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Tuning the Mobility of a Driven Bose-Einstein Condensate via Diabatic Floquet Bands
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We study the response of ultracold atoms to a weak force in the presence of a temporally strongly
modulated optical lattice potential. It is experimentally demonstrated that the strong ac driving allows for
a tailoring of the mobility of a dilute atomic Bose-Einstein condensate with the atoms moving ballistically
either along or against the direction of the applied force. Our results are in agreement with a theoretical
analysis of the Floquet spectrum of a model system, thus revealing the existence of diabatic Floquet bands
in the atoms’ band spectra and highlighting their role in the nonequilibrium transport of the atoms.
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Experiments with ultracold atomic gases in periodi-
cally modulated lattice potentials have shown that these
systems represent an attractive testing ground to explore
nonequilibrium quantum states [1,2]. Along these lines,
the suppression of tunneling in ac-driven optical lattices
was experimentally observed, both in the single-particle
[3] and in the many-body [4] regimes. Other experiments
have recently reported the simulation of gauge fields for
neutral and spinless atoms [5].

Common knowledge in nonequilibrium statistical phys-
ics [6] indicates that not only the state of a system
shifted from equilibrium but also its response to external
perturbations can differ substantially from those exhibited
by the system at rest. The equilibrium response of one of
the simplest quantum models, a particle placed in a
stationary periodic potential, when exposed to a weak
constant force F' is well understood: On a short-time scale,
t < 27h/FL = Ty, where L is the period of the potential,
the particle reacts by moving with the velocity determined
by the local slope of the ground band. On larger time
scales, t=2wh/FL, the response evolves into the
celebrated phenomenon of Bloch oscillations [7,8]. Weak
periodic modulations of the potential can change the
response. It has been demonstrated that these can propel
the particle over many Brillouin zones, thus rectifying
Bloch oscillations into ballistic transport [9]. This observa-
tion, along with the results reported in the above-cited
works [3-5], are well explained by assuming that the tem-
poral modulations do not push the particle outside the
ground band. The single-band approach is justified as long
as the driving amplitude remains small, so the observed
effects can be attributed to a modulation-induced renormal-
ization of the potential [10,11]. Strong driving, however,
intermingles eigenstates of the stationary system and sculpts
a new spectrum of time-dependent dressed states [12,13], so
that the system dynamics no longer fits the perturbative
picture [14]. This idea has been exploited in recent experi-
ments with coherent quantum ratchets [16—18] and was also
used to create new topological states [19].

0031-9007/13/110(13)/135302(5)

135302-1

PACS numbers: 67.85.Hj, 03.75.Kk, 05.60.Gg

A distinct feature of strongly driven quantum systems is
the presence in their Floquet spectra [20,21] of so-called
diabatic bands [22,23]. The states belonging to these bands
remain near isolated from the rest of system Hilbert space
upon parameter variations. In the quasiclassical limit dia-
batic bands are also called regular bands because of the
correspondence between the band eigenstates and regular
invariant manifolds of the system in the classical limit [23].
It is possible to detect a diabatic band of a semiclassical
system by populating it with an initial wave packet located
in the corresponding region of the classical phase space.
Evidently, this recipe no longer applies for the systems
operating in the deep quantum limit.

Here we show that in this limit diabatic Floquet states
reveal their presence via a strong ballisticlike response of a
driven quantum particle to a weak net force. Upon chang-
ing the modulation parameters, we populated different
diabatic bands and switched between regimes of positive
and negative responses; i.e., the particle then moves against
the applied bias. We measured the mobility [24] of a dilute
atomic rubidium Bose-Einstein condensate (BEC) in an
ac-driven optical potential. Good agreement between the
experimental results and our theoretical model is obtained.

Model.—Consider a particle with mass M moving in a
time- and space-periodic potential U(Z%, ) = V(X)A(t), where
the periodic functions V(x + L) = V(x) and A(z + T) =
A(t) possess the periods L and T = 27/ w, respectively. In
addition, let the particle be exposed to a tunable net bias F.
The corresponding Hamiltonian then reads

A = p*/2M + V(R)A(r) — F#. (1)

The Hamiltonian of the nondriven system, i.e., when A(r) = 1
and F = 0, is a spatially periodic operator and its reciprocal
space is spanned by the Bloch bands, E,(k), k €
[=@/L,7/L], n=1,2,.... By assuming that the initial
state is localized at the point with quasimomentum « = 0,
the action of a bias F' can be considered as a linear ramp of the
quasimomentum, «(¢) = Ft/h. On a time scale t < T},
the response of the system to a weak bias is determined by
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the band curvature 7~ 20%E, (k)/dk?, i.e., by the effective
mass [25]. The curvature of the ground-state band is small
and positive near the center of the Brillouin zone. One
could, in principle, obtain a variety of mobility responses
by placing the particle into different excited bands; how-
ever, the exponentially small splitting between neighboring
bands makes this idea less practical. It is possible to prepare
an initial atomic sample outside the center of the Brillouin
zone, where the slope of the ground band is nonzero [26];
this would mean that the atoms were already set into a slow
motion in the absence of any bias.

The dynamics of such a time-modulated system (1),
A(r) # const, is more diverse. The Hamiltonian is periodic
in time and the solution of the corresponding Schrodinger
equation for a given value of the quasimomentum «;, i.e.,

[A(k, t) — ihd, ¥ (1) = 0, H(k, t+T)=H(k, 1),

2)

can be obtained by solving the eigenvalue problem for the
operator that propagates the system over one period of
driving [21],

[, (D)) = U ,,,(0)) = expl—i€, (x)t/1]| b, (0)).
3)

The eigenfunctions obey the Floquet theorem, |, (7)) =
exp[—i€,(x)t/h]l}, (1)), where Floquet states are time
periodic, |¢, (t +T)) = |¢, (t + T)). The quasiener-
gies €,(k) are conventionally restricted to the interval
[—h#w/T, har/T]. Figure 1 depicts Floquet band spectra
of the temporally periodically driven optical lattice system,
for typical experimental parameters and two different drive
frequencies. The spectra exhibit a complex, weblike struc-
ture, which can be tailored by varying the modulation A(r).
The finiteness of the quasienergy range creates a certain
problem with the ordering of Floquet bands. The concept
of adiabatic following of a band loses its mathematical
rigor here because the set of avoided crossing points is
dense everywhere [13,27]. However, there exists no
problem with the concept of diabatic following Ref. [22].
A diabatic band can be obtained by moving through the
parameter space and connecting segments of different
bands by ignoring all avoided crossings met on the way
when the gap width of the upcoming avoided crossing is
below certain threshold &; see Refs. [22,23] for details. The
threshold is related to the velocity of the excursion through
the parameter space, which here is given by the strength of
the bias F [28]. The corresponding diabatic bands assume
straight lines, running across the Brillouin zone [23,29];
cf. Fig. 1(b).

Transport properties of the nth Floquet state are
characterized by the average velocity [29], v, , =
(v, ()7, where v, (¢) is the instantaneous expectation
value of the velocity operator, ¥ = (—ih/M)d,, and (.. .)r
denotes a time average over one period of the driving [30].
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FIG. 1 (color online). Calculated Floquet band spectra of the
system, Egs. (1), (5), and (6), for typical experimental parame-
ters. Only the first eight Floquet bands, maximally overlapping
with the Bloch band of the undriven potential, are depicted. The
heavy (magenta) lines mark the Floquet states with the largest
overlap to the initial atomic state (see text), which here transform
themselves into ballistic diabatic bands after passing a first,
relatively broad, avoided crossing. A small change in the driving
frequency allows switching from a ballistic band with negative
velocity (left panel) to the symmetry-related band of positive
velocity (right panel). The time-reversal symmetry of the system
dynamics implies that the negative part of the Brillouin zone is a
mirror image of the presented one. The used parameters are
Vi =0.352 X 16E,, V, =0.11 X 16E,, A; = 0.66, A, = 0.4.
The driving frequency is measured in units of wp = 8w, (see
text). The parameters w, and E, = hw, denote the recoil fre-
quency and the recoil energy, respectively.

By virtue of the Hellmann-Feynman theorem [20,21], the
average velocity of the state is equal to the local slope of
the corresponding Floquet band [29],

U, = h10€,(k)/dk. 4

Because diabatic bands have near constant velocities,
they are entitled to be termed ballistic bands. The issue
of symmetry is significant here: When the system
Hamiltonian equation (1) is invariant under time or space
reversal, all Floquet bands are flat at the center of the
Brillouin zone, thus exhibiting zero average velocities
[16,17]. Formally, the presence of a symmetry implies
that the potential function U(x, t) = A(#)V(x) remains in-
variant either under the transformation S,: r— —r + 7,
xX—x+ y or S'x: t—t+ 7, x— —x+ ), where 7 and
x are appropriate shift constants; see in Ref. [17]. In
contrast to genuine Floquet bands, a diabatic band does
need to be periodic in quasimomentum k space [16] and
sometimes can wrap the Brillouin zone several times
before meeting a broad avoided crossing and losing the
diabaticity property. This fact does not contradict the above
symmetry statement because the presence of a symmetry
only means that two ballistic bands with opposite velocities
cross each other at the point k = 0. Note, however, that
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such a crossing mimics a narrow avoided crossing between
the corresponding pair of genuine Floquet bands.

Consider next the situation when at time ¢ = 0 a dilute
and delocalized cloud of ultracold atoms is loaded into the
temporally driven lattice potential. The initial atomic wave
function | @) has the form of a wave packet, well localized
in quasimomentum at the point k = 0. For our calcula-
tions, we assume that the initial atomic wave function is of
the form of the Bloch ground state of the nondriven lattice
potential, which is experimentally reasonable. We can
order the Floquet states, FS[n], according to their overlaps
with the initial state, i.e., ¢, = (¢, «=o(O)l@)* ¢ >
¢y > .... We find that, for our experimental parameters,
the overlap with the first Floquet band is ¢; = 0.85, and it is
natural to expect that the system mobility is determined
mainly by the properties of this band. We are interested
in the situation where this state transforms itself into a
ballistic band outside the center of the Brillouin zone, for
example, due to a broad avoided crossing with another
Floquet state, as is the case for the parameters used in
Fig. 1. A motion through the « space, induced by a weak
bias force, is slow enough for the system to remain on the
band when passing through this ac. We expect that the
nonvanishing slope of the band beyond this point will
determine the mean particle velocity. In general, the
described scenario assumes that (i) a significant population
of the relevant band can be achieved and (ii) the band group
velocity is high. There is no general recipe how to manage
such a situation. There are, however, several prerequisites
serving as a guide. First, the system should operate in the
deep quantum regime, ideally with only few Floquet states
within the potential range. Otherwise, the initial wave
function will be distributed among several Floquet states
of different group velocities. Their joint contributions then
yield a inconclusive asymptotic response, while interfer-
ence effects will blur the finite-time response even more.
Second, the modulation frequency should be chosen close
to the frequency of oscillations at the bottom of the poten-
tial well, wp = 47°h/L*M. In numerical studies we have
observed that the resonant modulation typically produces
at the vicinity of the initially populated FS[1] state at
k = 0 two well-separated Floquet states that are ballistic,
with opposite velocities just outside the center of the zone.
By slightly adjusting the frequency of the driving, one can
then map the initially populated Floquet state (which has a
vanishing group velocity) into a ballistic state by means of
a broad avoided crossing between the FS[1] state and one
of the states of the ballistic pair.

Experiment.—In our experiments we used an optical
potential, U(x, 1) = V(x)A(r), where V(x) and A(r) are of
the form [17,18,23]

V(x) = (V,/2) cos(2kx) + (V,/2) sin(4kx), (5)

A(t) = A,sin*(wt/2) + A,cos?(wt). (6)

Here, A is the wavelength of the driving laser field and
k=2m/A. Using the spatial lattice period, L = A/2,
we arrive at a resonance frequency of wp = 8w,, where
w, = hk?/2My, is the recoil frequency, and E, = hw,
denotes the recoil energy. Note that this setup, although
possessing a ratchetlike spatial profile [31], is perfectly
time symmetric since A(—r) = A(r) [32]. Therefore, in the
absence of an external bias force, F' = 0, no transport
occurs [17,34]; i.e., the average current vanishes for any
initial atomic wave packet with zero average velocity. We
performed the experiments by loading a Bose-Einstein
condensate of rubidium atoms into a periodically time-
modulated optical potential, of the form given by Eq. (4),
to an external dc bias force.

We start the experimental sequence by preparing a Bose-
Einstein condensate of rubidium (}’Rb) atoms in a far
detuned optical dipole trap. During the next step the atoms
are allowed to freely expand ballistically for 2.5 ms, which
reduces the atomic density. This leaves the atomic cloud
with essentially kinetic energy only, while the interaction
energy is strongly diminished. After then loading the atoms
into an optical lattice potential, a dc bias is realized by
moving the lattice potential with a constant acceleration.
This acceleration emulates a constant force in the comov-
ing frame (see the Supplemental Material [33]). The mea-
sured mean velocity of the atomic cloud versus the bias
strength F is depicted in Fig. 2(b). For small values of
F >0, a negative response is clearly detectable; i.e., the
average atomic velocity is opposite to the applied bias
force. We attribute this to the population of the Floquet
state marked by the heavy line in the left panel of Fig. 1,
which for positive quasimomentum values has a negative
group velocity. For larger absolute values of the dc
force, above roughly |F| = 0.02E,/A, the mobility again
becomes positive. This is attributed to the population of
other Floquet states when moving beyond the quasimomen-
tum region indicated by the thick (magenta) lines in Fig. 1.
We have also investigated the dependence of the atomic
transport on the drive frequency; see Fig. 3(a). By changing
the frequency to slightly higher values, the atomic mobility
can be tuned to a normal, i.e., positive, response. This
response is attributed to the overlap of the FS[1] state
with the symmetry-related counterpart of the previously
involved ballistic band, as shown in the right panel of Fig. 1.

An important issue is the stability of the mobility
response. Let us first discuss this issue in two different
limits, classical and quantum ones. In the classical dis-
sipationless limit, a stationary motion against a constant
bias is possible [35] due to the existence of invariant
manifolds, i.e. transporting regular islands, periodic
orbits, and cantori [36], in the phase space of an ac-driven
Hamiltonian system [29]. Diabatic bands can be viewed
as the quantum counterpart of classical ballistic mani-
folds. However, this analogy is not exact. In contrast to
classical manifolds, diabatic bands are not completely
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FIG. 2 (color online). (a) Time-of-flight (TOF) images of the
atomic cloud after 7., = 26T periods of modulation for F =
—0.0181E,/A (left), O (center), and 0.0181E,/A (right). The
visible atomic diffraction orders are s = —2, ..., 2 (from bottom
to top). (b) Measured mean velocity of the atomic cloud in the
laboratory frame versus applied bias F. Note that the overall
antisymmetric response behavior; ie., U(F) = —o(—F). The
mean velocity of the atomic cloud was calculated as ©v =
/My, with p = 2hkY s|c|?, where |c,|? denotes the fraction
of atoms in the sth order momentum state, |2shk), with s = *1,
*2. The error bars show the standard deviation of the mean value.
The enlarged (red) data points correspond to the TOF images. The
solid lines depict the results of numerical simulations of the theory.
The initial state was chosen in the form of a narrow Gaussian
packet in the quasimomentum space, with the center at k = 0 and
dispersion o, = 0.047k (see the Supplemental Material [33]). The
other parameters are the same as in Fig. 1.

isolated because any finite bias sets these bands into a
contact with other states [37]. In addition, the band can
lose its diabatic property by encountering a broad avoided
crossing; see left panel of Fig. 1. However, the band could
run over a substantial region of the k space—or even
perform several revolutions around the Brillouin zone—
before this happens, thus transforming the ballistic
response into a long-lasting metastable phenomenon. In
order to experimentally investigate this issue, we have
measured the velocity of the atomic cloud as a function of
the exposition time for two different values of the driving
frequency, both of which produced negative responses.
Figure 3(b) presents the results of the measurements. For
a modulation frequency w/wgp = 1.05 (red squares), the
mean momentum of the atomic cloud initially increases,
reaching a broad maximum value of 0.4#4k after around 30
modulation periods, and then starts to decrease again,
approaching zero at t = 807. When slightly changing
the modulation frequency to w/wg = 1.076 (blue dots),
the observed atomic momentum increases to roughly
0.9%k. This value is maintained to much longer modula-
tion times. This finding is in agreement with the fact
that the structure of Floquet bands is very sensitive to
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FIG. 3 (color online). (a) Average velocity of the atomic cloud
in the laboratory frame as a function of the modulation frequency
o (blue dots) for a bias strength F = —0.0181E,/A and expo-
sition time 267’; (b) Time evolution of the average cloud velocity
for driving frequencies w/wgr = 1.05 (red squares) and
w/wg = 1.076 (blue dots). The solid lines depict the results
of numerical simulations (see the Supplemental Material [33]).
The error bars show the standard deviation of the mean. The
remaining parameters are the same as in Fig. 1.

variations of the system parameters and, correspondingly,
the system response can be controlled over a wide range.

Conclusions.—The experimental detection of diabatic
Floquet states in a time-dependent driven Bose-Einstein
condensate opens several directions that are worth explor-
ing further. For example, there is the issue relating to the
constructive role that decoherence may play for the stabi-
lization of the asymptotic response, similar to what has
been observed with stochastic models operating in the
classical regime [38]. Another promising research avenue
is the implementation of the tunable dispersion relation,
stemming from the Floquet spectrum of temporally modu-
lated optical lattices, for simulations of relativistic physics
effects with ultracold atoms [39,40]. Finally, the inclusion
of interaction between atoms of a dense condensate [41,42]
may open a way to the detection of many-body diabatic
Floquet states.

This work was supported by the DFG Grants
No. Wel748/7 (M. W.) and No. HA1517/31-2 (S.D. and
P.H.) and the German Excellence Initiative “Nanosystems
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