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Abstract. We study the transport properties of inertial Brownian particles
which move in a symmetric periodic potential and are subjected to both a
symmetric, unbiased time-periodic external force and a biased Poissonian white
shot noise (of non-zero average F ) which is composed of a random sequence of
δ-shaped pulses with random amplitudes. Upon varying the parameters of the
white shot noise, one can conveniently manipulate the transport direction and
the overall nonlinear response behavior. We find that within tailored parameter
regimes the response is opposite to the applied average bias F of such white shot
noise. This particular transport characteristic thus mimics that of a nonlinear
absolute negative mobility (ANM) regime. Moreover, such white shot noise driven
ANM is robust with respect to the statistics of the shot noise spikes. Our findings
can be checked and corroborated experimentally by the use of a setup that consists
of a single resistively and capacitively shunted Josephson junction device.
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1. Introduction

In accordance with the Le Chatelier–Braun principle, when an external deterministic
force F acts on a particle with all other forces set to zero on average, the long time,
stationary average particle velocity 〈v〉 is expected to become an increasing function of
the load F , at least for small bias values F . For an electrical (electronic) device, the
current–voltage characteristics exhibits a similar property: if the voltage V increases, the
current I increases as well. The Ohmic characteristic I = (1/R)V presents an example.
This behavior is usually characterized as ‘normal transport’ behavior. In contrast, the
anomalous transport features are (i) a negative differential mobility or conductivity
(meaning that the velocity or current decreases with increasing force or voltage) and (ii)
an absolute negative mobility (ANM) or conductivity, i.e. the velocity or current exhibits
an opposite sign to the applied force which is starting out at zero force or voltage; i.e. the
system response is opposite to the applied force.

Such absolute negative mobility has been experimentally detected in a variety of
systems, both classical and quantum. Typical situations and cases where ANM has been
detected are p-modulation-doped GaAs quantum wells [1], sequential resonant tunneling
semiconductor superlattices that are driven by intense terahertz electric fields [2], relaxing
Xe plasma ionized by a hard x-ray pulse [3], sliding charge-density waves at sufficiently
low temperatures [4], in microfluidic systems with colloidal beads in an aqueous buffer
solution [5], in a three-terminal configuration in a two-dimensional electron gas [6], and
the transport of vortices in superconductors with inhomogeneous pinning under a driving
force [7] and in Josephson junctions [8]. Rather recently, a coherent absolute negative
mobility regime has been observed and described for ac and dc driven ultracold atoms in
an optical lattice [9].
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Yet further examples of ANM have been described theoretically for the nonlinear
response in ac–dc driven tunneling transport [10], the dynamics of cooperative Brownian
motors [11], Brownian transport containing a complex topology [12, 13] and some
multi-state models with state-dependent noise [14]. The effect of an absolute negative
mobility can occur also in driven systems such as those of nonlinear inertial Brownian
dynamics [15]–[18], overdamped nonlinear Brownian motion in the presence of time-
delayed feedback [19], transport of asymmetric particles in a periodically segmented 2D
channel [20] and for a system of two coupled resistively shunted Josephson junctions [21].

The key ingredient for the occurrence of ANM in all those listed cases is that
the system (i) is driven far away from thermal equilibrium into a time-dependent
nonequilibrium state and the resulting dynamics is such that (ii) it is exhibiting a
vanishing, unbiased average nonequilibrium response. In the presence of a finite bias F , the
ANM response in a symmetric periodic potential is such that an average, anti-symmetric
transport velocity 〈v(F )〉, obeying 〈v(F )〉 = −〈v(−F )〉, occurs around the zero bias force
F = 0. This situation must be contrasted with the nonequilibrium transport generated
by the ratchet mechanism [22]: there, a non-vanishing transport velocity occurs even for
vanishing bias F = 0, and thus no anti-symmetric mobility behavior occurs around the
zero-bias regime. The reader is thus advised to carefully distinguish between anomalous
mobility regimes that are characterized as a negative differential mobility regime, or as an
absolute negative mobility regime or as a nonlinear negative-valued mobility away from
the zero-bias regime [16].

With this work, we substitute the deterministic static force F by a random force η(t)
of non-zero average. To allow for the comparison with the case of a deterministic load
F 6= 0, we require that the mean value of the random force η(t) equals the value F . As
a model for such a random force we use a random sequence of exponentially distributed
δ-shaped pulses with random amplitudes. This constitutes a generalized white Poissonian
shot noise process; e.g. see [23] for its detailed statistical properties. We demonstrate
that this shot noise can induce ANM and in the regime of ANM, it behaves on average
statistically similarly to a deterministic constant bias F . Moreover, the ANM phenomenon
is robust with respect to the distribution of the random amplitudes of the δ-pulses.

The layout of the present work is as follows. In section 2 we detail the model of a
driven inertial Brownian particle. In section 3 we detail more closely the stochastic force
acting on the particle and elucidate the resulting transport properties. The findings are
contrasted with those for an equivalent setup consisting of a deterministic bias. section 4
provides our summary and some conclusions.

2. The model

In what follows we consider an ensemble of classical, statistically independent Brownian
particles undergoing transport in an effectively one-dimensional geometry. For such a one-
dimensional system, the minimal model of the classical Brownian particle exhibiting the
ANM is formulated in terms of the equation of motion for a particle of mass M (i) moving
in a symmetric spatially periodic potential V (x) = V (x+L) of period L, (ii) being driven
by an unbiased time-periodic force A cos(Ωt) with angular frequency Ω and amplitude
strength A, and (iii) exposed to a static force F . All three components are essential in
order to take the system away from a thermal equilibrium state into a time-dependent
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driven nonequilibrium state such that the limiting Le Chatelier–Braun principle no longer
applies. The corresponding Langevin equation reads [15]

Mẍ+ Γẋ = −V ′(x) + A cos(Ωt) + F +
√

2ΓkBT ξ(t). (1)

Here, the dot and the prime denote differentiation with respect to time t and the Brownian
particle’s coordinate x, respectively. The parameter Γ is the friction coefficient, kB is
the Boltzmann constant and T is the temperature. Thermal equilibrium fluctuations are
modeled by δ-correlated Gaussian white noise ξ(t) of zero mean and unit intensity, i.e.

〈ξ(t)〉 = 0, 〈ξ(t)ξ(s)〉 = δ(t− s). (2)

We are interested in the asymptotic long time regime, where the averaged velocity assumes
the periodicity of the driving [24], i.e.,

〈v〉 = lim
t→∞

Ω

2π

∫ t+2π/Ω

t

≺ v(s) � ds, (3)

where ≺ v(s) � indicates the average over noise realizations (ensemble average). In
the deterministic case (T = 0), an additional averaging over initial conditions must be
performed.

From the symmetry of the Langevin equation it follows that the transformation
F → −F implies 〈v〉 → −〈v〉. In other words, the average velocity 〈v〉(F ) as a function
of the load F fulfills the relation 〈v〉(−F ) = −〈v〉(F ). In particular, it follows that the
transport vanishes identically, 〈v〉 ≡ 0, for F = 0. This is in clear contrast to the case for a
ratchet mechanism which exhibits finite transport at vanishing static bias [22]. Generally,
the averaged velocity 〈v〉 is a nonlinear function of the bias F . However, for small values
of F one can expect a linear response regime to be present and 〈v〉 assumes the form of
a linear function of small bias; i.e.,

〈v〉 = µF. (4)

In the normal transport regime, the mobility coefficient µ is positive, µ > 0; in distinct
contrast, µ < 0 for ANM. In [15], it has been shown that the above system exhibits ANM
and there are two fundamentally different mechanisms for ANM: (a) induced by thermal
fluctuations and (b) generated by deterministic dynamics.

We now substitute the deterministic static force F by a stochastic force η(t). Such
a case is important because it could help to explain and clarify the understanding of
unusual transport properties not only in physical but also in biological systems, e.g., the
bi-directionality of the net cargo transport inside living cells, where there is no systematic
deterministic load but rather random collisions in the form of kicks and impulses. Thus,
in place of equation (1) we shall consider the setup

Mẍ+ Γẋ = −V ′(x) + A cos(Ωt) + η(t) +
√

2ΓkBT ξ(t). (5)

The potential V (x) is assumed to be in the simplest symmetric form

V (x) = ∆V sin(2πx/L). (6)

In order to make the comparison with the case of the deterministic load F 6= 0, we set the
mean value of the random force η(t) equal to F ; i.e. 〈η(t)〉 = F . As a model for such a
stochastic biased forcing we propose a random sequence of δ-shaped pulses with random
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amplitudes defined in terms of generalized white Poissonian shot noise [23, 25]:

η(t) =

n(t)∑
i=1

ziδ(t− ti), (7)

where the ti are the arrival times of a Poissonian counting process n(t) with parameter
λ. Put differently, the probability for occurrence of k impulses in the time interval [0, t] is
governed by the Poisson distribution; i.e.,

Pr{n(t) = k} =
(λt)k

k!
e−λt. (8)

Likewise, the interval s between successive Poisson arrival times s = ti − ti−1 is
exponentially distributed with the probability density λ exp(−λs). The parameter λ
determines the mean number of δ-pulses per unit time or equivalently the mean
spiking rate of the δ-pulses. The amplitudes {zi} of the δ-pulses denote independent
random variables. These amplitudes are statistically distributed according to a common
probability density ρ(z). The process η(t) presents white noise of finite mean and a
covariance given by

〈η(t)〉 = λ〈zi〉, 〈η(t)η(s)〉 − 〈η(t)〉〈η(s)〉 = 2DPδ(t− s), (9)

where 〈zi〉 is an average over the amplitude distribution ρ(z). Poissonian white noise
is statistically symmetric if the density ρ(z) is symmetric, i.e. when ρ(z) = ρ(−z).
Consequently, 〈η(t)〉 = 0. However, we shall not consider unbiased driving but instead
consider biased white Poissonian noise for which 〈η(t)〉 6= 0. The white Poissonian noise
intensity DP reads

DP =
λ〈z2

i 〉
2

. (10)

We further assume that thermal equilibrium noise ξ(t) is uncorrelated with nonequilibrium
noise η(t), so 〈ξ(t)η(s)〉 = 〈ξ(t)〉〈η(s)〉 = 0.

Next we use a dimensionless form of equation (5). This can be achieved in several
ways. Here we propose the use of the period L as a length scale and for time the scale
τ = L

√
M/∆V [26]. Consequently, equation (5) can be rewritten in a dimensionless form

as

¨̂x+ γ ˙̂x = −V̂ ′(x̂) + a cos(ωt̂) + η̂(t̂) +
√

2γDG ξ̂(t̂), (11)

where x̂ = x/L and t̂ = t/τ . Other rescaled dimensionless parameters are the friction
coefficient γ = τΓ/M , the amplitude a = LA/∆V and the angular frequency ω = τΩ of

the time-periodic driving. The rescaled potential V̂ (x̂) = V (Lx̂)/∆V = sin(2πx̂) possesses

the unit period: V̂ (x̂) = V̂ (x̂+1). We introduced the dimensionless thermal noise intensity

DG = kBT/∆V , so the Gaussian white noise of vanishing mean ξ̂(t̂) possesses the auto-

correlation function 〈ξ̂(t̂)ξ̂(ŝ)〉= δ(t̂−ŝ). Similarly, the rescaled Poissonian white shot noise

is δ-correlated as well; i.e., 〈η̂(t̂)η̂(ŝ)〉 − 〈η̂(t̂)〉〈η̂(ŝ)〉 = 2D̂Pδ(t̂ − ŝ), with D̂p = λ̂〈ẑ2
i 〉/2,

where λ̂ = τλ and ẑi = zi/
√
M∆V . Hereafter, we will use only dimensionless variables

and shall omit the ‘hat’ notation in all quantities appearing in equation (11).
The deterministic dynamics corresponding to equation (11) exhibits an extremely rich

and complex behavior. Depending on the parameter values, periodic, quasiperiodic and
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chaotic motion can be observed [27]. In some regimes, ergodicity is broken and the direction
of the spontaneous transport depends on the choice for the initial conditions. Different
initial conditions of position and velocity may lead to radically different asymptotic
behavior; i.e. various attractors may coexist. The asymptotic regime can be classified
as either being a locked or a running state. The regime of the running state is the crucial
ingredient for the occurrence of non-vanishing transport in the deterministic regime,
allowing the system to explore all of space. At non-zero temperature, the system will
be typically ergodic with thermal fluctuations enabling diffusive transport with stochastic
escape events connecting coexisting deterministic disjoint attractors [28]. In particular,
transitions between neighboring locked states give rise to diffusive directed transport.

There exist a wealth of physical systems that can be described by using equations of the
form in equation (11). An important case that comes to mind is that of the semi-classical
dynamics of a phase difference across a resistively and capacitively shunted Josephson
junction which is driven by both a time-periodic and a random force [29]. For this setup
the space coordinate of the Brownian particle x and the driving force correspond to the
phase difference and the current applied to the Josephson junction, respectively. Other
specific systems are rotating dipoles in external fields [30], superionic conductors [31] and
charge-density waves [32], to name but a few.

3. Transport properties of a Brownian particle driven by white Gaussian and white
Poissonian shot noise

The Fokker–Planck–Kolmogorov–Feller master equation corresponding to the Langevin
equation (11) (cf. [25]) cannot be studied using closed analytical forms. Consequently,
we have to resort to comprehensive numerical simulations of the white Gaussian and
white shot noise driven Langevin dynamics. Details of the numerical scheme employed
can be found in [33, 34]. We have chosen the time step to be 0.002 × 2π/ω and
used initial conditions {x(0), ẋ(0)} that are equally distributed over the interval [0, 1]
and [−2, 2], respectively (remember that the rescaled potential possesses the unit
period). Noise averaging has been performed over 103–106 different stochastic realizations
and, additionally, over one period of the external driving period 2π/ω. All numerical
calculations have been done by use of a CUDA environment implemented on a modern
desktop GPU. This scheme allowed for a speed-up of a factor of the order ∼100 times as
compared to a common present-day CPU method [35].

To gain insight into the role of the white Poissonian shot noise we first examine
the influence of the noise parameters λ and DP on the characteristics of the stochastic
realizations. To be definite, we assume that the amplitudes {zi} of the δ-kicks are
exponentially distributed with the probability density

ρ1(z) = ζ−1θ(z)e−z/ζ , (12)

where θ(z) denotes the Heaviside step function; i.e. the noise amplitudes take on only
positive values, zi > 0. According to equation (12), the statistical moments of these
amplitudes {zi} are given by

〈zki 〉 = k!ζk, k = 1, 2, 3, . . . . (13)
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Figure 1. Three illustrative realizations of Poissonian white shot noise η(t). The
amplitudes {zi} of the δ-spikes are distributed according to the exponential
probability density (12). In all three cases, the mean value is held fixed,
i.e., 〈η(t)〉 = ζλ =

√
λDP = 1. The spike rate λ and the noise intensity DP are

varied as follows: in (a): λ = 1, DP = 1; in (b): λ = 2, DP = 0.5; in (c): λ = 0.5,
DP = 2.

From equations (9) and (10) it follows that the mean value 〈η(t)〉 and the intensity DP of
the white shot noise read

〈η(t)〉 = λζ, DP = λζ2. (14)

We next use λ and DP as the quantifiers for transport; this yields 〈η(t)〉 =
√
λDP and

ζ =
√
DP/λ. Three typical realizations of white Poissonian noises are depicted in figure 1.

In figure 1(a), the mean spiking rate of pulses λ and the noise intensity DP are fixed at
1. In order to ensure that the condition 〈η(t)〉 = 1 holds, we may proceed in two different
ways. In the first approach we increase the spiking rate λ while correspondingly reducing
the noise intensity DP. Then the particle is frequently kicked by weak δ-pulses. This case
is depicted in figure 1(b). In the second approach we decrease the spiking rate λ and
increase the noise intensity DP. Then the particle is rarely kicked by large amplitudes of
the δ-spikes; cf. figure 1(c). It is worth mentioning that in the limit of vanishing amplitudes
zi, when ζ → 0, and for a divergent spiking rate λ→∞, with λζ2 = DP held fixed, the
zero-mean process η(t)− 〈η(t)〉 approaches Gaussian white noise of intensity DP.

doi:10.1088/1742-5468/2013/02/P02044 7



        
                

                                                     

Figure 2. Ohmic-like dependence of the asymptotic, time-averaged asymptotic
velocity 〈v〉 on the mean value of the shot noise 〈η(t)〉. Panel (a): the influence
of the amplitude strength a of the time-periodic driving is illustrated for fixed
spiking rate λ = 0.1 of the δ-spikes. Panel (b): the role of the spiking rate is
depicted for the ac driving amplitude a = 4.2. The spike amplitudes {zi} of the
δ-kicks are distributed according to the exponential probability density ρ1(z)
in equation (12). The remaining parameters are fixed as follows: the friction
coefficient is γ = 0.9, the thermal fluctuation intensity is DG = 0.001 and the
angular driving frequency is ω = 4.9.

3.1. The Ohmic-like transport regime

Let us comment first on the long time behavior of the driven system considered in
equation (11). If the Poissonian white shot noise is absent in equation (11), then the
average velocity 〈v〉 vanishes identically. This feature follows from the presence of reflection
symmetry of the potential V (x) and the time reversal symmetry of harmonic driving. Put
differently, a directed ratchet transport [22] is absent.

In the presence of white Poissonian shot noise driving, however, a statistical bias
emerges [36], which is due to the non-vanishing average. This causes a non-zero mean
velocity, which typically assumes the sign of the average of the white shot noise. We recall
that there are only positive δ-kicks and therefore we expect the average velocity to be
positive as well. An opposite behavior would be counterintuitive. Because the dynamics
as determined by equation (11) is strongly nonlinear and the stochastic phase space of
the system is multidimensional, it should not come as a surprise that the dependence of
the average velocity on 〈η(t)〉 is nonlinear as well and may even behave in the non-
monotonic manner of the system parameters. The normal expected behavior for the
ensemble-averaged and time-averaged velocity is that of an increasing function for 〈η(t)〉.
Such a normal regime is depicted in figure 2. We used therein the following parameter
values: the friction coefficient has been chosen as γ = 0.9, the thermal fluctuation intensity
is DG = 0.001, and the angular driving frequency is ω = 4.9. In panel (a), the influence
of the driving amplitude a is shown. Panel (b) depicts the role of the spiking rate λ of
the δ-pulses. The corresponding shot noise characteristics corresponds to rare but large
δ-spikes. As a consequence, the average velocity varies almost linearly with the mean value
of the shot noise 〈η(t)〉, resulting in an Ohmic-like transport behavior.

doi:10.1088/1742-5468/2013/02/P02044 8



        
                

                                                     

Figure 3. Absolute negative mobility (ANM). Panel (a): the asymptotic time-
averaged velocity 〈v〉 as a function of the mean value of the white shot noise
〈η(t)〉 for various spiking frequencies λ and fixed thermal fluctuation intensity
DG = 0.001. In panel (b) the role of the thermal fluctuations is shown for two
spiking frequencies λ = 4 (solid line, DP = 6 × 10−4) and λ = 512 (dotted line,
DP = 2 × 10−5). Note that for the value λ = 512, ANM is induced by thermal
fluctuations. There occurs an optimal temperature DG at which ANM is most
pronounced. In both panels: the amplitudes {zi} of the δ-spikes are exponentially
distributed; the friction coefficient is γ = 0.9, and the ac driving amplitude is
a = 4.2 with an angular driving frequency ω = 4.9.

3.2. The regime of absolute negative mobility

We have randomly searched the parameter space and found that the normal, Ohmic-
like transport regime dominates in the parameter space. Keeping in mind that there are
only positive δ-kicks of white shot noise acting on the Brownian particle, we inquire
whether we can identify parameter regimes for which the stationary mean velocity of
the particle assumes negative values, i.e. the particle moves on average oppositely to the
applied δ-spikes. In figure 3(a) we exemplify this situation. The characteristic feature is
the emergence of extended regimes, 〈η(t)〉 > 0, where the average velocity 〈v〉, starting
out from zero, assumes a negative response; i.e. ANM occurs. Moreover, there exists an
optimal strength for 〈η(t)〉 at which the average velocity assumes its minimal value. We
detect that if the spiking rate λ increases, then the minimum of the resulting average
transport velocity is lowered. Notably, we have found that there exists a limiting minimal
value for the transport velocity which is assumed for λ→∞. For λ > 512 (see the dotted
line) the velocity characteristics becomes numerically indistinguishable.

The role of thermal fluctuations is depicted in panel (b). Two distinct mechanisms
for the ANM-like effect can be observed. For λ = 4, the negative velocity is caused by
deterministic chaotic dynamics because even at zero temperature, DG = 0, the velocity
is negative. In this regime, temperature plays a destructive role for ANM: increase of
temperature monotonically diminishes the negative average velocity. For λ = 512, the
negative velocity is solely induced by thermal fluctuations. For low temperatures (small
DG) ANM does not occur. If thermal fluctuations grow (DG increases) the ANM effect
emerges and intensifies up to the optimal temperature where ANM is most pronounced.
Subsequent increase of the temperature reduces ANM and finally temperature destroys it

doi:10.1088/1742-5468/2013/02/P02044 9



        
                

                                                     

Figure 4. Panel (a): the time-averaged asymptotic velocity 〈v〉 as a function of
the white shot noise intensity DP for selected values of the spiking frequencies
λ. Panel (b): average velocity as a function of the spiking rate λ for several
values of the white shot noise intensity DP. The amplitudes {zi} of the δ-kicks
are generated according to the distribution ρ1(z) and the thermal fluctuation
intensity DG = 0.001. Other parameters are the same as those detailed in figure 3.

completely. For ‘high’ temperature, transport is normal. The reader may find a detailed
explanation of the origin of anomalous transport in such systems in [15].

3.3. Controlling transport

The transport properties of the Brownian particle can be controlled by varying the
parameters of the white Poissonian noise; i.e., the values for λ or DP. The dependence
of the asymptotic average velocity 〈v〉 on these white shot noise parameters is presented
in figures 4(a) and (b). In figure 4(a) we study the role of an increasing white shot noise
intensity DP. As an example, consider the case with λ = 10 in figure 4(a). For weak
shot noise intensity DP the velocity exhibits ANM and its minimal value decreases with
increasing DP. For strong white shot noise, however, when the intensity DP is sufficiently
large, the average transport velocity turns around towards a normal regime, undergoing
a current reversal at some finite noise strength DP.

The spiking rate λ of the white shot noise also serves as a control parameter for ANM.
The numerical findings are depicted in figure 4(b) for a set of selected values of the white
shot noise intensity DP. As before we find that the ANM can be controlled upon varying
the spiking rate λ. Again we detect a current reversal at finite spiking rate λ; this reversal
value shifts to much larger spiking frequencies with decreasing white shot noise intensity
DP. In summary, one can conveniently manipulate the direction of the particle transport
and tune the ANM regime upon varying the two shot noise parameters.

3.4. The robustness of ANM to amplitude statistics

We also address the dependence of ANM transport for different statistics of the amplitude
{zi} entering the generalized white shot noise. In doing so we choose two additional
amplitude statistics that derive from special cases of the Gamma distribution. In

doi:10.1088/1742-5468/2013/02/P02044 10



        
                

                                                     

particular, we study

ρ2(z) = ζ−2θ(z)ze−z/ζ (15)

and

ρ3(z) = 1
2
ζ−3θ(z)z2e−z/ζ , (16)

where θ(z) is the Heaviside function. For the density ρ2(z), the first two moments read

〈zi〉 = 2ζ, 〈z2
i 〉 = 6ζ2. (17)

As a result, upon inspecting equations (9) and (10), we see that the mean value is
〈η(t)〉 = 2

√
DPλ/3 and the white shot intensity reads DP = 3λζ2. Likewise, for the density

ρ3(z), we obtain

〈zi〉 = 3ζ, 〈z2
i 〉 = 12ζ2. (18)

In this case we find that 〈η(t)〉 =
√

3DPλ/2 and DP = 6λζ2. The main difference between
the exponential probability density ρ1(z) in equation (12) and these two integrable
densities is a non-monotonic, bell-shaped form; see figure 5(a). As a consequence, with
ρ1(z), very small noise amplitudes are the most likely. In the case of ρ2(z), the maximum
of the density occurs for the amplitudes zi = ζ, while for ρ3(z), the amplitudes zi = 2ζ
are most probable. All three probability densities are depicted in figure 5(a). Panel (b)
of this figure depicts the dependence of the averaged velocity 〈v〉 on the three statistical
densities for shot noise amplitudes {zi} at a fixed spiking rate λ = 10.

We observe that in the regime of ANM, white Poissonian noise with amplitude density
ρ3(z) is slightly more effective. In figure 5(c) we show the behavior for the various
amplitude statistics when the spiking rate λ is varied. Overall we find (for the chosen set
of three examples) a weak dependence of the ANM regime on the statistics for the noise
amplitudes. We therefore may assume that the statistics of the amplitudes only weakly
impacts the overall ANM regime, apart from possibly for some cases with abnormal,
stylized density features.

3.5. The comparison with deterministic bias

As a final point of analysis, we compare ANM generated by Poissonian shot noise and
the external force F which is constant in space and time. So, we have to consider the
dimensionless form of the Langevin equation corresponding to (1), namely,

ẍ+ γẋ = −V ′(x) + a cos(ωt) + f +
√

2γDG ξ(t), (19)

where the dimensionless deterministic constant force f = (L/∆V )F . In order to compare
the scenario of the deterministic force f with the system driven by Poissonian white shot
noise, we need to impose the additional condition

〈η(t)〉 = f. (20)

We consider the following parameter regime: the friction coefficient is γ = 0.9, the ac
driving amplitude is a = 4.2, the angular driving frequency is ω = 4.9 and the thermal
fluctuation intensity is DG = 0.001. We stress that it is the same parameter regime as in
figure 2(b), where the Ohmic-like transport is observed for the case of a low spiking rate
λ ≤ 0.3. In figure 6, we show the dependence of the asymptotic average velocity 〈v〉 on the

doi:10.1088/1742-5468/2013/02/P02044 11



        
                

                                                     

Figure 5. Panel (a): plots of three probability densities of the amplitudes {zi}.
Panel (b): the dependence of the time-averaged, asymptotic velocity 〈v〉 on
the intensity DP of the shot noise η(t) for three statistical distributions of
the amplitudes {zi} of the δ-pulses and for λ = 10. Panel (c): asymptotic
time-averaged transport velocity versus the spiking rate λ for three amplitude
densities as depicted in panel (a) and for an overall white shot noise intensity
DP = 10−3. The remaining parameters are as those given in figure 3 and the
thermal fluctuation intensity DG = 0.001.

constant deterministic bias and the mean value of the shot noise 〈η(t)〉 for the case of (i) a
moderate spiking rate λ = 4 and (ii) a large spiking rate λ = 512. For the low firing rate,
one can observe normal transport; for moderate values of the spiking rate λ, we detect
small windows of occurrence of ANM. Seemingly, the case with the deterministic bias is
most effective for ANM, yielding a wide regime of bias values f . For a large spiking rate of
the white shot noise, we do indeed detect convergence towards the deterministic constant
bias case; cf. panel (b) in figure 6.

4. Conclusions

With this work we presented a detailed study of the transport properties of an inertial
Brownian particle which moves in a periodic, symmetric potential and which in addition
is exposed to periodic harmonic ac driving and (generalized) Poissonian white shot noise
of finite bias F . We have demonstrated the possibility of manipulating the direction
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Figure 6. The dependence of the asymptotic time-averaged velocity 〈v〉 on the
constant bias f versus the asymptotic time-averaged mean value of the shot noise
〈η(t)〉 for λ = 4 in panel (a) and λ = 512 in panel (b). The thermal fluctuation
intensity is DG = 0.001. The remaining parameters are the same as in panel (b) of
figure 2. Perfect equivalence (i.e. indistinguishable line plots) of the deterministic
and random forcing is observed for a high spiking rate of δ-pulses of Poissonian
noise .

of transport just by adjusting the parameters of the white shot noise. Moreover, in
such systems, Poissonian white shot noise can induce anomalous transport effects. In
particular, such dynamics is able to exhibit an absolute negative mobility regime. This
ANM phenomenon has its roots in a purely stochastic dynamics of the system and is
robust with respect to the distribution of the random amplitudes of the δ-pulses. In some
regions of parameter space, one can find an impact of Poissonian shot noise similar to that
of the deterministic bias. In general, the exact equivalence of the two sources of bias does
not hold true. However, in the ANM regime the equivalence is observed in the limiting
case of a spiking rate λ→∞ of the δ-pulses. For moderate to large λ, the ANM induced
by shot noise is suppressed as compared with the case for a deterministic bias. Notably,
for a small spiking rate λ, the ANM response is no longer present and instead a normal,
Ohmic-like behavior occurs.

Our results can readily be experimentally tested with an accessible setup consisting
of a single resistively and capacitively shunted Josephson junction device operating in its
classical regime.
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[32] Grüner G, Zawadowski A and Chaikin P M, 1981 Phys. Rev. Lett. 46 511
[33] Kim C, Lee E, Hänggi P and Talkner P, 2007 Phys. Rev. E 76 011109
[34] Grigoriu M, 2009 Phys. Rev. E 80 026704
[35] Januszewski M and Kostur M, 2010 Comput. Phys. Commun. 181 183
[36] Hänggi P, Bartussek R, Talkner P and  Luczka J, 1996 Europhys. Lett. 35 315

 Luczka J, Bartussek R and Hänggi P, 1995 Europhys. Lett. 31 431

doi:10.1088/1742-5468/2013/02/P02044 14

http://dx.doi.org/10.1103/PhysRevLett.85.1302
http://dx.doi.org/10.1103/PhysRevLett.85.1302
http://dx.doi.org/10.1103/PhysRevA.31.1974
http://dx.doi.org/10.1103/PhysRevA.31.1974
http://dx.doi.org/10.1109/TPS.2005.845122
http://dx.doi.org/10.1109/TPS.2005.845122
http://dx.doi.org/10.1103/PhysRevLett.87.126401
http://dx.doi.org/10.1103/PhysRevLett.87.126401
http://dx.doi.org/10.1038/436928a
http://dx.doi.org/10.1038/436928a
http://dx.doi.org/10.1039/b918716m
http://dx.doi.org/10.1039/b918716m
http://dx.doi.org/10.1103/PhysRevLett.98.186801
http://dx.doi.org/10.1103/PhysRevLett.98.186801
http://dx.doi.org/10.1103/PhysRevB.75.224507
http://dx.doi.org/10.1103/PhysRevB.75.224507
http://dx.doi.org/10.1103/PhysRevLett.100.217001
http://dx.doi.org/10.1103/PhysRevLett.100.217001
http://arxiv.org/abs/1202.5174
http://arxiv.org/abs/1202.5174
http://arxiv.org/abs/1202.5174
http://arxiv.org/abs/1202.5174
http://arxiv.org/abs/1202.5174
http://arxiv.org/abs/1202.5174
http://arxiv.org/abs/1202.5174
http://arxiv.org/abs/1202.5174
http://arxiv.org/abs/1202.5174
http://dx.doi.org/10.1209/epl/i1997-00274-6
http://dx.doi.org/10.1209/epl/i1997-00274-6
http://dx.doi.org/10.1209/epl/i1999-00202-4
http://dx.doi.org/10.1209/epl/i1999-00202-4
http://dx.doi.org/10.1002/1521-3889(200010)9:9/10<713::AID-ANDP713>3.0.CO;2-I
http://dx.doi.org/10.1002/1521-3889(200010)9:9/10<713::AID-ANDP713>3.0.CO;2-I
http://dx.doi.org/10.1103/PhysRevLett.88.190601
http://dx.doi.org/10.1103/PhysRevLett.88.190601
http://dx.doi.org/10.1103/PhysRevE.66.066132
http://dx.doi.org/10.1103/PhysRevE.66.066132
http://dx.doi.org/10.1103/PhysRevE.65.030101
http://dx.doi.org/10.1103/PhysRevE.65.030101
http://dx.doi.org/10.1103/PhysRevE.70.041107
http://dx.doi.org/10.1103/PhysRevE.70.041107
http://dx.doi.org/10.1103/PhysRevLett.98.040601
http://dx.doi.org/10.1103/PhysRevLett.98.040601
http://dx.doi.org/10.1103/PhysRevB.77.104509
http://dx.doi.org/10.1103/PhysRevB.77.104509
http://dx.doi.org/10.1016/j.physe.2009.06.062
http://dx.doi.org/10.1016/j.physe.2009.06.062
http://dx.doi.org/10.1103/PhysRevE.76.051110
http://dx.doi.org/10.1103/PhysRevE.76.051110
http://dx.doi.org/10.1103/PhysRevE.79.041114
http://dx.doi.org/10.1103/PhysRevE.79.041114
http://dx.doi.org/10.1088/1742-5468/2011/11/P11016
http://dx.doi.org/10.1103/PhysRevE.82.041121
http://dx.doi.org/10.1103/PhysRevE.82.041121
http://dx.doi.org/10.1103/PhysRevE.83.051117
http://dx.doi.org/10.1103/PhysRevE.83.051117
http://dx.doi.org/10.1103/RevModPhys.81.387
http://dx.doi.org/10.1103/RevModPhys.81.387
http://dx.doi.org/10.1063/1.1535005
http://dx.doi.org/10.1063/1.1535005
http://dx.doi.org/10.1007/BF01323672
http://dx.doi.org/10.1007/BF01323672
http://dx.doi.org/10.1103/PhysRevA.41.2977
http://dx.doi.org/10.1103/PhysRevA.41.2977
http://dx.doi.org/10.1103/PhysRevA.44.8032
http://dx.doi.org/10.1103/PhysRevA.44.8032
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1007/BF01325291
http://dx.doi.org/10.1007/BF01325291
http://dx.doi.org/10.1007/BF01297527
http://dx.doi.org/10.1007/BF01297527
http://dx.doi.org/10.1016/S0378-4371(99)00314-3
http://dx.doi.org/10.1016/S0378-4371(99)00314-3
http://dx.doi.org/10.1016/j.biosystems.2008.05.033
http://dx.doi.org/10.1016/j.biosystems.2008.05.033
http://dx.doi.org/10.1103/PhysRevLett.76.3436
http://dx.doi.org/10.1103/PhysRevLett.76.3436
http://dx.doi.org/10.1103/PhysRevLett.84.258
http://dx.doi.org/10.1103/PhysRevLett.84.258
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1088/0034-4885/59/8/001
http://dx.doi.org/10.1088/0034-4885/59/8/001
http://dx.doi.org/10.1103/PhysRevLett.35.1776
http://dx.doi.org/10.1103/PhysRevLett.35.1776
http://dx.doi.org/10.1007/BF01313607
http://dx.doi.org/10.1007/BF01313607
http://dx.doi.org/10.1016/0038-1098(79)90745-2
http://dx.doi.org/10.1016/0038-1098(79)90745-2
http://dx.doi.org/10.1103/PhysRevLett.46.511
http://dx.doi.org/10.1103/PhysRevLett.46.511
http://dx.doi.org/10.1103/PhysRevE.76.011109
http://dx.doi.org/10.1103/PhysRevE.76.011109
http://dx.doi.org/10.1016/j.cpc.2009.09.009
http://dx.doi.org/10.1016/j.cpc.2009.09.009
http://dx.doi.org/10.1209/epl/i1996-00573-x
http://dx.doi.org/10.1209/epl/i1996-00573-x
http://dx.doi.org/10.1209/0295-5075/31/8/002
http://dx.doi.org/10.1209/0295-5075/31/8/002

	Absolute negative mobility induced by white Poissonian noise
	Contents
	Introduction
	The model
	Transport properties of a Brownian particle driven by white Gaussian and white Poissonian shot noise
	The Ohmic-like transport regime
	The regime of absolute negative mobility
	Controlling transport
	The robustness of ANM to amplitude statistics
	The comparison with deterministic bias

	Conclusions
	Acknowledgments
	References


