u⃗kρ⃗kj)

ρ 5
kj

− 15
ρ⃗kj(u⃗kρ⃗kj)(u⃗jρ⃗kj)

ρ 7
kj


, (12)

f⃗ srk = 24ε
N

j=1,j≠k

ρ⃗kj

ρ⃗ 2
kj


σ

ρkj

12

−


σ

ρkj

6


. (13)

 1485
Here, h⃗ext
= 3H⃗ext/4πµ, Γt = GtTch/VD, Γr = GrTch/VR2D, σ =

s/R, ε = ETch2/VRD, ρ⃗kj = ρ⃗k − ρ⃗j.
The random-force vector components are given now by

white Gaussian noises, with the second moments satisfying
⟨ξ r

α(τ)ξ r
β (τ ′)⟩ = 3kBTΓrδαβδ(τ − τ ′)/Tch(α, β = ϕ, θ)⟨ξ d

α (τ)ξ d
β

(τ ′)⟩ = 2kBTΓtδαβδ(τ − τ ′)/Tch(α, β = x, y, z). In the general
case, the characteristic relaxation time of particle magnetic
moments to their equilibrium orientations is much smaller than
Tch, and one can neglect the magnetization dynamics by assuming
that the direction of the vector m⃗k coincides with the easy axis of
the kth particle: because the anisotropy field is much larger than
the dipole field.We assume that this condition holds for ourmodel.

3. Two approaches tomany-body simulations on GPUs: the All-
Pairs and the Barnes–Hut algorithms

In this section, we discuss two alternative approaches to the
numerical propagation of the dynamical system given by Eqs. (7)–
(9) on a GPU. It is assumed that readers are familiar with the basics
of the GP2U concept; if not, we address them to Refs. [29,30] that
contain crash-course-like introductions into physically oriented
GPU computing.

3.1. All-Pair algorithm

The most straightforward approach to propagate a system of N
interacting particles is to account for the interactions between all
pairs. Although exact, the corresponding All-Pairs (AP) algorithm is
slow when performed on a CPU, so it is usually used to propagate
systems of N = 102–103 particles. However, even with this brute-
force method one can tangibly benefit from GPU computations by
noticing that the AP idea fits CUDA architecture [31].

Each integration step of the standard AP algorithm is performed
in two stages. They are as follows.

1. Calculate the changes for particle positions and magnetic
moment directions.

2. Update particle positions and magnetic moment directions.

This structure remains intact in the GPU version of the algo-
rithm. Kernels responsible for the first stage compute forces that
act on the particles, and calculate the corresponding increments
for particle positions and magnetic moments, according to Eqs.
(7)–(9). The increments are then written into the global memory.
Finally, second-stage kernels update the particle states with the
obtained increments. There is, however, the need for a global syn-
chronization of the threads that belong to the different blocks after
every stage since the stages are performed on separate CUDA ker-
nels and all the information about the state of the system is kept in
the global memory.

Each thread is responsible for one particle of the ensemble, and
thus it should account for the forces exerted on the particle by the
rest of the ensemble. To speed up the computational process we
keep the data vector of the thread particle in the sharedmemory, as
well as the information on other particles, needed to compute the
corresponding interaction forces. Thus we have two sets of arrays
of data in the shared memory, namely

1. data of the particles assigned to the threads of the block;
2. data of particles to compute interaction with.

The necessary data are the coordinates of the particles and
projections of their magnetic moment vectors onto the x, y and z
axes. The sizes of the arrays are equal to the number of threads per
block. The first set of data is constant during one integration step,
but the second set is changed. So, at the beginning we upload the
information on particle coordinates and momenta to the second
set of arrays in the shared memory. After computing the forces
acting on the block particles, the procedure is repeated, i.e., the
information on another set of particles is written into the second
set of arrays and the corresponding interactions are computed. The
corresponding pseudo-code is presented the below.1

The advantage of the described approach is that it uses the
global memory in the most optimal way. The access to global
memory is coalesced and there are no shared memory bank
conflicts. For an ensemble of N = 104 particles this leads to a GPU
occupancy2 of 97.7%.

3.2. Barnes–Hut algorithm

The All-Pairs algorithm is simple and straightforward for
implementation on a GPU and perfectly fits CUDA. Yet this
algorithm is purely scalable. The corresponding computation time
grows like O(N2), and its performance is very slow already for an
ensemble of 105 particles.

TheBarnes–Hut (BH) approximation [32] exhibits amuchbetter
scalability,and its computational time grows like O(N logN). The
key idea of the algorithm is to substitute a group of particles with
a single pseudo-particle mimicking the action of the group. Then
the force exerted by the group on the considered particle can be
replaced with the force exerted by the pseudo-particle. In order to
illustrate the idea, assume that all particles are located in a three-
dimensional cube, which is named the ‘main cell’. The main cell
is divided then into eight subcells. Each subcell confines a subset
of particles. If there is more than one particle in the given subcell
then the subcell is again divided into eight further subcells. The
procedure is reiterated until there is only one particle or none left
in each subcell. In this way we can obtain an octree with leaves
that are either empty or contain only a single particle. A simplified
two-dimensional realization of this algorithm is sketched in Fig. 1.
By following this recipe,we can assign to every cell obtained during
the decomposition a pseudo-particle, with magnetic moment u⃗′
equal to the sum of the magnetization vectors u⃗ of all particles
belonging to the cell, and position ρ⃗ ′ which is the position of the
set geometric center:

ρ⃗ ′ =

N ′
i=1

ρ⃗i

N ′
, (14)

where N ′ is a number of particles in the cell and ρ⃗i is the position
of the ith particle from the subset.

The forces acting on kth particle can be calculated by traversing
the octree. If the distance from the particle to the pseudo-particle
that corresponds to the root cell is large enough, the influence of
this pseudo-particle on the kth particle is calculated; otherwise,
pseudo-particles of the next subcells are checked, and so on
(sometimes this procedure can lead finally to a leaf with only one
particle in the cell left). This calculated force is then added then to
the total force acting on the kth particle.

The BH algorithm allows for a high parallelism, and it is widely
employed in computational astrophysics problems [33]. However,
implementation of the Barnes–Hut algorithm on GPUs remained a
challenge until recently, because the procedure uses an irregular
tree structure that does not fit the CUDA architecture well. This is
the main reason why the BH scheme was not realized entirely on

1 In the pseudo-code, ∆ρx, ∆ρy, ∆ρz , ∆θ, ∆ϕ denote increments of a particle’s
coordinates x, y, z, and the direction angles of the particle’s magnetic moment, θ
and ϕ, needed to propagate the particle over one time step ∆τ .
2 The parameter shows how the GPU is kept busy, and it is equal to the ratio

of the number of active warps to the maximum number of warps supported on a
multiprocessor of the GPU. It can obtained with CUDA Profiler.

1486

Algorithm 1 A CUDA kernel that computes increments.
1: cached k← blockIdx.x · blockDim.x+ threadIdx.x
2: for j = 0 to numberOfParticles do
3: upload to the shared memory particle positions and angles
4: e.g. xshared[threadIdx.x] = xglobal[ind], etc.
5: for i = 0 to blockDim.x do
6: if j+ i ≠ k then ◃ the condition to avoid particle on-self influence
7: Calculate force and dipole field for particle number j+ i
8: on current kth particle, and add the result to
9: the total cached f⃗ dip, f⃗ sr , h⃗dip.

10: end if
11: end for
12: __syncthreads();
13: j← j+ blockDim.x
14: end for
15: Update cached ∆ρx, ∆ρy, ∆ρz, ∆θ , ∆ϕ according to equations 7–9.
16: Copy increments to global memory.
a b

Fig. 1. Barnes–Hut hierarchical decomposition in two-dimensional space and the corresponding octree. See Section 3.2 for more details.
a GPU but some part of the calculations was always delegated and
performed on a CPU [34,35]. A realization of the algorithm solely
on a GPU was proposed in 2011 [24]. Below, we briefly outline the
main idea and specify its difference from the standard CPU-based
realization.

To build an octree on a CPU, usually heap objects are used. These
objects contain both child-pointer and data fields, and their chil-
dren are dynamically allocated. To avoid time-consuming dynamic
allocation and accesses to heap objects, an array-based data struc-
ture should be used. Since we have several arrays responsible for
variables, coalesced globalmemory access is possible. Particles and
cells can have the same data fields, e.g. positions. In this case, the
same arrays are used.

In contrast to the All-Pairs algorithm, where only two kernels
were involved, the original GPU BH algorithm has six kernels [24]:

1. Bounding box definition kernel.
2. Octree building kernel.
3. Computing geometrical center and total magnetic moment of

each cell.
4. Sorting of the particles with respect to their positions.
5. Computing forces and fields acting on each particle.
6. Integration kernel.

Kernel 1 defines the boundaries of the root cell. Though the
ensemble is confined to a container andparticles cannot go outside,
we keep this kernel. The size of the root cells can be significantly
smaller than the characteristic size of the container. Moreover, the
computation time of this kernel is very small, typically much less
than 1% of the total time of one integration step. The idea of this
kernel is to find the minimum andmaximum values of the particle
positions. Here we use atomic operations and built-inmin andmax
functions.
Kernel 2 performs hierarchical decomposition of the root cell
and builds an octree in the three-dimensional case. As well as in
following kernels, the particles are assigned to the threads in a
round-robin fashion.When a particle is assigned to a thread, it tries
to lock the appropriate child pointer. In the case of success, the
thread rewrites the child pointer and releases a lock. To perform
a lightweight lock, which is used to avoid several threads having
access to the same part of the tree array, atomic operation should
be involved. To synchronize the tree-building process, we use the
__syncthreads barrier.

Kernel 3 calculates the magnetic moments and positions
of pseudo-particles associated with cells by traversing the
unbalanced octree from the bottom up. A thread checks if the
magneticmoment and geometric center of all the subcells assigned
to its cell have already been computed. If not, then the thread
updates the contribution of the ready cells andwaits for the results
from the rest of the subcells. Otherwise the impact of all subcells is
computed.

Kernel 4 sorts the particles in accordance to their locations. This
step can speed up the performance of the next kernel due to the
optimal global memory access.

Kernel 5 first calculates the forces acting on the particles,
and then calculates the corresponding increments. Then, in order
to compute the force and dipole field acting upon the particle,
the octree is traversed. To minimize thread divergence, it is
very important that spatially close particles belong to the same
warp. In this case, the threads within the warp would traverse
approximately the same tree branches. This has already been
provided by kernel 4. The necessary data to compute interaction
are fetched to the shared memory by the first thread of a warp.
This allows us to reduce the number of memory accesses.

Finally, kernel 6 updates the state of the particles by using
the position increments, and re-orients the particle magnetic
moments.

 1487
a b

Fig. 2. Snapshots of N-particle ensembles obtained with the Barnes–Hut algorithm: (a) N = 20 000 (cubic confinement with edge length L = 150R) and (b) a monolayer of
N = 300 particles. The parameters are Γr = Γd = 0.1, T = 300 K, µ = 3.1 · 105 A/m,D = 5000 kg/m3, R = 10 nm.
The above-described algorithm has many advantages. Among
them are minimal thread divergence and the complete absence of
GPU/CPU data transfer (aside of the transfer of the final results),
optimal use of global memory with minimal number of accesses,
data field re-use, and minimal number of locks. All this allows us
to achieve a tangible speed-up. For more detailed description we
direct the interested reader to Ref. [24].

4. Results

We performed simulations on (i) a PC with Intel Xeon x5670
@2.93 GHz CPU(48 GB RAM) and (ii) a Tesla M2050 GPU. Though
the CPU has six cores, only a single core was used in the
simulations. The programs were compiled with nvcc (version
4.0) and gcc (version 4.4.1) compilers. Since there was no need
for high-precision calculations, we used single-precision variables
(float) and compiled the program with the -use_fast_math
key. We also used the -O3 optimization flag to speed up our
programs. Finally, the Euler–Maruyama method with time step
1τ = 0.001 was used to integrate Eqs. (7)–(9).

We measured the computation time of one integration step for
both algorithms as a function of N . The results are presented in
Table 1. The benefits of GPU computing increase with increasing
number of particles. For an ensemble of N = 106 particles, the
speed-up gained from the use of the Barnes–Hut algorithm is
almost 300 compared to the performance of the optimized All-
Pairs algorithm on the same GPU. However, for N = 103, the All-
Pairs algorithm performs better. This is because the computational
expenses for the tree-building phase, sorting, etc., outweigh the
speed-up effect of the approximation for a small number of
particles. Herewe recall thatN = 103 was the typical scale of most
ferrofluid simulations to date [17,18].

Fig. 2 shows instantaneous configurations obtained during
the simulations for a cubic confinement and for a monolayer.
To simulate a monolayer of particles we use a rectangular
parallelepiped of height 2.1R as a confinement. The parameters of
the simulations correspond to the regimewhen the average dipole
energy is much larger than the energy of thermal fluctuations. The
formation of chain-like large-scale clusters [36] is clearly visible.

5. A benchmark test: average magnetization curves

In order to check the accuracy of the numerical schemes, we
calculated the reduced magnetization curve [36]. The reduced
magnetization vector is given by the sum ⟨u⃗⟩ = 1/N

N
i=1 u⃗i. The

main parameters that characterize ferrofluid magnetic properties
are the dipole coupling constant λ, which is the ratio of
dipole–dipole potential and thermal energy, namely [37]

λ =
µ0m2

16πR3kBT
, (15)

and the volume fraction, which is the ratio between the volume
occupied by particles and the total volume occupied by the
ferrofluid, Vf , i.e.,

φ =
4/3πR3N

Vf
· 100%. (16)

In the limit when λ < 1, and for small volume fraction, φ ≪ 100%,
the projection of the reducedmagnetization vector on the direction
of applied field, ⟨uH⃗⟩, can well be approximated by the Langevin
function [36]:

⟨uH⃗⟩ = L(α)= coth(α)−
1
α

, (17)

where α denotes the ratio between magnetic energy and thermal
energy,

α = mµ0H/kBT . (18)

We simulated a system with parameters corresponding to
maghemite (γ − Fe2O3) with a saturation magnetization µ =
3.1 · 105 A/m and density D = 5000 kg/m3; the carrier viscosity
η = 0.89 · 10−3 Pa (the latter corresponds to the viscosity of water
at T = 298 K). The volume fraction is set atφ = 1% and the particle
radius R = 3 nm. The external magnetic field H⃗ was applied along
the z axis. We initiated the system at time τ = 0 by randomly
distributing particles in a cubic container. The orientation angles of
particle magnetization vectors were obtained by drawing random
values from the interval [0, 2π].

Fig. 3 presents the results of the simulations. After the transient
τeq = 1000, given to the systemofN = 105 particles to equilibrate,
themean reducedmagnetization has been calculated by averaging
⟨uz⟩ over the time interval τcalc = 1000. It is noteworthy that
even single-run results are very close to the Langevin function;
see Fig. 3(a). The contribution of the magnetostatic energy grows
with α, so the strength of the dipole–dipole interaction is also
increasing; see Fig. 4.

Since the average value of dipole field projection on the z axis
is positive and increases with α, the dipole field amplifies the
external magnetic field. This explains the discrepancy between the
analytical and numerical results obtained for large values of α. For
an ensemble of N = 103 particles, the results obtained with the
two algorithms are nearly identical; see Fig. 3(b).

1488
Table 1
Duration of a single integration step (ms) for the optimized All-Pairs algorithm implemented on a CPU (APCPU) and a GPU (APGPU), and for
the CPU-oriented (BHCPU) and GPU-oriented (BHGPU) Barnes–Hut algorithm.

N APCPU BHCPU APGPU BHGPU
APCPU
APGPU

APCPU
BHGPU

APGPU
BHGPU

103 34 9.8 0.7 2 49 17 0.35
104 3470 137 20 6.5 174 534 3.1
105 392000 2487 1830 54 214 7259 33.9
106 39281250 73121 184330 621 213 63214 297
a b

Fig. 3. Checking the Barnes–Hut approximation: (a) comparison between the single-run results obtained with N = 105 particles and the Langevin function, Eq. (17); (b)
comparison of the results obtained with the All-Pair and the Barnes–Hut algorithms for an ensemble of N = 103 particles.
Fig. 4. z-component of the reduced average dipole field as a function of α [18]. The
parameters are the same as in Fig. 3(b). Each point was obtained by averaging over
103 independent realizations.

It is important also to compare the average dipole fields, ⟨hdip
⟩,

calculated with the Barnes–Hut and the All-Pairs algorithms. The
outputs obtained for the above-given set of parameters are shown
in Fig. 4. Again, the two algorithms produced almost identical
results.

6. Conclusions

With this work, we demonstrate that the Barnes–Hut algo-
rithm can be efficiently implemented for large-scale GPU-based
ferrofluid simulations. Overall, we achieved a speed-up of more
than two orders of magnitude when compared to the performance
of the commonly used GPU-oriented All-Pairs algorithm. The pro-
posed approach allows us to increase the size of ensembles by two
orders of magnitude compared to the present-day scale of simu-
lations [19]. The Barnes–Hut algorithm correctly accounts for the
dipole–dipole interaction within an ensemble of N = 106 parti-
cles and produces results that fit the theoretical predictions with
high accuracy. Our finding opens several interesting perspectives.
First, it brings about possibilities to perform large-scalemolecular-
dynamics simulations for the time evolution of ferrofluids placed
in confinements of complex shapes like thin vessels or tangled
pipes, where the boundary effects play an important role [38]. It is
also possible to explore the non-equilibrium dynamics of ferroflu-
ids, for example, their response to different types of externally ap-
plied magnetic field, such as periodically alternating fields [39],
or gradient fields [40]. Another direction for further studies is
the exploration of the relationship between the shape and topol-
ogy of nanoclusters and different macroscopic properties of fer-
rofluids [41,42]. Finally, the GPU-based computational algorithms
provide new possibilities to study heat transport processes in
ferrofluids [43], for example to investigate the performance of fer-
romagnetic particles as heat sources for magnetic fluid hyperther-
mia [44].

Acknowledgments

A.Yu.P. and T.V.L. acknowledge the support of the Cabinet of
Ministers of Ukraine obtained within the Program of Studying and
Training for Students, Ph.D. Students and Professor’s Staff Abroad
and the support of the Ministry of Education, Science, Youth,
and Sport of Ukraine (Project No 0112U001383). S.D. and P.H.
acknowledge support by the cluster of excellence Nanosystems
Initiative Munich (NIM).

References

[1] R. Rosensweig, Ferrohydrodynamics, Cambridge University Press, 1985.
[2] Q. Pankhurst, J. Connolly, S. Jones, J. Dobson, Applications of magnetic

nanoparticles in biomedicine, J. Phys. D: Appl. Phys. 36 (2003) R167.
[3] K. Raj, R. Moskowitz, Commercial applications of ferrofluids, J. Magn. Magn.

Mater. 85 (1990) 233.
[4] J.P. McTague, Magnetoviscosity of magnetic colloida, J. Chem. Phys. 51 (1969)

133.
[5] S. Odenbach, Magnetoviscous Effects in Ferrofluids, Springer, 2002.
[6] S. Odenbach, H. Stoerk, Shear dependence of field-induced contributions to

the viscosity of magnetic fluids at low shear rates, J. Magn. Magn. Mater. 183
(2000) 188.

[7] P. Ilg, E. Coquelle, S. Hess, Structure and rheology of ferrofluids: simulation
results and kinetic models, J. Phys.: Condens. Matter. 18 (2006) S2757.

[8] S. de Leeuw, J. Perram, E. Smith, Simulation of electrostatic systems in periodic
boundary conditions. I. Lattice sums and dielectric constants, Proc. R. Soc. A
373 (1980) 27.

[9] J.J. Cerdà, V. Ballenegger, O. Lenz, C. Holm, P3M algorithm for dipolar
interactions, J. Chem. Phys. 129 (2008) 234104.

[10] H. Hartshorne, C.J. Backhouse, W.E. Lee, Ferrofluid-basedmicrochip pump and
valve, Sensors Actuators B 99 (2004) 592.

[11] N. Pamme, Magnetism and microfluidics, Lab Chip 6 (2006) 24.
[12] J. Phillips, R. Braun, W. Wang, et al., Scalable molecular dynamics with NAMD,

J. Comput. Chem. 26 (2005) 1781.

 1489
[13] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A.E. Lefohn, T.J.
Purcell, A survey of general purpose computation on graphics hardware,
Comput. Graph. Forum 26 (2007) 80.

[14] L. Nyland, M. Harris, J. Prins, FastN-body simulationwith CUDA, in: H. Nguyen
(Ed.), GPU Gems, Vol. 3, 2007 (Chapter 31).

[15] J. Sanders, E. Kandrot, CUDA by Examples, Addison-Wesley, 2011.
[16] CUDA fortran programming guide and reference. URL: http://www.pgroup.

com/lit/whitepapers/pgicudaforug.pdf, 2012.
[17] Z. Wang, C. Holm, H.-W. Müller, Molecular dynamics study on the equilibrium

magnetization properties and structure of ferrofluids, Phys. Rev. E 66 (2002)
021405.

[18] A.O. Ivanov, S.S. Kantorovich, E.N. Reznikov, et al., Magnetic properties of
polydisperse ferrofluids: a critical comparison between experiment, theory,
and computer simulation, Phys. Rev. E 75 (2007) 061405.

[19] J.J. Cerda, E. Efimova, V. Ballenegger, E. Krutikova, A. Ivanov, C. Holm, Behavior
of bulky ferrofluids in the diluted low-coupling regime: theory and simulation,
Phys. Rev. E 81 (2010) 011501.

[20] V. Springel, S.D.M. White, A. Jenkins, C.S. Frenk, N. Yoshida, L. Gao, J. Navarro,
R. Thacker, D. Croton, J. Helly, J.A. Peacock, S. Cole, P. Thomas, H. Couchman,
A. Evrard, J. Colberg, F. Pearce, Simulations of the formation, evolution and
clustering of galaxies and quasars, Nature 97 (2005) 629.

[21] S.F.P. Zwart, R.G. Balleman, P.M. Geldof, High-performance direct gravitational
N-body simulations on graphics processing units, New Astron. 12 (2007) 641.

[22] R.G. Belleman, J. Bédorf, S.F.P. Zwart, High performance direct gravitational
N-body simulations on graphics processing units II: an implementation in
CUDA, New Astron. 13 (2008) 103.

[23] D. Aubert, Numerical cosmology powered by GPUs, Proc. Int. Astron. Union 6
(2010) 397.

[24] M. Burtscher, K. Pingali, An efficient CUDA implementation of the tree-
based Barnes–HutN-body algorithm, in: GPU Gems’11: GPU Computing Gems
Emerald Edition, 2011.

[25] C. Holm, Efficient methods for long range interactions in periodic geometries
plus one application, in: Computational Soft Matter: From Synthetic Polymers
to Proteins, Research Centre Julich, 2004.

[26] J. Weis, D. Levesque, Chain formation in low density dipolar hard spheres: a
Monte Carlo study, Phys. Rev. Lett. 71 (1993) 2729–2732.

[27] D. Wei, G. Patey, Orientational order in simple dipolar liquids: computer
simulation of a ferroelectric nematic phase, Phys. Rev. Lett. 68 (1992)
2043–2045.
[28] G. Mériguet, M. Jardat, P. Turq, Brownian dynamics investigation of
magnetization and birefringence relaxations in ferrofluids, J. Chem. Phys. 123
(2005) 144915.

[29] M. Januszewski, M. Kostur, Accelerating numerical solution of stochastic
differential equations with cuda, Comput. Phys. Comm. 181 (2010) 183.

[30] M. Weigel, Simulating spin models on GPU, Comput. Phys. Comm. 182 (2011)
1833.

[31] H. Nguyen, GPU Gems, Vol. 3, first ed., Addison-Wesley Professional, 2007.
[32] J. Barnes, P. Hut, A hierarchical O(N logN) force-calculation algorithm, Nature

324 (1986) 446–449. http://dx.doi.org/10.1038/324446a0.
[33] J. Barnes, Computational Astrophysics, Springer-Verlag, Berlin, 1994.
[34] E. Gaburov, J. Bédorf, S.P. Zwart, Gravitational tree-code on graphics processing

units: implementation in CUDA, Proc. Comput. Sci. 1 (2010) 1119–1127.
[35] H. Jiang, Q. Deng, Barnes-Hut treecode on GP, in: 2010 IEEE International

Conference on Progress in Informatics and Computing, PIC, vol. 2, 2010,
pp. 974–978. http://dx.doi.org/10.1109/PIC.2010.5687868.

[36] M. Shliomis, Magnetic fluids, Sov. Phys. Usp. 17 (1974) 153.
[37] A. Wang, J. Li, R. Gao, The structural force arising from magnetic interactions

in polydisperse ferrofluids, Appl. Phys. Lett. 94 (2009) 2009–2011.
[38] Z. Wang, C. Holm, H.W. Müller, Boundary condition effects in the simulation

study of equilibrium properties of magnetic dipolar fluids, J. Chem. Phys. 119
(2003) 379–387.

[39] T. Mahr, I. Rehberg, Nonlinear dynamics of a single ferrofluid-peak in an
oscillating magnetic field, Physica D 111 (1998) 335–346.

[40] R.M. Erb, D.S. Sebba, A.A. Lazarides, B.B. Yellen, Magnetic field induced
concentration gradients in magnetic nanoparticle suspensions: theory and
experiment, J. Appl. Phys. 103 (2008) 063916.

[41] V.S. Mendelev, A.O. Ivanov, Ferrofluid aggregation in chains under the
influence of a magnetic field, Phys. Rev. E 70 (2004) 051502.

[42] D. Borin, A. Zubarev, D. Chirikov, R. Müller, S. Odenbach, Ferrofluid with
clustered iron nanoparticles: slow relaxation of rheological properties under
joint action of shear flow andmagnetic field, J. Magn. Magn. Mater. 323 (2011)
1273–1277.

[43] R. Ganguly, S. Sen, I.K. Puri, Heat transfer augmentation using a magnetic
fluid under the influence of a line dipole, J. Magn. Magn. Mater. 271 (2004)
63–73.

[44] R. Rosensweig, Heatingmagnetic fluidwith alternatingmagnetic field, J.Magn.
Magn. Mater. 252 (2002) 370–374.

http://www.pgroup.com/lit/whitepapers/pgicudaforug.pdf
http://www.pgroup.com/lit/whitepapers/pgicudaforug.pdf
http://www.pgroup.com/lit/whitepapers/pgicudaforug.pdf
http://www.pgroup.com/lit/whitepapers/pgicudaforug.pdf
http://www.pgroup.com/lit/whitepapers/pgicudaforug.pdf
http://www.pgroup.com/lit/whitepapers/pgicudaforug.pdf
http://www.pgroup.com/lit/whitepapers/pgicudaforug.pdf
http://www.pgroup.com/lit/whitepapers/pgicudaforug.pdf
http://dx.doi.org/doi:10.1038/324446a0
http://dx.doi.org/10.1109/PIC.2010.5687868

	Large-scale ferrofluid simulations on graphics processing units
	Introduction
	The model
	Two approaches to many-body simulations on GPUs: the All-Pairs and the Barnes--Hut algorithms
	All-Pair algorithm
	Barnes--Hut algorithm

	Results
	A benchmark test: average magnetization curves
	Conclusions
	Acknowledgments
	References

